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Abstract: Palladium satisfies most of the requirements for an effective hydrogen storage material
with two major drawbacks: it has a relatively low gravimetric hydrogen density and is prohibitively
expensive for large scale applications. Pd-based alloys should be considered as possible alternatives
to a pure Pd. The question is how much one can dilute the Pd concentration in a variety of candidate
materials while preserving the hydrogen absorption capability. We demonstrate that the resistivity
measurements of thin film alloy samples can be used for a qualitative high-throughput screening and
study of the hydrogen absorbing properties over the entire range of palladium concentrations. Con-
trary to palladium-rich alloys where additional hydrogen scattering indicates a degree of hydrogen
content, the diluted alloy films respond by a decrease in resistance due to their thickness expansion.
Evidence of significant hydrogen absorption was found in thin CoPd films diluted to just 20% of Pd.

Keywords: hydrogen storage; palladium alloys; thin films

1. Introduction

A hydrogen-based economy is one of the favorite approaches to maintaining the
current technological progress and standards of living while lowering carbon dioxide
emissions [1,2]. Unlike fossil fuels, the combustion of hydrogen does not generate carbon
dioxide (CO2), but water vapor only. The ultimate goals of a hydrogen-based economy
include the production of hydrogen while generating minimal greenhouse gases, the
development of efficient infrastructures for hydrogen storage and transport and harnessing
its energy via fuel cells. Hydrogen storage and transportation are critical prerequisites
to the realization of this vision and are among the most challenging issues to overcome.
Hydrogen may be stored either under high pressure as a gas, cryogenically as a liquid, or in
the solid state as a hydride [3–6]. The latter option offers the best theoretical combination of
gravimetric and volumetric capacity, stability and safety. The search for the optimal storage
materials is far from being accomplished. The hydride materials studied thus far either can
work near room temperature but have low gravimetric density or have high gravimetric
density but slow kinetics and can only release hydrogen at high temperatures.

Palladium has the potential to play a major role in practically every aspect of the envi-
sioned hydrogen economy owing to its catalytic and hydrogen absorbing properties [7,8].
Contrary to the majority of the known metal hydrides, palladium can absorb large quan-
tities of hydrogen at room temperature and atmospheric pressure due to the dissociative
adsorption of H2 molecules. It satisfies most of the requirements for an effective hydrogen
storage material with two major drawbacks: it has a relatively low gravimetric hydrogen
density (Pd is a heavy metal) [9] and is prohibitively expensive for large scale applications.
Pd-based alloys should be considered as possible replacements to a pure Pd for reducing
the cost, increasing the gravimetric hydrogen density capacity and, probably, improving
the diffusivity and kinetics of hydrogen loading and release. Multiple studies were devoted
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to the thermodynamics and solubility of hydrogen in Pd alloys [10,11]; however, most of
these works were limited to the alloys with a relatively low solute metal content [12–18].
Studies of alloys with strongly diluted Pd (up to about 50%) are focused mainly on the
permeability of selected binary and ternary alloy membranes [19,20].]

Pd forms alloys with a spectrum of metals, such as fcc Cu, Ag, Pt, Al, Ni, and bcc
Fe, V, Nb, Ta, Mo and W. The number of potential materials for hydrogen storage is very
large and to identify the optimal ones, multiple samples have to be produced and tested.
For that, using combinatorial methods to study and develop new materials can be highly
useful. A high throughput (combinatorial) materials’ science methodology is a relatively
new research paradigm that offers the promise of rapid and efficient materials screening,
optimization and discovery. High-throughput experiments are characterized by a synthesis
of a “library” sample that contains the materials variation of interest (typical composition),
and rapid and localized measurement schemes that result in massive data sets [21]. The
goal of any hydrogen storage program is to manufacture materials on a kilogram scale.
However, for rapid fabrication and screening purposes, it is more efficient to produce thin
film samples with a wide range of compositional variations using standard film deposition
techniques [22]. Traditional volumetric [23,24] and gravimetric [25] measurements of
hydrogen absorption cannot be used with thin film samples due to a negligible amount of
the active material. Thus, indirect screening techniques have to be used.

