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Abstract: Acoustic Emission (AE) is revealed to be highly adapted to monitor materials and structures
in materials research and for site monitoring. AE-features can be either analyzed by means of physical
considerations (geophysics/seismology) or through their time/frequency waveform characteristics.
However, the multitude of definitions related to the different parameters as well as the processing
methods makes it necessary to develop a comparative analysis in the case of a heterogeneous material
such as civil engineering concrete. This paper aimed to study the micro-cracking behavior of steel
fiber-reinforced reinforced concrete T-beams subjected to mechanical tests. For this purpose, four-
points bending tests, carried out at different displacement velocities, were performed in the presence
of an acoustic emission sensors network. Besides, a comparison between the sensitivity to damage
of three definitions corresponding to the b-value parameter was performed and completed by the
evolution of the RA-value and average frequency (AF) as a function of loading time. This work also
discussed the use of the support-vector machine (SVM) approach to define different damage zones
in the load-displacement curve. This work shows the limits of this approach and proposes the use
of an unsupervised learning approach to cluster AE data according to physical and time/frequency
parameters. The paper ends with a conclusion on the advantages and limitations of the different
methods and parameters used in connection with the micro/macro tensile and shear mechanisms
involved in concrete cracking for the purpose of in situ monitoring of concrete structures.

Keywords: reinforced concrete beam; four-point bending; acoustic emission (AE); b-value; average
frequency; RA-value; support-vectors machine; unsupervised machine learning

1. Introduction

Reinforced concrete is predominantly used in civil engineering structures for its
desirable mechanical properties. However, the decline in strength of such structures is very
common and is generally attributed to increased service loading, ageing, fatigue, corrosion,
environmental impacts, etc. [1]. The presence of damage and progressive deterioration
of an existing concrete structure may result in poor performance, and even incur failure
under service loading. Therefore, it is of paramount importance to understand the involved
damage mechanisms and their symptoms for proper maintenance of these structures
ensuring safety, enhanced durability, and economic operations.

Acoustic emission is revealed to be highly adapted to monitor materials and structures
in different fields (e.g., civil engineering) in a nondestructive way [2–4]. The AE technique
is based on the detection of the rapid release of energy in the form of transient elastic stress
waves from a localized source within a material [5,6]. These transient AE signals are usually
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burst type and can be related to different types of sources such as initiation/propagation of
crack fronts, yielding, failure of bonds, fiber failure, delamination, etc. [7,8]. Despite the
lack of a standard procedure that can be used for all types of structures [9], AE remains
widely accepted and used in structural health monitoring of civil engineering structures [1]
thanks to its non-invasive character. The main advantage of the AE-based technique is its
ability to perform real-time continuous monitoring of the entire volume of a structure [10].
Consequently, it can provide early information about incipient damage and thereby pre-
vent catastrophic failure of a structure. Although acoustic emission-based studies were
introduced long ago [9], AE-based assessment of materials and/or structures has gained sig-
nificant traction in recent times. Various AE features can be determined from an AE-based
experiment, where it becomes possible to link the AE signals with the involved types of
damage [6]. AE event rate analysis was used to monitor the deterioration processes during
creep and fatigue tests in association with failure prediction models [11,12]. AE event rate
was also used to study salt crystallization in limestones [13]. Some research revealed that
AE signals can also be used to understand the nonlinear relaxation (slow dynamics) of
concrete taken at the initial and micro-cracked states [14,15].

AE features have also been analyzed by means of physical considerations in order
to evaluate the main damage mechanisms responsible for the detected AE events. Fea-
tures such as rise time, signal amplitude, and average frequency were studied in different
research in order to access the involved fracture created in different brick and mortar
types [16–18]. The severity of damage can be evaluated through the seismology parameter
called the b-value. Being sensitive to the coalescence of micro-cracks into macro-cracks, it
has been used in different studies in order to detect and monitor critical damage develop-
ment [19–22]. Based on the shift of the b-value and AE parameters, a statistical and fractal
analysis was performed by Carpinteri et al. in which they showed that the energy release
during the microcracking happens in a fractal domain and where the b-value was found to
be related to the fractal dimension [23–25].

A waveform-based analysis of AE signals requires broadband AE sensors and high
sampling rates. In the case of heterogeneous materials, the involved elastic waves can
be attenuated, which makes the study of high-frequency components difficult [26]. A
simplified signal analysis method was then proposed in which one takes into account the
rise time, amplitude, and average frequency of the AE signals [18,27,28]. However, the use
of the proposed method depends on the distance between the source and the sensor, which
should be compensated in some cases as in ref. [29].

