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Abstract: Stabilized aggregate bases are vital for the long-term service life of pavements. Their
stiffness is comparatively higher; therefore, the inclusion of stabilized materials in the construction of
bases prevents the cracking of the asphalt layer. The effect of wet–dry cycles (WDCs) on the resilient
modulus (Mr) of subgrade materials stabilized with CaO and cementitious materials, modelled using
artificial neural network (ANN) and gene expression programming (GEP) has been studied here. For
this purpose, a number of wet–dry cycles (WDC), calcium oxide to SAF (silica, alumina, and ferric
oxide compounds in the cementitious materials) ratio (CSAFRs), ratio of maximum dry density to the
optimum moisture content (DMR), confining pressure (σ3), and deviator stress (σ4) were considered
input variables, and Mr was treated as the target variable. Different ANN and GEP prediction models
were developed, validated, and tested using 30% of the experimental data. Additionally, they were
evaluated using statistical indices, such as the slope of the regression line between experimental and
predicted results and the relative error analysis. The slope of the regression line for the ANN and GEP
models was observed as (0.96, 0.99, and 0.94) and (0.72, 0.72, and 0.76) for the training, validation,
and test data, respectively. The parametric analysis of the ANN and GEP models showed that Mr

increased with the DMR, σ3, and σ4. An increase in the number of WDCs reduced the Mr value. The
sensitivity analysis showed the sequences of importance as: DMR > CSAFR > WDC > σ4 > σ3, (ANN
model) and DMR > WDC > CSAFR > σ4 > σ3 (GEP model). Both the ANN and GEP models reflected
close agreement between experimental and predicted results; however, the ANN model depicted
superior accuracy in predicting the Mr value.

Keywords: AI modelling; resilient modulus; pavements; wet–dry cycles; sensitivity analysis;
parametric study
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1. Introduction

The concept of durability is interwoven with the functionality of stabilized paving
materials [1]. Aggregates, water, cementitious ingredients, and/or emulsified asphalt
make up stabilized base or subbase components [2,3]. A decent riding surface and wa-
terproofing mechanism in case of the base course are provided by an asphalt-wearing
course material [4,5], and the quality of material as well as the thickness of granular layers
determine the life period of a thin asphalt pavement. Because most building materials
have a finite lifespan owing to wear and tear, more creative, inventive, cost-effective, and
environmentally friendly highway design solutions are required [6]. As a result, there is a
pressing need to reduce the cost of constructing and preserving the national transportation
infrastructure [7]. Due to their comparatively greater stiffness in contrast to a variety of
conventional materials, the incorporation of stabilized materials in the construction of
bases tends to prevent failure-related cracking inside the asphalt layer [8]. According
to Kaloop et al. [3], these reflective cracks in the asphalt layer are frequently caused by
the origination of cracking in the stabilized base layer. Note that a stabilized base layer
with correct design and construction would persist through asphalt maintenance and/or
overlays, and this layer may be utilized instead of a conventional base layer or below a con-
ventional base layer. Stabilized materials must be sufficiently stronger and longer-lasting
to withstand traffic and climatic variations, particularly wet–dry cycles (WDCs), as well
as the freeze–thaw cycles (FTCs) [5]. As per the mechanistic empirical pavement design
guidelines (MEPDG) and the Swedish design model ERAPAVE, the WDCs and FTCs are
considered vital in the degradation of the base/subbase materials, resulting in premature
pavements failure, among various parameters [9–11]. In the case of seasonally frozen soils,
the FTCs are categorized by an interrupted temperature variation that has a significant
impact on geotechnical engineering. The impact of FTCs on soil is governed by the amount
of moisture. Larger moisture contents tend to highly deteriorate the soil structure because
of the phase change of water [12]. After 4 weeks of curing the samples, 12–30 WDCs may
be adequate, and a number of cycles exceeding 30 is essential for 3-day-cured samples.
Furthermore, the beneficial effect of curing duration was stronger on 3-day-cured speci-
mens, while the negative impact of the WDCs was more intense in the case of 4-week-cured
samples [13]. Avirneni et al. [14] proved that the detrimental effects of wet dry cycles ceases
incorporating Reclaimed Asphalt Pavement and Fly Ash in base course. According to
Sobhan and Reddy [15], the specimens exposed to WDCs incurred comparatively much
more damage, as measured by permanent deformation, residual compressive, and ultimate
strength values, as well as their resistance to wear. Furthermore, a link between WDC
strength and unsoaked strength was proposed by Kampala et al. [16], since the durability
is observed to be in close association with the unsoaked strength prior to WDCs.

