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Abstract: Designing and synthesizing photothermal conversion materials with better storage capacity,
long-term stability as well as low temperature energy output capability is still a huge challenge in
the area of photothermal storage. In this work, we report a brand new photothermal conversion
material obtained by attaching trifluoromethylated azobenzene (AzoF) to reduced graphene oxide
(rGO). AzoF-rGO exhibits outstanding heat storage density and power density up to 386.1 kJ·kg−1

and 890.6 W·kg−1, respectively, with a long half-life (87.7 h) because of the H-bonds based on high
attachment density. AzoF-rGO also exhibits excellent cycling stability and is equipped with low-
temperature energy output capability, which achieves the reversible cycle of photothermal conversion
within a closed system. This novel AzoF-rGO complex, which on the one hand exhibits remarkable
energy storage performance as well as excellent storage life span, and on the other hand is equipped
with the ability to release heat at low temperatures, shows broad prospects in the practical application
of actual photothermal storage.

Keywords: photothermal conversion material; outstanding heat storage density; long-term storage;
low temperature energy output; closed system

1. Introduction

With the fast development of society, people’s demand for energy is increasing and
the energy issue has now become one of the major problems that human beings need to
deal with [1]. Solar energy has the advantages of sufficient reserves, no pollution and
economical availability. Efficiently converting and storing solar energy has become an
important way to overcome the current energy shortage crisis [2–5]. Recently, photothermal
conversion materials have attracted extensive attention as a new method for storing solar
energy [6]. Photothermal conversion materials can store solar energy in chemical bonds
through photo-isomerization of units and then releasing the stored energy as thermal
energy when exposed to different external stimulus, achieving photothermal conversion
within a closed system. Such materials are able to effectively convert light energy into its
own chemical bonds and release its stored energy while avoiding the emission of additional
greenhouse gases, with the potential to achieve low-cost and large-scale industrial solar
storage [7]. However, photothermal conversion materials still have the shortcomings of
short storage time, low energy density and inability to achieve energy release under low
temperatures, which are key factors limiting its practical application in solar thermal energy
storage [8,9].

Owing to its special photoisomerization ability, good structural stability and control-
lable configuration recoverability, azobenzene and its derivatives with numerous applica-
tions [10,11] has received extensive research interest as a kind of photothermal conversion
material [12,13]. However, due to the disadvantages of poor storage performance and
storage half-life (τ1/2) arising from low isomerization enthalpy (∆H), azobenzene did not
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exert its full potential in terms of photothermal conversion and storage [14]. To override the
above hurdles, great efforts have been made on the basis of molecular design by introducing
different substituents and increasing the interaction between molecules [15–17]. Grossman
et al. [18] reported azobenzene derivatives with bulky aromatic groups as photoactive
chemical heat storage materials. Owing to the introduction of bulky phenyl groups, the
solid-state azobenzene derivatives not only improve the energy density but also improve
the corresponding thermal stability. Bléger et al. [19] reported o-Fluoroazobenzenes and
derivatives which exhibit an unprecedented long half-life owing to the ortho-fluorine
substituent which reduces electron density around the –N=N– double bond. Despite
great efforts having been made, it is still an intractable problem to apply azobenzene
photothermal conversion material to practical energy storage.

Different from freely dispersed azobenzene, many azobenzene carbon materials were
formed by introducing azobenzene into high-strength carbon nanomaterials forms many
azobenzene carbon nanocomposites [7,20,21] accompanied by a more closely ordered
structure, which have excellent storage capacity and life cycle. The templated, structure
modified azobenzene enhance the intermolecular interactions while obtaining a more stable
and tightly ordered structure, which jointly improved the storage capacity of azobenzene
carbon materials [22,23]. In addition, because of the unique 2D structure and broad surface
of graphene with numerous applications [24,25] which contributes to high attachment
density, the templated azobenzene/graphene nanomaterials show broad prospects in
photothermal storage [26]. Unfortunately, azobenzene carbon nanomaterials still have
problems such as difficulty in releasing storage heat at low temperatures and the inability to
balance energy density and half-life, which limits their further practical application [27,28].
Therefore, how to simultaneously achieve the improvement of storage capacity and life
cycle with low-temperature energy output capability is still a key issue in current research.

In this work, we report a novel photothermal conversion material by attaching trifluo-
romethylated azobenzene (AzoF) to reduced graphene oxide (rGO). The storage capacity
and storage life span as well as the cycling stability performance of AzoF-rGO has made
great progress. AzoF-rGO exhibits great development potential in recyclable and long term
photothermal storage.