Several works have used AE-based techniques to classify crack modes in reinforced
concrete beams subjected to bending [17,30–33]. Ohno and Ohtsu [27] successfully used
simplified Green’s functions for moment tensor analysis (SiGMA) to quantitatively classify
cracks in terms of tensile (mode I) and shear (mode II) in concrete structures. Probabilistic
methods, such as Gaussian mixture modeling (GMM), have also been used to classify cracks
using AE data [1,34]. Very few studies were found on support vector machine (SVM)-based
classification of AE data. Das et al. [35] classified cracking modes in steel fiber-reinforced
concrete beam under bending and strain hardening cementitious composite samples under
tension loading using Gaussian Mixture Models and a SVM-combined framework. The
crack mode classification showed that more events were caused by matrix cracking during
strain hardening, while during the softening phase, a larger number of events were found
to be associated with fiber pull out. R. V. Sagar [36] classified the crack modes in reinforced
concrete beams using GMM and the results were validated with the help of SVM.

The AE events were localized with the help of localization algorithms [30] by consid-
ering the arrival time of longitudinal AE waves across sensors, and it was observed that
localization can be improved with the help of a well-arranged network of sensors. Mirgal
et al. [37], with the help of their localization algorithm, found that sensors placed in a
zigzag fashion can provide better localization of pencil lead break (PLB) sources than using
a rectangular or circular arrangement on the surface of concrete slab. Soulioti et al. [31]
studied the effect of fiber content on fracture modes in concrete beams using AE data. They
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observed that for unreinforced concrete, the dominating fracture mode is tensile in nature,
whereas in the case of reinforced concrete the dominating mode of fracture changes to shear
as fiber content increases. Anay et al. [38] monitored cement paste-based specimens by AE
under compressive loading and classified progressive failure mechanisms. They identified
three distinct crack behaviors, namely microcrack initiation, crack extension, and unstable
crack growth.

The huge quantity of AE data makes the reduction of their dimensionality necessary.
For that purpose, principal component analysis (PCA) was often used in different applica-
tions including concrete and composites [38,39]. PCA is often followed by a clustering using
an unsupervised technique. In that sense, Sena et al. [40] studied the micro cracking of steel
fiber-reinforced concrete beams under three-point bending. The multivariable clustering
revealed the existence of two types of failures, namely matrix failure and steel fiber/matrix
debonding. Calabrese et al. [41] applied PCA to reduce the dimension of AE data obtained
from a four-point bending test on concrete beams. The Kohonen’s self-organizing map
(SOM) algorithm, which is an artificial neural net based on an unsupervised learning
method, was implemented with the aim to discern clusters and relate them to the AE
patterns. Sun et al. [42] investigated the failure process involved in crumb rubber con-
crete under four-point bending using AE techniques. Various clustering methods, namely
k-means, fuzzy c-means (FCM), self-organizing mapping (SOM), Gaussian mixture model
(GMM), hierarchical model, and density peak clustering were used in order to find the
best algorithm for that particular scenario, and the density peak algorithm was found to
produce best results. The main advantage of the AE-based technique is its ability to monitor
the entire volume of a structure in real time [10]. Hence, AE monitoring can provide early
information about incipient damage and thereby prevent catastrophic failure of a structure.

The present research work focused on the characterization of civil engineering concrete
T-beams reinforced with steel bars subjected to four-point bending quasi-static tests. Steel
bars prevent fragility and associated catastrophic failure and improve the post-peak behav-
ior. They consequently offer a considerable enhancement of the load-carrying capacity and
delayed failure was obtained [31]. Mechanical tests were monitored with AE sensors in
order to extract the different AE signals emitted during the creation and propagation of
micro-cracks. In order to highlight the dependence of the AE activity on the loading rates,
bending tests were performed at different rates and AE signals were analyzed according
to different time and frequency domain parameters. According to the literature, three
different definitions of b-value can be used. This work compared the three definitions of
the of b-value parameter, used in geophysics to study the fracture process in rocks, and
drew a conclusion about their relevance in the case of the damaged concrete samples. AE
data analysis was then performed with the help of specific waveform parameters, namely
RA-value (rise time to maximum amplitude) and AF (average frequency). The use of a
supervised learning approach based on the support vector machine (SVM) allowed us to
separate the load-displacement curve into different areas according to the involved damage
mechanisms. Moreover, unsupervised machine learning for clustering AE data allowed
us to identify three clusters which were revealed to be frequency independent. This work
ends by presenting the time/frequency characteristics of the AE signals according to the
involved damage mechanisms.

2. Theoretical Background

Various AE features can be collected during an experiment with the help of a sophisti-
cated AE monitoring system. Upon analyzing the AE features by using suitable algorithms,
a good insight about the damage stage can be ascertained. Some useful algorithms that are
usually used in AE based analysis are presented in the following.

2.1. Average Frequency (AF) and RA Value (RA)

Average frequency and RA value are two important quantities that can be used to
determine crack modes in concrete structures [43]. Figure 1a presents the main parameters
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used to obtain the AF and RA of an AE waveform. Average Frequency (AF) is defined
as the ratio between the number of counts and duration of an AE waveform. It basically
determines the number of threshold crossings per unit time of an AE waveform.