Hydrogen absorption in metals can be detected by monitoring characteristic changes in
the crystallographic and electronic band structure of the host materials. Hydrogen occupies
the interstitial sites in the fcc and bcc lattices and causes a large expansion of the host
crystal [26]. The lattice expansion can be measured using various structure characterization
tools, such as X-ray and neutron diffraction [27] but the adaptation of these techniques
for a rapid and massive screening is challenging. A technically simpler method of lattice
expansion detection was suggested about a decade ago [28], in which extension of the
hydrogenated film deposited on a bending cantilever was sensed by the deflected laser
beams. The technique was suggested for a possible high-throughput screening and tested
with several Mg-based samples. Another property affected by hydrogen absorption is
electrical resistivity. Metallic Mg becomes insulating and optically transparent when it
transforms to magnesium hydride, the property used in the hydrogenography screening
technique [29]. Pd, on the other hand, remains metallic in the hydride state, and its
resistance can either increase or decrease in response to hydrogen absorption. An increase
in the resistance is attributed to an enhancement of electron scattering in the hydride phase.
The effect was extensively studied and used for constructing the hydrogen metal phase
diagrams [30] and in hydrogen detection systems [31,32]. A reduction in the resistivity at
hydrogen loading was observed in ultrathin and nano-gap films [33–36] and attributed
to the lateral swelling of separated grains. As a result, the metallic clusters touch and
create new conducting channels or shrink the inter-particle gaps, which results in an
overall decrease in resistance. However, as demonstrated recently [37], the reduction in
resistance in the hydrogenated state is not restricted to the nano-gap structures but is
a general property of thin films grown on rigid substrates. Adhesion to the substrate
surface prevents the lateral expansion of the hydrogenated films. Absence of the in-plane
expansion is transformed to the out-of-plane extension enhanced by Poisson’s effect. The
elastic thickness expansion can reach 12.6% if the atomic ratio between Pd and the absorbed
hydrogen is one [38]. Expanding the thickness increases the current flow cross-section
and reduces the measured electrical resistance. The change in the resistivity between the
hydrogen-free and the hydrogenated states is a superposition of the enhanced hydride
scattering ∆ρH and a reduction in the resistance due to the thickness expansion, which can
be presented as follows:

∆ρ =
1

1 + γ
( ∆ρH − γρ0) (1)

where ρ0 is the resistivity before hydrogen loading, and γ = ∆t/t0 is the thickness expan-
sion coefficient (strain). The negative thickness expansion term (−γρ0) is proportional to
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the initial resistivity and can be much larger than the positive hydride scattering term in
the high resistivity samples. In bulk Pd and the low resistivity thick films, the scattering
term is dominant. On the other hand, the thickness expansion term is expected to dominate
in thin films with an enhanced surface scattering and alloys with high electrical resistivity.
Indeed, the resistance response polarity of thin Pd, thick PdSiO2 granular mixtures and
CoPd alloy films was found to change from positive to negative at the resistivity threshold
of 50 µΩcm in a 4% H2 atmosphere [37]. As a rule, the resistivity of binary palladium alloys
increases with the increasing concentration of the alloying component. For example, the
alloying of Pd with about 10% of V, Nb, or Mo increases the room temperature resistivity
by a factor of 4–8 [39]. The lattice expansion term in films with such resistivity is expected
to be large and easily detected.

The resistance measurements allow us not only to establish the very fact of hydrogen
absorption but can also provide valuable information on the kinetics of the processes
involved. As was demonstrated in Ref. [40], the time dependence of the hydride scat-
tering term can differ significantly from the lattice response one. It was suggested that
loading the metal host with a large amount of hydrogen can create an out-of-equilibrium
state. The stress built up by a rapid hydrogen absorption is released by a plastic lattice
expansion. The latter can be much slower than the gas diffusion process. Thus, the lattice
expansion associated with hydrogen absorption can be observable after a significant de-
lay. The ability to differentiate between the hydrogen diffusion and the lattice response,
between the reversible elastic and the irreversible plastic deformations is valuable for a
basic understanding of the hydrogenation mechanisms.