2. Materials and Methods
2.1. Materials

3-amino-5-(trifluoromethyl)benzoic acid (99%), 3,5-dimethoxyaniline (99%), sodium
nitrite (97%), Na2CO3 (97%) and NaBH4 (97%) were purchased from Aladdin Reagent
(Shanghai, China).

2.2. Detailed Synthesis Steps

• 3-amino-5-(trifluoromethyl)benzoic acid (1.025 g) was dissolved in the HCl solution
(50 mL, 0.5 mol·L−1), then NaNO2 (0.380 g) was added and reacted at ice bath for
80 min. After dissolving 3,5-dimethoxyaniline (0.765 g) in water, we slowly added the
above mixture to it, adjusted the pH to 7 and reacted it in an ice bath for 4 h. AzoF
was obtained after further purification (1.255 g, 68%).

• GO was synthesized according to the literature reports [29]. First, we used NaOH
(1 mol·L−1) solution to change the pH of the GO aqueous solution (300 mL, 0.5 mg·mL−1)
to 10, then we reacted it at 90 ◦C for 4 h with NaBH4 (180 mg) under N2 atmosphere.
When the reaction was complete, rGO was obtained by washing the mixture with
water multiple times.

• AzoF (0.738 g) was dissolved in the HCl solution (60 mL, 0.5·mol L−1), then NaNO2
(0.141 g) was slowly added and reacted in an ice bath for 80 min, and the above
mixture was slowly added to the rGO solution (62 mL, 1 mg·mL−1). The mixture was
first reacted at 0 ◦C for 4 h and then at 30 ◦C for 16 h. AzoF-rGO was obtained by
purifying the mixture with water and DMF multiple times.
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2.3. Characterizations

The FT-IR was gathered from Vertex 70 (Bruker, Karlsruhe, Germany). The XRD was
gathered from X‘Pert Pro MPD (PANalytical, Almelo, Holland). Raman spectrum was
gathered from LabRAM Aramis (HORIBA, Paris, France). The XPS was gathered from
ESCALAB 250Xi (ThermoFisher, Waltham, MA, USA) using C1 s = 284.8 eV for energy
calibration procedures, Operation Mode:CAE:Pass Energy 100.0 Ev, software:Thermo
Avantage 5.976 and hemispherical energy analyzer were used for the test, the test vacuum
was 5 × 10−9 Torr, the sample was fixed on the sample stage with conductive glue, the
background was buckled through the smart method, and the energy calibration was
performed with gold, silver and copper. The TGA was performed on STA449F5 (NETZSCH,
Bavaria, Germany). TEM was gathered from Tecnai F20 (FEI, Hillsboro, Oregon, USA).
SEM were gathered from SU8010 (Hitachi, Tokyo, Japan). The UV–Vis absorption spectra
was performed on SPECORD 50 PLUS (ANALYTIK JENA, Jena, Germany) in the range of
250~550 nm with the resolution of 0.1 nm. The trans → cis transition was introduced by a
multiband LED lamp at 365 nm. The cis → trans transition was introduced by a multiband
LED lamp at 540 nm. The light intensity was gathered from an optical power meter (PL-
MW2000, Bofeilai Technology, Beijing, China). The heat storage density was determined
through differential scanning calorimetry (DSC, 214 Polyma, NETZSCH, Bavaria, Germany)
under N2.

3. Results and Discussion
3.1. Chemical Structure

As shown in Figure 1a, the low-resolution TEM image of rGO exhibited a smooth
structure and its electron diffraction exhibited a hexagonal lattice according to Fast Fourier
Transform (FFT) patterns within Figure 1b, demonstrating its good crystallinity. Figure 1c
shows that the surface of the material became rough, and the electron diffraction spot of
AzoF-rGO (Figure 1d) has become a closed loop attributed to the adhesion of AzoF on
rGO [30,31]. Furthermore, the SEM of AzoF-rGO (Figure 1f) shows a stacking phenomenon
compared with rGO (Figure 1e). This phenomenon not only reduced the distance between
adjacent graphene layers but also enhanced the intermolecular interaction, resulting in a
growth in the storage capacity as well as τ1/2 of AzoF-rGO [21]. In addition, it can also
be concluded that the distance between layers was reduced based on the XRD results
(Figure S2). After the reduction of GO, the (0 0 1) diffraction peak at 11.3◦ disappeared [32]
and was replaced by the (0 0 2) diffraction peak at 22.9◦ of rGO, and the corresponding
grain size was 25.51 nm based on Scherrer formula [33]. After attaching AzoF onto rGO,
the 2θ of AzoF-rGO has become to 25.2◦ with the grain size of 22.63 nm, which is consistent
with the SEM observation (Figure 1f) [34].