Average Frequency (AF)[in kHz] =
Counts

Duration
(1)

where “Counts” indicates the number of times the signal amplitude exceeds the fixed
threshold over the entire duration of the AE waveform. RA value of an AE waveform is
defined as the ratio between the rise time and amplitude:

RA value[inµs/V] =
Rise time

Amplitude
(2)

Figure 1. Schematic representation of (a) an AE signal and some important AE parameters, (b) tensile
crack, and (c) shear crack.

AE waveforms generated due to tensile cracks (Figure 1b) have shorter rise time [17,44].
Hence, tensile-type cracks usually generate AE signals with lower RA values and higher
AF. On the other hand, in the case of shear-type cracks (Figure 1c), the AE waveforms are
longer, RA values are relatively higher, and AF is lower [44].

2.2. The Three Different b-Values

The b-value analysis methods are generally used in geophysics to study the fracture
process in rocks [45]. It uses amplitude of AE events. According to the literature, there are
three different types of b-value, namely b1-value, b2-value, and b3-value.
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2.2.1. b1-Value

The pioneer work using the b1-value to assess the progressive failure was carried out
by Shiotani et al. [46]. The authors suggested that the b1-value has the potential to be a
precursor of slope failure. The expression of b1-value is given as:

b1 =
log10N(µ− α1 × σ)− log10N(µ + α2 × σ)

(α1 + α2)σ
(3)

where N is the number of recent events, µ is the mean value of the amplitudes of those
recent events, σ is the standard deviation of the amplitudes of the same group of events, and
α1 and α2 are empirical constants that specify which part of the population is considered.
Usually, α1 and α2 are considered to be 0 and 1, respectively.

Although b1-value was first used to study the fracture process in rocks, it was later
used by many researchers to study fracture process in concrete [47,48]. Researchers in
refs. [47,49] found that micro-cracks lead to relatively higher values of b1-value and macro-
cracks lead to lower b1-value. Hence, a decrease in the b1-value may indicate successive
accumulation of stress associated with a propagating rupture front [47].

2.2.2. b2-Value

In the field of seismology, C. F. Richter and B. Gutenberg proposed an empirical
relationship between earthquake frequency and magnitude, which is commonly known as
the GR law, and the exponent of this law is known as the b-value [50]. The expression for
the seismic b-value is given as:

N(≥ M) = 10a−b∗M or, log(N) = a− b ∗M (4)

where N is the number of earthquakes whose magnitude is ≥ M. a and b are constants
in an area over a specified span of time. [51,52]. Due to the resemblance between acoustic
emission in materials and earthquakes, the b-value analysis has been incorporated in the
progressive damage assessment of concrete structures. However, since the peak amplitude
of an acoustic emission signal is measured in decibels (dB), and on the other hand, the
magnitude of an earthquake is measured in the Richter Scale that considers the logarithm
of seismic wave amplitude [45], it is necessary to use an adapted formula for the calculation
of the “new” b-value, noted as the b2-value:

log(N) = a2 − b2 ∗
(

AdB
20

)
(5)

N is the number of acoustic emission hits with an amplitude ≥ AdB, and a2 is a
constant that depends on the background noise (environment). The b2-value is basically the
slope of the log-linear graph of the frequency–magnitude distribution of AE hits.

2.2.3. b3-Value

The b3-value was proposed by K. Aki [53]. He considered the discrete frequency
distribution of earthquake magnitudes and, by means of statistical analysis, proposed the
maximum likelihood of the b-value of the Gutenberg–Richter form of distribution. The
expression of the b3-value is given as follows [45]:

b3 =
20 log10 e
aavg. − ac

(6)

where, aavg is the average amplitude and ac is the threshold magnitude [53,54]. In the
context of AE-based damage assessment using the b3-value, earlier research works were
carried out to find the fracture process in rocks [54,55]. Later, some researchers implemented
this method in the progressive damage assessment of concrete structures [50].
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2.3. Machine Learning Based Approaches

Two types of the machine learning techniques, i.e., supervised learning and unsu-
pervised learning, were used in the present research work for the interpretation of AE
data. In the case of the supervised learning technique, a model is trained with labeled data
to predict future outputs. On the contrary, an unsupervised learning technique does not
need labeled data, but it can find the hidden patterns in the input data. There are many
supervised as well as unsupervised learning algorithms available; however, the discussion
is limited to only those used in the present study, which are presented below.

2.3.1. Supervised Learning Using Support-Vector Machine

Support-vector machine (SVM) is a widely used supervised learning method for
classification [56]. The SVM algorithm searches for an optimal separation boundary (usually
called the hyperplane or the decision boundary), which maximizes the margin as shown in
Figure 2. Such maximization of the margin between the two classes on the training data
results in an efficient classification on test data [57]. The points on the margins are called
support vectors [57]. In SVM, the training data are first mapped in space and then the test
data are mapped in the same space to determine in which class they fall.

Figure 2. SVM, support vectors, hyperplane (schematic).