Here, we demonstrate the resistive testing of hydrogen absorption in CoPd alloys
over a full range of palladium concentrations. We will show the evidence of hydrogen
absorption in the alloys containing just 20% Pd.

2. Experimental

Co and Pd are soluble and form an equilibrium fcc solid solution phase at all com-
positions at room temperature [41]. Ferromagnetic CoPd alloys were used recently for
magnetic and spintronics detection of hydrogen [42–45]. 15-nanometer-thick polycrystalline
CoxPd100-x films were grown by rf-magnetron sputtering onto room-temperature glass
substrates from two separate targets (99.99%) Co and Pd in the custom made deposition
system., Co atomic concentrations covered the entire range 0 ≤ x ≤ 100. The base pressure
prior to deposition was 5 × 10−7 mbar. Sputtering was carried out at an Ar pressure of 5 ×
10−3 mbar. Composition of samples was controlled by rf-power of the respective sputtering
sources. The typical deposition rate was 0.01–0.1 nm/s. No post-deposition annealing was
used. After the deposition, the samples were mounted on the sample holder and connected
with 20-millimeter Si/Al wire using the wire-bonder. Resistance was measured following
the Van der Pauw protocol. The measurement setup included the GMV 3473 electromag-
net, Keithley 2400 source/meter, Keithley 2001 multimeter and HP 3488A switch/control
unit. The effect of hydrogen absorption was determined from measurements conducted in
nitrogen and a 4% H2/N2 mixture gas at an ambient pressure and room temperature.

3. Results and Discussion

Accurate resistivity measurements of thick palladium films can be challenging because
of buckling and cracks developing in the process of hydrogen absorption due to the
high compressive stress. An example of such damage in 20-nanometer-thick Pd film
is illustrated in Figure 1a,b. On the other hand, 15-nanometer-thick and thinner films
of Pd and CoPd alloys in the entire concentrations range are mechanically stable under
repeated hydrogenation and dehydrogenation cycles, and no buckling or cracks were
detected in any sample. Micrographs of the Co30Pd70 film surface before and after a
hydrogenation–dehydrogenation cycle are shown in Figure 1c,d. The 15-nanometer-thick
films are continuous and uniform. Films thinner than 10 nm have an inhomogeneous
meandric morphology with a continuous percolating metallic path across the sample. Films
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with a thickness below 3 nm are discontinuous and not conducting. Thus, mechanically
stable, uniform 15-nanometer-thick films were selected for this study.
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Figure 1. Micrographs of 20-nanometer-thick Pd (a,b), and 15-nanometer-thick Co30Pd70 (c,d) film
surfaces before and after the hydrogenation–dehydrogenation cycle, respectively. Cracks are visible
on the surface of hydrogenated Pd film.

Figure 2 presents the time dependent resistivity response to a sequence of hydrogen
loading and unloading cycles (sequential exposure to 1 atm 4% H2/N2 mixture followed
by N2) of three CoxPd100-x samples with x = 10 (a), x = 40 (b) and x = 80 (c).

The starting resistivity grows gradually with the Co content increasing from 35 µΩcm
in Co10Pd90 to 110 µΩcm in Co40Pd60. The first exposure to hydrogen is different in samples
with a different Co concentration and resistivity. Resistance increases in the low resistivity
Co10Pd90 (a) and decreases in samples with higher resistivity (ρ0 > 50 µΩcm). The response
to hydrogen removal is similar in samples (a) and (b): resistance decreases and saturates
in N2. The further response is reproducible and similar in all films: resistance increases
when exposed to hydrogen and drops on its removal. The sequence of reproducible
rapid increase/decrease responses to the loading/unloading of hydrogen superposed
with an irreversible gradual reduction in resistivity can be interpreted as a superposition
of reversible hydride formation-removal signals in the background of the irreversible
thickness inflation. The response of low resistivity films is dominated by the hydride
scattering term, while the lattice expansion is dominant in the high resistivity alloys. The
reversible hydride formation-removal signal is negligibly small in the Co80Pd20 sample,
and an irreversible reduction in resistivity is the only signal observed.