According to Kaloop et al. [3], there exists substantial number of relationships among
WDCs and FTCs from the standpoint of durability as well as the resilient modulus (Mr). The
Mr determines the efficacy of base materials in various pavement structures [17,18]. The
Mr values of 4-week-cured samples treated to 30 cycles were approximately 5% less than
the corresponding Mr values of samples experiencing no WDCs [5]. The Mr helps to model
the subgrade behavior and is generally computed in the laboratory, as per the AASHTO
T307 standard [19], or can be estimated using artificial intelligence (AI) techniques [20–22].
Furthermore, the Mr can be experimentally determined using the cyclic triaxial test results,
which are defined by the ratio of deviator stress to resilient strain after load cycles [23].
Several experiments have been performed by past researchers to assess the impact of the
WDCs on the Mr of stabilized base materials [3,24–26]. It was revealed that blending
with certain additives (exhibiting cementitious nature) enhanced the long-term mechanical
characteristics of the treated samples extracted from base materials in cases with WDCs,
thereby increasing the modified Mr value [3]. However, Khoury and Zaman [5] suggested
a regression model to estimate the Mr of stabilized base aggregates on the basis number of
WDCs, ratio of oxide ingredients in the cementitious materials, the physical characteristics
of the mixture, and the various stress levels. Maalouf et al. [27] deployed support vector
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regression (SVR) for modelling the Mr of stabilized base aggregates exposed to WDCs,
and it was concluded that the SVR approach outclassed both the regression and the least
square techniques. Pourtahmasb et al. [28] performed an Mr prediction of asphalt mixtures
comprising recycled concrete aggregate with the help of an adaptive neuro-fuzzy approach.
It was revealed that the highest predictive performance and fitness of generalization was
attained in cases of stone mastic asphalt, which comprised recycled concrete aggregates.
Oskooei et al. [29] studied the incorporation of MLP in the form of substructure of an
artificial neural network (ANN) technique by considering a detailed database obtained from
the available literature to forecast the Mr of recycled aggregates. The proposed ANN models
are thought to be cost-effective methods for reducing the experimental testing; however, one
of the primary drawbacks of utilizing ANN for prediction is that it operates in a black box
and does not produce a formula that can be used in the future. Gabr et al. [30] incorporated
a novel technique to predict the Mr by incorporating extreme learning machine equilibrium
optimizer methods. The results show that the extreme learning machine (ELM) and
equilibrium optimizer (EO) (ELM-EO) and ELM–biogeography-based optimization (BBO)
(ELM-BBO) techniques outperformed the ELM–genetic algorithm (ELM-GA) and regression
approaches in terms of predicting the Mr value. Kayadelen et al. [23] performed numerical
simulation as well as a novel methodology to compute the Mr in cases of traffic loading
on a pavement embankment. In terms of training performances and prediction accuracies,
statistical performance assessments revealed that the random forest (RF) model greatly
surpassed the M5P models. The numerical study revealed that mechanical characteristics
such as elastic modulus are the most important factors influencing the behavior of materials
subjected to repetitive loads. Kezhen et al. [31] estimated the Mr of an asphalt pavement
material with the help of SVM. The results show that the proposed SVM model can predict
Mr and other mechanical behavior indexes of asphalt pavement material with greater
precision in comparison with the ANN method and multiple regression.