The Lagrangian dual problem [58] for linearly and nonlinearly separable classes can
be expressed as follows.

� For linearly separable classes (i.e., linear SVM), minimize

1
2

n

∑
i=1

n

∑
k=1

αiαkyiykxT
i xk −

n

∑
i=1

αi (7)

with respect to α1, . . . , αn subject to ∑ αiyi = 0, αi ≥ 0 ∀i.
� For nonlinearly separable classes (i.e., nonlinear SVM), minimize

1
2

n

∑
i=1

n

∑
k=1

αiαkyiyk K(xi, xk)−
n

∑
i=1

αi (8)

with respect to α1, . . . , αn subject to ∑ αiyi = 0, 0 ≤ αi ≤ C ∀i.

Where (x1y1), (x2y2), (x3y3), . . . , (xnyn), are ‘n’ data points with xi ∈ RP and
yi ∈ {−1, 1}, for all i = 1, . . . , n. The objective remains the same for both linearly and
nonlinearly separable classes. However, the condition for coefficients (αi) changes, where
for linearly separable classes αi ≥ 0 ∀i; and for nonlinearly separable classes, 0 ≤ αi ≤ C∀i,
C being a regularization parameter. K(xi, xk) = 〈φ(xi), φ(xk)〉, is the dot product (i.e., inner
product) of the transformed features using kernel function φ. Some well-known kernel
functions are the Gaussian radial basis function (RBF), polynomial, sigmoid (i.e., neural
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network), and linear. The RBF and linear kernel functions were used in the present study
and are given as:

Gaussian RBF : K(xi, xk) = exp
(
−‖xi − xk‖2

2σ2

)
, σ is kernel width. (9)

Linear : K(xi, xk) = xT
i xk (10)

Nonlinear SVM works in the transformed predictor space to find an optimal hyper-
plane. The advantage of the RBF kernel is that it has an efficient learning ability in nonlinear
cases [59].

2.3.2. Unsupervised Learning Approach

The unsupervised learning approach adopted in the present study consists of three
steps: feature selection, feature optimization (i.e., dimensionality reduction), and clustering.
Although clustering of data is the main goal to acquire an insight into the hidden patterns of
the data, the other two steps are very important to improve the abovementioned clustering.
In the present study, important features were identified using Laplacian score and feature
optimization has been carried out using principal component analysis (PCA). Finally, the
clustering of AE data was performed with the help of a k-means algorithm considering
optimized data (Figure 3).

Figure 3. Flow chart showing steps involved in the adopted unsupervised learning scheme.

Laplacian score (LS) is an advanced variance analysis tool that prefers features with
larger variance having more locality preserving ability [60]. An important feature is
determined with the help of its Laplacian score. A good AE feature that can cluster data has
an LS greater than 0.9 [61]. Thus, with the help of LS analysis only the important features
can be selected for the subsequent principal component analysis. Principal component
analysis (PCA) [39] is a well-known feature optimization technique [41]. It is based on
the eigen decomposition of the feature covariance matrix. The principal components are
orthogonal to each other, and each principal component is basically a linear combination of
the original variables. Principal components have a decreasing trend in variance, i.e., the
first principal component has the maximum variance. Projection of each observation
on the first principal component axis would therefore result in maximum variance, while
projection of the same observations on second principal component axis would yield second
largest variance, and so on. Usually, only the first few PC are used for subsequent analysis
since the cumulative variance of these PC is quite large. Finally, the k-means algorithm
partitions data into k-number of mutually exclusive clusters [62]. k-means minimizes the
sum of the distances between the centroid and all member objects of each cluster. The point
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to be noted here is that the value of k of the algorithm is not known initially but chosen
depending on some cluster validity indices. The widely used cluster validity indices found
in the literature are the Davies–Bouldin (DB) index and the Silhouette coefficient (SC),
which are defined below.

� Davies-Bouldin (DB) index: It is defined as the ratio of the sum of within-cluster scatter
to between-cluster separation [63].

DB =
1
k

k

∑
i=1

max
j 6= i

{
di + dj

Dij

}
(11)

where, k is the number of clusters, and di and dj are average within-cluster distances
of clusters i and j, respectively. Dij is the distance between the centers of the ith and
jth clusters. It can be easily understood from this formula (Equation (11)) that a lower
value of DB indicates a better separation of the clusters with a good compactness
inside the clusters. [64]

� Silhouette coefficient (SC): This is an interpretation and validation method of consistency
of data within the clusters. The Silhouette value can be calculated as follows [65]:

S(i) =
B(i)− A(i)

max {A(i), B(i)} (12)

where A(i) is the average dissimilarity of i with all other data within the same cluster.
B(i) is the lowest average dissimilarity of i to any other cluster of which i is not a
member. A high Silhouette value indicates that the object is well matched to its own
cluster and poorly matched to the neighboring clusters. SC ranges from 0 to 1, and
a value of SC greater than 0.6 generally assures that the clustering is of a sufficient
quality [66]. DB and SC are therefore used for obtaining the optimal cluster number,
which is simultaneously indicated by a lower Davies–Bouldin index and a higher
Silhouette coefficient [67,68].