The AzoF-rGO had new peaks of –N=N– (1430 cm−1) and –CF3 (1140 cm−1) compared
to rGO [35] according to Figure 2a. Moreover, the FT-IR spectra of AzoF-rGO and AzoF also
showed peaks derived from -OH (3298 cm−1) and –C=O (1640 cm−1). It can also be seen
from Figure 2a that the wavenumbers of -OH and –C=O of AzoF-rGO show a significant
red shift compared to that of AzoF (3204 cm−1 and 1700 cm−1), confirming the formation
H-bond of AzoF on rGO [36]. XPS results also proven the successful grafting of AzoF on
rGO. In addition, the characteristic peaks of AzoF at 287.5 eV and 292.5 eV corresponding
to C–N and C–F bond also appeared in AzoF-rGO (Figure S3) [35]. Additionally, the fact
that there were characteristic peaks of –N=N– (400.3 eV) and –CF3 (688.3 eV) in AzoF-rGO
also confirmed the successful bonding between AzoF and rGO [35].
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Figure 1. (a,c) Low resolution TEM images of rGO and AzoF–rGO, (b,d) high resolution TEM images of rGO and AzoF-rGO
with FFTs, and SEM images of (e) rGO and (f) AzoF–rGO.

The high-density adhesion of AzoF onto rGO nanosheets is inextricably linked to
the improvement of the performance of AzoF-rGO. The decomposition of rGO during
the whole heating process was linear according to Figure 2d, and its weight loss mainly
attributed to the disappearance of oxygen-containing groups [37]. The AzoF was stable
before 185 ◦C, and its weight loss was attributed to self-decomposition. Additionally, the
weight loss of AzoF-rGO was caused by the weight loss of AzoF and rGO [27]. Therefore,
the attachment density (Ad) of AzoF on rGO after different time reactions can be obtained
based on Equation (1) [38].

Dg =
Rp − R
Rp − Ra

× 100% (1)

where Ra is the residual weight percentage of AzoF, R is the residual weight percentage of
AzoF-rGO, Rp is the residual weight percentage of rGO.

Table 1 shows that the attachment density (Ad) was 1/40 after the first reaction and
increased to 1/16 after the third reaction. The attachment density can also be obtained
based on XPS [39]. It can also be seen from Table 1 that the results obtained by XPS and
TGA were almost identical. From the above results, it can be concluded that almost every
16 carbon atoms of rGO correspond to one AzoF after the third reaction, which is better
than previous research [21,40]. High adhesion density on the one hand helps to form
intermolecular hydrogen bonds, while on the other hand it also enhances intermolecular
interactions, which improves the storage performance of AzoF-rGO [41]. In addition,
Raman spectroscopy also proved this result. It can also be seen from Figure S4 that the
ID/IG value of AzoF-rGO-1 (1.14) and AzoF-rGO-3 (1.18) was much larger than rGO (1.08),
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which indicates that the crystal structure of rGO has changed after attachment [31], proving
the remarkable attachment density of AzoF on rGO.
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Table 1. Ad of AzoF on rGO.

TGA XPS

Reaction Times Dg (%) a Ad
Element Content (%)

AdC F O

AzoF-rGO-1 43.41 1:40.1 77.42 4.13 15.71 1:40.2
AzoF-rGO-2 52.95 1:27.3 74.13 5.09 17.39 1:27.7
AzoF-rGO-3 65.73 1:16.0 71.07 6.64 17.90 1:16.1

a Dg is the average weight percentage of AzoF in AzoF-rGO at 600 ◦C, 700 ◦C and 800 ◦C.