For the modelling of engineering applications, extremely powerful learning algorithms
have recently been created. The currently formulated AI approaches include the ANNs
(subtypes: Bayesian neural network [32], general regression neural network [33], back-
propagation neural network [34], k-nearest neighbor [35], multilayer perceptron neural
network [36]) and the hybrid forms of ANNs (i.e., adaptive neuro-fuzzy inference system
(ANFIS) [22,37–40]). In addition, the ANN, the particle swarm optimization algorithm
(PSO), and gene expression programming (GEP) are extremely beneficial techniques used to
formulate a variety of prediction models. The ANN has been extensively utilized for the es-
timation of the Mr values in cases of pavement materials [41–47]. The ANNs are AI-inspired
biological neural networks and problem-solving machine learning models that mimic the
cellular structures of the human brain and nervous system. They directly take into consid-
eration the relationship between the model input variables and the corresponding outputs
without giving simple mathematical expression, thus inhibiting their practical implications;
however, their degree of accuracy is comparatively higher [48–56]. On the other hand,
Cramer invented genetic programming (GP) in 1985, which was ameliorated with the help
of various shapes and sizes. Additionally, the GEP was invented by C. Ferreira twenty years
ago. It comprises simple, linear chromosomes with fixed lengths, which encode a program
and exhibit the capability to estimate cumbersome and highly nonlinear problems in order
to evaluate regressions, modelling functions, forecasting, and detecting in data mining. The
GEP models are successful as they yield easy-to-use convenient mathematical formulae to
compute the output value [22,57–63]. ANN, ANFIS, and GEP techniques were deployed
to determine the swell pressure and the unconfined compression strength of swelling to
compare the accuracy of the aforementioned AI methods and their performances, with
special focus on the GEP method. The overall coefficient of correlation values followed
the order ANN > GEP > ANFIS, such that all the R-values exceeded 0.80. In addition, the
GEP model outclassed the ANN and ANFIS techniques in terms of the closeness of the
training, validation, and the testing datasets [22]. Undertaking resilient modulus testing
is expensive, time-consuming, and complex. The Mr of compacted subgrade soils was
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predicted under influences of freeze–thaw cycles and moisture using the GEP and ANN
approaches. The formulated GEP and ANN models computed the Mr value and attained
superior performance in comparison with a variety of other empirical models [29,64]. While
determining the elastic modulus of soil, the accuracy of the developed ANN model was
superior (R2 of 0.98) and it supersedes the multiple regression model developed using the
same data. The performance comparison revealed that the ANN model could be used to
estimate the modulus of elasticity of soil with more confidence [65]. In order to examine
the efficacious stabilization of extremely weak subgrade soils at high water contents, the
resilient modulus of stabilized subgrade was determined; therefore, ANN and GEP models
were formulated by considering 125 samples data and it was concluded that accurate
result for Mr was achieved by using GEP (R2 of 0.95) [17]. In yet another study regarding
prediction of Mr, the computation of a rolling-wheel deflectometer and a falling weight
deflectometer was yielded from a testing program for training an ANN-based model, which
was independently validated using data from a testing program, such that it depicted an
acceptable accuracy in both the development and validation phases (R2 of 0.73 and 0.72,
respectively) [66]. Moreover, Jalal et al. [57] suggested that the genetic programming ap-
proaches (i.e., GEP and MEP) techniques accurately forecast the compaction characteristics
(maximum dry density and optimum moisture content) of swelling clays, such that the
GEP model showed a relatively better performance.

Despite the fact that ANN and GEP have been shown to be effective approaches for
modelling a variety of engineering applications, there has been little research on modelling
Mr in pavement applications. There is a dire need for pavement engineers and practitioners
to deploy easy-to-use mathematical expressions for the design phase or on site without the
need to conduct laborious and expensive laboratory testing. Therefore, in order to discover
a near-global solution for improved network prediction and to maintain high generalization
capabilities of the network, ANN and gene expression programming (GEP) were deployed
in the current study to assess the Mr of pavement materials. The central aim of this research
study was to formulate and design ANN and GEP models for predicting the Mr of stabilized
base aggregates subjected to WDCs on the basis of the Mr data presented. The robustness
of the ANN and GEP models was statistically evaluated and validated to forecast the Mr of
stabilized base aggregates. The structure of this article in the following sections comprises
a collection of the experimental database; overviews of the ANN and GEP algorithms; the
modelling of Mr using these AI techniques; sensitivity and parametric studies; performance
evaluation of the developed ANN and GEP models; and the conclusion.