3. AE Monitoring of Mechanical Tests

Four-point bending tests were conducted on 3.5 m-long samples of reinforced concrete
T-beams with the help of a Universal Testing Machine (INSTRON 8801). The T-beams
were manufactured by RECTOR® following the French standard NF EN 15804+A1 and its
national complement NF EN 15804/CN. The mechanical properties of the beams are given
in Table 1 and the dimensions of the same in Figure 4. The distance between the bottom
supports is 3 m and the distance between the loading points is 1 m (Figure 5). The load
is applied with the help of a servo-controlled hydraulic actuator of the Universal Testing
Machine, in a displacement-controlled manner. Different displacement rates (1 mm/min,
2 mm/min, and 4 mm/min) were applied on identical samples, namely sample 1, sample 2,
and sample 3, respectively. The AE set-up (Figures 5 and 6) consists of sensors, preampli-
fiers, and a data acquisition system (i.e., PCI-2 of Physical Acoustics). Four sensors capture
acoustic emission hits created during the occurrence of damage events in the tested sample.
The sensors used were broad band-type PAC (MICRO-80) and the selected frequency band-
width was 20 kHz–1 MHz for all the tests. A threshold of 45 dB and a pre-amplifier gain of
40 dB were assigned as inputs. In order to check the sensitivity and coupling of the sensors,
pencil lead break (PLB) was performed before the actual AE monitoring of each sample.
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Table 1. Mechanical properties of the reinforced concrete T-beams as provided by the manufacturer
(i.e., RECTOR®).

Ingredients Characteristics

Concrete Compressive strength = 50 MPa

Steel Ultimate tensile strength = 525 MPa
Yield strength in tension = 500 MPa

Figure 4. Dimensions of the reinforced concrete T-beam (in mm): (a) longitudinal and (b) cross
sectional dimensions.

Figure 5. Reinforced concrete T-beam subjected to four-point bending and acoustic monitoring.
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Figure 6. Experimental set-up: UTM, sample beam, and AE setup.

4. Results and Discussion
4.1. Global Analysis of Damage

In the present work, the four-point bending test was coupled with AE monitoring,
where the main characteristics of the performed mechanical tests are presented in Table 2.
In Figure 7a, it can be observed that results corresponding to the three different tests were
very close to each other and within the limit of proportionality. It can also be observed that
the load-displacement curves of sample 1 and sample 2 had a good agreement even in the
major part of the nonlinear zone. Note that the behavior of sample 3 was different from
those of samples 1 and 2 due to its relatively high loading rate. It should be noted that,
in the load-displacement curve, a sudden drop in the value of load in the nonlinear zone
indicates the formation of a major crack in the sample during the test. We also note that
the change in the speed ratios between the three different tests has a clear effect on their
durations. This can be verified in Figure 7b with the help of the sudden drop in the value
of load in the nonlinear zone, where the final cracking happened approximately at 650 s,
1300 s, and 2300 s for tests 1, 2, and 3, respectively. In the literature, it was found that the
main crack proceeds with increasing velocity for increasing loading rates [69]. Indeed, the
crack velocity increased by orders of magnitude at high loading rates while it propagated
in an almost constant way at lower loading rates [70,71].

Table 2. Mechanical test results.

Samples
Rate of

Displacement
(mm/min)

Time (s) Load at Limit of
Proportionality (N)

Displacement at
Limit of

Proportionality (mm)

Maximum
Load (N)

Maximum
Displacement (mm)

S1 1 2242 8151 10.06 12,830 37.10

S2 2 1329 8402 10.79 13,094 43.74

S3 4 632 8299 10.80 12,992 41.12

Average 8284 10.55 12,972 40.65



Materials 2022, 15, 3486 11 of 24

Figure 7. (a) Evolution of load as a function of displacement, (b) evolution of load as a function time,
(c) initial cracks, and (d) rupture of the beam.

In order to explain the cracks in terms of their appearance and orientations, and corre-
sponding typical AE-signals, during the successive loading stages, a schematic presentation
is given in Figure 8. In the initial stages of loading, as shown in Figure 8a, a few tiny vertical
cracks were observed, mostly in the span between the loading points (upper). These are
tensile cracks. With the increase in the loading, these tiny cracks increased in size and
crack tips propagated upwards. A few more cracks were also seen to develop during this
period. When the applied loading reached considerably high values during final stages of
loading, shear cracks, mainly oriented horizontal or inclined, as shown in Figure 8b, started
to develop and quickly became significantly large, resulting in a significant reduction in
strength, indicating impending failure of the sample. The typical AE signals during the
initial and final stages of loading are also shown in Figure 8. The AE signals during initial
stages of loading were characterized by high frequency and low rise time; on the contrary,
the AE signals during the final stages of loading had low frequency and higher rise time.
These explain AE signals of the initial and final stages of loading to possess significantly
different RA values.
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Figure 8. Schematic presentation of cracks and the corresponding dominating AE signals: (a) cracks
during initial stages of loading and AE signal, and (b) cracks during final stages of loading and
AE signal.