3.2. Cycling Stability and Storage Performance

The optical properties performance of AzoF and AzoF-rGO was investigated through
time-evolved absorption spectra. It can be seen from Figure 3 that AzoF-rGO went through
a trans → cis isomerization process under 365 nm ultraviolet light irradiation. Compared
with AzoF (τ1/2: 195.2 min), AzoF-rGO (τ1/2: 87.7 h) takes more time to complete the isomer-
ization process from cis-isomer to trans-isomer, indicating that AzoF-rGO has better thermal
stability than pristine AzoF. The same conclusion can be drawn from the fact that the
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first-order reversion rate constant (Krev) of AzoF-rGO (3.29 × 10−6·s−1) was much smaller
than that of AzoF (1.20 × 10−4·s−1) under dark conditions derived from Equation (2) [21].

ln
(

At − A∞

A0 − A∞

)
= −krevt (2)

where A0 is the absorption intensity of AzoF-rGO and AzoF at metastable state (cis-rich)
irradiated by UV light, At is the absorbance of AzoF-rGO and AzoF reversing for “t”
time and A∞ is the absorption intensity of AzoF-rGO and AzoF after complete cis-to-trans
reversion. Moreover, compared to pristine AzoF (Figure S5), AzoF-rGO exhibited a lower
isomerization degree owing to the intermolecular H-bonds and steric hindrance owing
to high attachment density, resulting in a better storage performance of this material.
Furthermore, the ∆Ea value of the cis-isomer of AzoF-rGO (1.05 eV) was higher than that
of AzoF (0.94 eV) according to Equation (3) [42], which again proves the formation of
intermolecular hydrogen bonds [43].

Ea = −RTln
hln2

τ1/2kBT
(3)

where Ea is the activation barrier for cis-to-trans isomerization process, T represents the
temperature and τ1/2 represents the half-life. kB, R and h are the Boltzman, universal
gas and Plank constants. Additionally, the optical band gap of AzoF-rGO complex was
estimated to be ~1.8 eV based on the Tauc formula (Figure S6) [44]. The increase in the
stability of the cis-isomer means extension of the life cycle of AzoF-rGO, which is directly
related to the large-scale promotion of photoactive chemical heat storage materials.
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Similar to the length of the life cycle, whether the controllable heat release under exter-
nal stimuli can be achieved is critical to the future application value of AzoF-rGO. Figure 3c
showed that compared with dark conditions, the irradiation of green light (540 nm) sig-
nificantly accelerated the recovery process of AzoF-rGO from cis -isomer to trans-isomer.
Compared with dark conditions, the result that Krev (7.58 × 10−4·s−1) was significantly
larger under green light irradiation also confirmed the conclusion of faster reversion. The
same effect can also be achieved by absorbing heat from the external environment accord-
ing to DSC. The reason for this phenomenon is that the cis-isomer can absorb energy from
external stimuli to overcome the energy barrier of configuration reversion isomerization,
thereby achieving the purpose of accelerating energy output [45,46]. The above results
show that AzoF-rGO has successfully possessed the controllable heat output capability.

The stability of repeated cis↔ trans configuration transformations of AzoF-rGO and
AzoF has also been studied. It can be seen from Figure 4 that both AzoF-rGO and AzoF
have no significant decrease in the absorption intensity at 407 nm after repeated irradiation
of ultraviolet light (365 nm) and visible light (540 nm) for 50 times, which shows that they
have outstanding isomerization stability. The AzoF-rGO can not only be stored for a long
time under the premise of ensuring the storage effect, but also can control the output of the
stored energy, which is essential for actual photothermal conversion.
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The photothermal storage capacity of AzoF and AzoF-rGO was investigated through
DSC [7]. All objects were stable between 10–140 ◦C based on TGA. AzoF and AzoF-
rGO released significant heat under the first round of heating stimulation, but no heat
was released during the second round according to Figure 5. The above results prove
that the research subjects have released all the energy stored through the configuration
transformation in the form of heat. Furthermore, most photothermal storage materials
start to release the stored energy after 100 ◦C, while this kind of heat storage material can
start energy output at 35 ◦C, which is a milestone in achieving fast energy output at lower
temperatures [7].



Materials 2021, 14, 1434 8 of 11Materials 2021, 14, x FOR PEER REVIEW 9 of 12 
 

 

 
Figure 5. DSC (differential scanning calorimetry) traces of (a) AzoF and (b–d) AzoF-rGO after 1, 2 and 3-times reaction. 

It can be seen from Figure 5 that the heat storage density of AzoF-rGO-3 has reached 
to 386.1 kJ kg−1, which shows a significant increase over AzoF (121.4 kJ kg−1). This is because 
of the close-packed orderly distribute of AzoF on rGO as a result of high attachment den-
sity, which strengthens the intermolecular interaction [23]. In addition, high attachment 
density also enhances the steric hindrance and promotes the formation of H-bonds, which 
further increases the photothermal storage capacity [47]. The reason for AzoF-rGO-1 
showing less effectiveness compared to the AzoF is the low attachment density, which 
leads to weak intermolecular interaction and therefore relatively low energy density. 
Moreover, the heat storage density of AzoF-rGO-3 was also higher than AzoF-rGO-1 and 
AzoF-rGO-2, which shows that the attachment density was positively correlated with 
great storage performance. 