A different reversibility allows us to distinguish between the reversible hydrogen
scattering and the irreversible lattice expansion contributions. The lattice expansion can be
a long process depending not on the number of hydrogenation–dehydrogenation cycles,
but the duration of exposure to hydrogen. The process is irreversible in nitrogen–helium–
nitrogen cycling. The magnitude of this expansion resistivity change was determined as the
difference between the initial resistivity in nitrogen and the final one when the expansion
process was over.

The scattering term is reproducible over a large number of hydrogenation–dehydrogenation
cycles, as seen, e.g., in Figure 2a. Moreover, the alloys kept their sorption–desorption capa-
bility for a long time, and the scattering response did not change significantly when it was
re-tested about a year after the fabrication. The magnitude of the effect decreases with an
increasing Co content. Figure 3 presents the relative values of the scattering component, the
thickness expansion term and the total resistance change as a function of the Co content.
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The electronic scattering term is about 25% in pure Pd, decreases with the Co concentra-
tion and becomes very small at x > 40%. On the other hand, the magnitude of the negative
expansion term increases with the Co concentration and is the largest at x = 70–80% before
dropping to zero in pure Co. Co does not absorb hydrogen and no resistance changes were
observed when a pure Co sample was exposed to hydrogen. Notably, the alloy samples
with as much as 80% Co demonstrated a strong lattice expansion response to hydrogen
exposure, indicating hydrogen absorption.

The magnitude of the expansion response in strongly diluted alloys is very large;
however, the kinetics of the lattice expansion is very slow. Figure 4 presents the effective
half-time of the thickness expansion T50, defined as the time at which the irreversible
resistance reduction changed by half, as a function of the Co concentration x.

Materials 2022, 15, x FOR PEER REVIEW 7 of 9 
 

 

 

 
Figure 4. The half-time of the thickness expansion 𝑇  as a function of Co concentration x (open 
squares). Solid line (red) is a fit to 𝑇 = 𝑇 𝑒 , with 𝑇  = 13 sec and 𝑘 = 0.1. 

Hydrogen diffusion and the hydride formation accelerates with an increasing Co 
content down to a few sec in Co40Pd60 [40], which is quicker than in pure Pd. An enhanced 
diffusivity rate in these strongly diluted Pd-Co films is consistent with the conclusions of 
earlier studies of Pd-Au and Pd-Ag membranes [46,47] and Au-alloyed Pd surfaces [48]. 
The thickness expansion time scale is very different from the hydrogen diffusion one: 10 
secs in the x = 10 sample up to 105 sec in the x = 80% one. 𝑇  is fitted well as follows:  𝑇 = 𝑇 𝑒  (2)

where 𝑇  = 13 sec and 𝑘 = 0.1 (red dashed line in Figure 4), i.e., it increases exponentially 
with the Co concentration. The diffusion of hydrogen in and out of the material can be 
much quicker than the respective lattice response. The effect is interpreted as due to the 
creation of a non-equilibrium hydride state in which stress is built up rapidly with hydro-
gen absorption and is released by a slow plastic thickness growth that can be orders of 
magnitude slower than the gas diffusion time.  

The resistivity measurements presented here provide qualitative evidence of hydro-
gen absorption in CoPd alloys but not quantitative information on the hydrogen content. 
They can be used for a high-throughput preliminary screening of alloys to evaluate the 
limits of palladium dilution. However, calibration of the resistance response by, e.g., ex-
plicit volumetric measurements of macroscopic samples is required to evaluate the quan-
tity of the stored hydrogen.  