In our tests, various features (i.e., amplitude, rise time, counts, duration, energy,
number of hits, etc.) [72] of the acoustic emission signals can be used for analysis with
the aim to monitor the progressive damage of the samples under the four-point bending
test. It was observed that the AE activity evolves as function of the applied load, where
amplitudes of the involved AE hits become higher in the case of a major crack (Figure 9a).
On the other hand, the cumulative number of hits can be considered as a global parameter,
which can be sensitive to the mechanical test conditions (i.e., load rate). Figure 9b shows
that the evolution of the cumulative hits per unit time is constant for each mechanical test.
This is in agreement with the results of the literature, which predict a constant velocity
for the cracks for moderate loading rates [70,71]. On the other hand, the evolution of the
cumulative hits per unit time was found to be proportional to the loading rate, where the
highest value was found for the loading rate corresponding to 4 mm/s, which created the
shortest nonlinear zone.

4.2. Physical Parameters-Based Analysis of Damage

The physical parameters discussed in the theory section can also be used for the
interpretation of AE data. Since macro-cracking is accompanied with an important release
of stored strain energy within tested materials, relatively small b-values can be expected.
The prediction of macro-cracking can therefore be performed on the basis of the dominating
micro-cracks events having small energies. Large energies are emitted when macro-crack
events are created (through the coalescence of micro cracks) which makes the b-value drop.
Results obtained using the three different b-value definitions show that b1-value, b2-value,
and b3-value sharply decreased when macro-cracking events occurred (Figure 10). The
three definitions were effectively able to identify both small-scale and large-scale events
in accordance with previous studies performed on geomaterials [45,73,74]. Finally, we
note that a quantitative distribution based on the abovementioned b-values can also be
performed in order to predict large-scale events and/or ultimate failure, as was carried out
to predict the fracture damage of sandstone, where it was found that the ultimate failure



Materials 2022, 15, 3486 13 of 24

happened when the three types of b-values were the minimum [45]. This observation is in
agreement with our results.

Figure 9. (a) Variation of load and AE amplitude with time (this observation is found to be consistent
for each of the samples) and (b) variation in cumulative AE hits with time and corresponding linear fit.

The monitoring of the fracture mode can be performed by evaluating the average
frequency (AF) and RA value. Indeed, when the fracture mode is dominated by tension-type
cracking, the value of AF is higher, and the RA value is lower. However, in the case of a
shear-type cracking, there is a sudden decline in AF and a sharp increase in RA value. As
shown in Figure 11, the pattern was found to be consistent for the different mechanical
tests. According to literature, early stages of damage are mainly due to tensile cracking
modes. As damage evolves, more shear cracks are created. This observation, which has
been confirmed by many studies [32,75], justify the results presented in Figure 11, in which
high sensitivity of both parameters to the type of cracking can be observed.

4.3. Machine Learning Based Approaches

In order to classify the AE data, machine learning methods (i.e., supervised and un-
supervised) were employed. In the case of supervised learning, support-vector machine
(SVM) was used to classify the AE data. On the other hand, in the case of unsupervised
learning, principal component analysis (PCA) and k-means were implemented for dimen-
sionality reduction and clustering of the AE data, respectively. However, a point to be
noted here is that a large number of features were used in the unsupervised machine learn-
ing approach, whereas the supervised machine learning was only based on two features,
namely average frequency and RA value.

4.3.1. Supervised Learning Using SVM

Support-vector machine (SVM) is vastly used in supervised learning. However, to
implement this method, a labeled data set is required for training the model. Therefore,
at first, the AE data set consisting of average frequency (AF) and RA value, which was
used in this supervised learning, were labeled. This step is mandatory for the algorithm
to work. It is also very important since the performance of the algorithm depends on this.
Since the load-displacement characteristic of the tested beam samples has three separate
zones (i.e., linear, nonlinear, and shear), the labeling was carried out based on that. In other
words, AE data which correspond to linear, nonlinear, and shear zones were labeled as
Zone 1, Zone 2, and Zone 3, respectively (Figure 12).



Materials 2022, 15, 3486 14 of 24

Figure 10. Evolution of the three types of b-values during the performed mechanical loading at
(a) 1 mm/s, (b) 2 mm/s, and (c) 4 mm/s.
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Figure 11. Variation of load, average frequency (AF), and RA value with respect to time: (a) sample 1,
(b) sample 2, and (c) sample 3.
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Figure 12. Labeling of the data set into three separate classes (i.e., Zone 1, Zone 2, and Zone 3).