Similar to heat storage density, power density is also a key element to measure the 
possibility of practical application of AzoF-rGO. It can be seen from Figure 6 that the 
power density of AzoF-rGO-3 was 890.6 W kg−1, which shows a huge improvement com-
pared to AzoF (448.6 W kg−1). Furthermore, the power density of AzoF-rGO-3 was also 
higher than AzoF-rGO-1 and AzoF-rGO-2, which shows that the attachment density is di-
rectly related to the heat output performance. It is worth noting that high power density 
means fast output of energy, which further increases the feasibility of practical application 
of AzoF-rGO. As shown in Table 2, the performance of AzoF-rGO in many aspects has been 
greatly improved compared to other similar materials [7,15,48,49]. The above results 
demonstrate that AzoF-rGO, which not only exhibits remarkable photothermal capacity 

Figure 5. DSC (differential scanning calorimetry) traces of (a) AzoF and (b–d) AzoF-rGO after 1, 2 and 3-times reaction.

It can be seen from Figure 5 that the heat storage density of AzoF-rGO-3 has reached to
386.1 kJ kg−1, which shows a significant increase over AzoF (121.4 kJ kg−1). This is because
of the close-packed orderly distribute of AzoF on rGO as a result of high attachment density,
which strengthens the intermolecular interaction [23]. In addition, high attachment density
also enhances the steric hindrance and promotes the formation of H-bonds, which further
increases the photothermal storage capacity [47]. The reason for AzoF-rGO-1 showing
less effectiveness compared to the AzoF is the low attachment density, which leads to
weak intermolecular interaction and therefore relatively low energy density. Moreover, the
heat storage density of AzoF-rGO-3 was also higher than AzoF-rGO-1 and AzoF-rGO-2,
which shows that the attachment density was positively correlated with great storage
performance.

Similar to heat storage density, power density is also a key element to measure the
possibility of practical application of AzoF-rGO. It can be seen from Figure 6 that the power
density of AzoF-rGO-3 was 890.6 W kg−1, which shows a huge improvement compared to
AzoF (448.6 W kg−1). Furthermore, the power density of AzoF-rGO-3 was also higher than
AzoF-rGO-1 and AzoF-rGO-2, which shows that the attachment density is directly related to
the heat output performance. It is worth noting that high power density means fast output
of energy, which further increases the feasibility of practical application of AzoF-rGO. As
shown in Table 2, the performance of AzoF-rGO in many aspects has been greatly improved
compared to other similar materials [7,15,48,49]. The above results demonstrate that AzoF-
rGO, which not only exhibits remarkable photothermal capacity but also equipped with
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low temperature energy output capability, has shown great development potential in
achieving the goal of efficient photothermal storage.
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Table 2. Performance of different photothermal conversion materials.

Photothermal
Conversion Material

Energy Density
(kJ mol−1)

Power Density
(W mol−1) Half-Life (h) Ref.

Azo-diacetylene
polymer 176.2 1289.5 27.8 [48]

Azo-SWCNT complex 92.0 457.1 0.5 [7]
Azo-PCM complex 79.3 – – [15]
Azo-alkyl polymer 89.0 148.6 55 [49]

AzoF-rGO-3 complex 367.7 848.6 87.7 This paper

4. Conclusions

In summary, AzoF-rGO with good photothermal storage performance, outstanding
storage lifespan and low-temperature energy output capability has been proven to be
a great photothermal conversion material. The formation of hydrogen bonds and the
enhancement of intermolecular interactions owing to the high attachment density has
simultaneously achieved the improvement of the heat storage density (max. 386.1 kJ kg−1),
power density (max. 890.6 W kg−1) and half-life (up to 87.7 h) of AzoF-rGO for pho-
tothermal storage. AzoF-rGO also exhibits exceptional cycling stability, which realizes
long-term recyclability and efficient and pollution-free utilization of solar energy in a closed
system. Furthermore, AzoF-rGO can start energy output at 35 ◦C, which shows that the
goal of low-temperature energy output has been achieved. The above results indicate that
AzoF-rGO, combining outstanding photothermal capacity with a long-life cycle as well
as low-temperature energy output capability, is a prominent photothermal conversion
material with great practical application value.
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