To summarize, we used the time-dependent resistivity measurements to study the 
absorption capabilities of CoxPd100-x films over a full range of Pd concentrations and found 
clear evidence of hydrogen absorption in strongly diluted (down to 20% of Pd) alloys. The 
dominant mechanism of the resistance response to hydrogen absorption in low resistivity 
Pd-rich alloys is scattering by interstitial hydrogen atoms. In high resistivity Pd-poor al-
loys, the scattering mechanism becomes negligible. Instead, the reduction in resistivity 
due to the lattice expansion is large and easily detectable. The lattice expansion and the 
respective reduction in resistivity are expected to be a general property of any hydrogen 
absorbing material. Resistivity measurements are technically simple and rapid. We pro-
pose to use the phenomenon and the method for high-throughput qualitative screening 
and study the hydrogen-absorbing kinetics of Pd-based alloys. Our next step will be al-
loying Pd with cheap and abundant Cu and Al. 

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

T 5
0 (

×1
04  s

ec
)

x (%)

 data
   fit to: T50 = T0e(kx) 

Figure 4. The half-time of the thickness expansion T50 as a function of Co concentration x (open
squares). Solid line (red) is a fit to T50 = T0ekx, with T0 = 13 s and k = 0.1.

Hydrogen diffusion and the hydride formation accelerates with an increasing Co
content down to a few sec in Co40Pd60 [40], which is quicker than in pure Pd. An enhanced
diffusivity rate in these strongly diluted Pd-Co films is consistent with the conclusions of
earlier studies of Pd-Au and Pd-Ag membranes [46,47] and Au-alloyed Pd surfaces [48].
The thickness expansion time scale is very different from the hydrogen diffusion one: 10 s
in the x = 10 sample up to 105 s in the x = 80% one. T50 is fitted well as follows:

T50 = T0ekx (2)

where T0 = 13 s and k = 0.1 (red dashed line in Figure 4), i.e., it increases exponentially
with the Co concentration. The diffusion of hydrogen in and out of the material can be
much quicker than the respective lattice response. The effect is interpreted as due to
the creation of a non-equilibrium hydride state in which stress is built up rapidly with
hydrogen absorption and is released by a slow plastic thickness growth that can be orders
of magnitude slower than the gas diffusion time.

The resistivity measurements presented here provide qualitative evidence of hydrogen
absorption in CoPd alloys but not quantitative information on the hydrogen content. They
can be used for a high-throughput preliminary screening of alloys to evaluate the limits
of palladium dilution. However, calibration of the resistance response by, e.g., explicit
volumetric measurements of macroscopic samples is required to evaluate the quantity of
the stored hydrogen.

To summarize, we used the time-dependent resistivity measurements to study the
absorption capabilities of CoxPd100-x films over a full range of Pd concentrations and found
clear evidence of hydrogen absorption in strongly diluted (down to 20% of Pd) alloys. The
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dominant mechanism of the resistance response to hydrogen absorption in low resistivity
Pd-rich alloys is scattering by interstitial hydrogen atoms. In high resistivity Pd-poor alloys,
the scattering mechanism becomes negligible. Instead, the reduction in resistivity due to
the lattice expansion is large and easily detectable. The lattice expansion and the respective
reduction in resistivity are expected to be a general property of any hydrogen absorbing
material. Resistivity measurements are technically simple and rapid. We propose to use
the phenomenon and the method for high-throughput qualitative screening and study the
hydrogen-absorbing kinetics of Pd-based alloys. Our next step will be alloying Pd with
cheap and abundant Cu and Al.

4. Conclusions

1. Thin films (below 15 nm thick) of Pd and CoPd alloys are mechanically stable under
repeated hydrogenation and dehydrogenation cycles, which allowed us to perform
reliable and reproducible resistivity measurements.

2. The change in the resistivity between the hydrogen-free and the hydrogenated states
is a superposition of the enhanced hydride scattering and reduction in the resistance
due to the thickness expansion.

3. The response of low resistivity Pd-rich films to hydrogenation is dominated by the
hydride scattering term.

4. The reduction in resistivity due to the lattice expansion is dominant in high resistivity
Pd-poor alloys.

5. Evidence of significant hydrogen absorption was found in CoPd alloys diluted to just
20% Pd.

6. The time scale of lattice expansion due to hydrogen absorption increases exponentially
with the Co concentration.

7. Resistivity measurements can be used for the qualitative high-throughput screening
of Pd-based alloys over the entire concentration range.
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