The results obtained using SVM showed that Zone 1 could not be well separated from
Zone 2 (Figure 13). This is reasonable because Zone 1 data corresponds to tensile micro
cracks, while Zone 2 data corresponds to micro as well as moderate cracks. Basically, the
characteristics of Zone 1 data are similar to the characteristics of a fraction of the Zone 2
data. Hence, in the subsequent analysis, using SVM only two labels were used. In other
words, the linear and nonlinear part have the same label, namely Zone 1 + Zone 2, and the
shear part was assigned the same label as before, i.e., Zone 3. On the other hand, it was also
observed that the performance of SVM is better for the Gaussian kernel compared with
linear kernel. Therefore, the SVM analyses were performed using the Gaussian kernel only.
Very few studies are available on the application of SVM for the classification of AE data
obtained from concrete structures. SVM was adopted in refs. [35,36] to classify cracks in
reinforced concrete using RA–AF data. AE data were classified into two classes, i.e., tensile
and shear, in the RA–AF plane using a linear kernel. A point to be mentioned is that the
choice of the kernel type depends on the pattern in the data.

Figure 13. Classification using SVM (for sample 1 data): (a) using linear kernel and (b) using
Gaussian kernel.
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The Gaussian kernel trick of SVM was found to be very efficient in the classification
of AE data (i.e., average frequency and RA value) with the help of its nonlinear hyper
plane (Figure 14). Although the supervised machine learning approach using SVM worked
well for the classification of AE data, it is difficult to classify data if multiple mechanisms
are present in a particular zone. For example, in the nonlinear zone (i.e., Zone 2), where
multiple damage mechanisms are present, it remains difficult to label data of Zone 2 with
different labels that correspond to different damage mechanisms. Hence, there is a need for
an unsupervised learning approach because it does not require pre-assigned labeled data
for the classification.

Figure 14. Two labels of SVM classification using Gaussian kernel in the case of sample 1.

4.3.2. Unsupervised Machine Learning for Clustering of AE Data

A large number of features can be considered for the unsupervised approach as shown
in Table 3. The determination of the Laplacian score (LS) corresponding to each feature
helps to identify the most relevant ones. The latter are characterized by a large variance
and have more representative power. In this study, the features which have LS> 0.9 were
chosen for subsequent principal component analysis (PCA) to reduce the dimensionality
of data. Finally, only the first few principal components, which have cumulative variance
>90%, were used for the subsequent k-means method to cluster AE data. A point to be
noted here is that an optimal number of clusters for the k-means was determined with the
help of the Davies–Bouldin (DB) index and Silhouette Coefficient (SC), as discussed in the
theory section.

Table 3. Features selected for the unsupervised learning [72].

Feature Unit Feature Unit Feature Unit

Amplitude (A) dB Average Frequency (AF) kHz Partial Power 1 (PP1) -
Rise time (RT) µs Frequency Centroid (FC) kHz Partial Power 2 (PP2) -
Duration (DU) µs Peak Frequency (PF) kHz Partial Power 3 (PP3) -

Energy (E) aJ Weighted Frequency (WF) kHz Partial Power 4 (PP4) -
Counts (CNTS) - RA value (RA) µs/V Partial Power 5 (PP5) -

Typical results of the pre-requisite steps before clustering by k-means are given in
Figure 15 using the AE data of sample 1. Although the Laplacian score of each feature was
used for the selection of features that have larger variance with more locality preserving
ability, the standard deviation of each feature is also given in Figure 15a to show the corre-
spondence between Laplacian score (LS) and standard deviation (SD) of each feature. A
similar trend can be observed through both LS and SD data. Based on the criterion LS > 0.9,
as given in Figure 15b, it can be observed that the three first principal components represent
more than 90% of the total variance, as shown in Figure 15c. Hence, only these first three
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principal components were considered for the subsequent k-means algorithm. The optimal
number of clusters for k-means analysis was determined based on the Davies–Bouldin (DB)
index and Silhouette coefficient (SC) (Figure 15d), which should be simultaneously the
minimum and maximum, respectively. Finally, note that similar trends were also found for
the AE data of sample 2 and sample 3, but are not included here.

Figure 15. Different steps of the adopted unsupervised learning method (shown for AE data of
sample 1): (a) Standard deviation of features, (b) feature selection using Laplacian scores, (c) screen
plot obtained from PCA analysis, and (d) selection of the optimal number of clusters for k-means
using cluster validity indices, i.e., Davies–Bouldin (DB) index and Silhouette Coefficient (SC).

According to the explanations given above, the results obtained using k-means for
three clusters are presented in Figure 16a. The three clusters do not have the same char-
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acteristics in terms of time and frequency parameters. Unlike cluster 3, cluster 1 has the
highest frequency components, as shown in Figure 16c,e. On the other hand, cluster 2
has frequency components of intermediate values, as shown in Figure 16d. Figure 16b
shows that the cumulative hits for cluster 1 increased consistently until the major shear
crack happened before keeping a constant value. The cumulative hits for cluster 2 were
found to be gradually increasing from start till the occurrence of the major crack, where a
moderate jump could be observed during the major shear crack. The cumulative hits for
cluster 3 increased slowly from the start and a significant jump could be observed during
the occurrence of the major shear crack. Finally, note that these observations were found to
be consistent for all three samples.

Figure 16. Clustering using k-means and significance of the obtained clusters (shown for AE data
of sample 2): (a) obtained clusters, (b) variation in cumulative hits of the clusters; a typical wavelet
transformed signal of (c) cluster 1, (d) cluster 2, and (e) cluster 3.

The three clusters mentioned earlier can be associated with microcracking at the matrix–
aggregate interface/reinforcement and/or micro-cracking in the matrix. An amplitude-
based correspondence between the amplitudes of the signals and the mechanisms can
be performed as in ref. [76]. However, differences between ranges of amplitude of
classes are to be expected depending on the specimens’ geometries and recording sys-
tem parameters [77–80]. On the other hand, a tensile crack is created at the initial loading
stage and evolves throughout the loading, whereas shear movements are restrained by the
high-strength steel reinforcements inside the beam [33]. However, we should note that due
to shear displacement, more friction at shear cracking is to be expected, where the resulting
shear waves filter out high-frequency components more easily than the longitudinal waves
created by the tensile cracking [81].
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In light of these observations, the results obtained suggested that cluster 3, which has
the weakest frequency components (around ~40 kHz) is related to friction while cluster
1 is basically related to tensile cracking [82]. Cluster 2 with its intermediate frequency
components (around ~170 kHz) appears as a representation combining both shear and
tensile cracking. This has been reported in the literature as a tensile cracking mixed with
friction between crack faces [83]. Therefore, the performed analysis completes the one
based on the evolution of RA value and average frequency. Indeed, the RA parameter may
be insufficient to distinguish between tensile cracking and friction due to the attenuation
of elastic waves emitted by the creation and propagation of cracks within heterogeneous
materials such as concrete [84]. Due to attenuation, an increase in RA value with decreasing
amplitude (i.e., decrease in the average frequency) will then lead to erroneous signal
labeling, which makes the effectiveness of such a classification questionable beyond a
certain propagation distance [82].

5. Conclusions

Acoustic emission (AE)-based techniques were adopted to monitor progressive dam-
age mechanisms in reinforced concrete T-beams subjected to four-point bending test. The
test was conducted on three identical samples but with different displacement rates to
observe the effect on global damage behavior. Various analysis schemes were adopted.
Based on the analysis of the results, the following conclusions are drawn:

• The load-displacement curves obtained for the three samples were similar, hence
repeatable. In the load-time curves, it was found that rate of displacement has a direct
impact on the rate of acoustic emission events; a higher displacement rate results in a
higher rate of AE events.

• Various physical parameter-based algorithms were adopted to discern different dam-
age mechanisms in reinforced concrete T-beams under test. Although different algo-
rithms may use different AE feature/s, they are able to provide useful information
about the progressive damage stages. For instance, AE features used in average fre-
quency (AF) and RA value are different; however, these two algorithms separately able
to distinguish the stages of tension-type cracking and shear-type cracking, effectively.

• In the case of b1-value, b2-value, and b3-value analysis, each of these algorithms use AE
amplitude. It was found that all these b-value algorithms can identify micro-damage
and macro-damage cases by showing a sudden drop in their respective indices in case
of a macro-damage. However, b1-value and b3-value were found to be more sensitive in
discriminating micro-damage and macro-damage compared with b2-value.

• With a view to classify and cluster AE data, supervised and unsupervised machine
learning methods were adopted, respectively. In case of the supervised machine
learning using SVM, two classes were successfully made considering only the average
frequency (AF) and RA value as features in the algorithm. The Gaussian kernel trick of
SVM was found to be very efficient in the classification of AE data with the help of its
nonlinear hyper plane. Although the supervised machine learning approach using
SVM worked well for the classification of AE data, it is difficult to classify the data
if multiple mechanisms are present in a particular zone of load-displacement curve,
because the labeling of data becomes very difficult in such a scenario. Hence, there is
a need of an unsupervised learning approach as it does not require labeled data for
the classification.

• In the case of the unsupervised machine learning approach, a large number of features
were considered. With a view to reduce the dimension and optimize the AE data,
Laplacian score and principal component analysis (PCA) were performed. Finally, the
k-means algorithm was used for clustering of data, considering only the first few PCs.
Three clusters were obtained. Based on the cumulative hits of different clusters and
frequency domain analysis of randomly chosen signals from each of the clusters, it
can be concluded that the three clusters correspond to three different types of damage
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cases, namely, tensile cracking (cluster 1), both shear and tensile cracking (cluster 2),
and friction (cluster 3).

Future studies can be focused on analysis of new time/frequency parameters that
are to be defined in accordance with the involved micro-mechanisms (e.g., shear and/or
tensile) in order to refine the damage analysis in reinforced concrete.
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