2. Research Methodology
2.1. Experimental Database

For developing strong and robust AI models, it is crucial to generate a well-assembled
and extensive dataset, whose description is clear and precise, with clear insights, and
where the considered input variables are statistically significant. Therefore, a brief database
containing records of 704 stabilized aggregate bases experimental tests [3] was utilized to
train the two algorithms (i.e., ANN and GEP) chosen for this investigation. The dataset
consists of input parameters (i.e., number of wet–dry cycles (WDC), calcium oxide to SAF
(silica, alumina, and ferric oxide compounds in the cementitious materials) ratio (CSAFR),
ratio of maximum dry density to the optimum moisture content (DMR), confining pressure
(σ3), and deviator stress (σ4)) and target parameters (i.e., resilient modulus (Mr)). The input
and the target parameters and their individual data have been described in Table 1. In
addition, Figure 1 shows the histogram distribution plots of the input variables and target
parameters used during the ANN and GEP models training. Plotting these values may help
to identify parameters exhibiting inadequate data; therefore, additional data are required
(Asteris et al., 2021). All the analyzed input variables and target variables were correlated
using the Pearson correlation coefficient (r), and the results are shown in Table 2. A brief
examination of the dependence between the input variables and the target variable revealed
that all the inputs are positively correlated except the WDC, which is negatively correlated
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(r = −0.29605). CSAFR and the DMR showed strong positive correlation (i.e., 0.457157 and
0.714551, respectively), σ3 and σ4 (0.076791 and 0.137871, respectively) showed moderate
positive correlation, and WDR showed a moderate negative correlation (r = −0.29605) with
the Mr of the stabilized aggregate bases.

Table 1. Description of input and target parameters for model development.

Variable Description Unit Min Max Mean Standard
Deviation Range

Inputs

WDC Wet–dry cycle - 0 30 12.795 11.158 30
CSAFR Calcium oxide to SAF ratio - 0.113 0.51 0.255 0.183 0.397
DMR Ratio of maximum dry density to the

optimum moisture content kg·m−3 2.34 4.63 3.266 0.712 2.29
σ3 Confining pressure kPa 0 138 70.127 48.864 138
σ4 Deviator stress kPa 69 277 171.818 77.638 208

Target Mr Resilient modulus kPa 585 9803 3684.058 1860.495 9218

Figure 1. Distribution histogram of the variables considered in the current study: (a) number of
wet–dry cycles (WDC), (b) calcium oxide to SAF (silica, alumina, and ferric oxide compounds in the
cementitious materials) ratio (CSAFR), (c) ratio of maximum dry density to the optimum moisture
content (DMR), (d) confining pressure (σ3), (e) deviator stress (σ4), and (f) target parameter, i.e.,
resilient modulus (Mr).
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Table 2. Linear Pearson’s correlation indices for the inputs and the target variable considered in this study.

WDC CSAFR DMR σ3 σ4 Mr

WDC 1 −0.05152 −0.01054 0.004294 0.016821 −0.29605
CSAFR −0.05152 1 0.27031 0.013486 −0.01867 0.457157
DMR −0.01054 0.27031 1 0.006829 −0.0216 0.714551
σ3 0.004294 0.013486 0.006829 1 −0.0019 0.076791
σ4 0.016821 −0.01867 −0.0216 −0.0019 1 0.137871
Mr −0.29605 0.457157 0.714551 0.076791 0.137871 1

2.2. Overview of ANN

Artificial neural networks (ANNs) are straightforward yet reliable computational
models. They attempt to mimic the human nervous system and brain to solve a given
task. In recent times, ANNs have increasingly been used for numerous engineering appli-
cations [22,67,68]. ANN-based algorithms have also been successfully implemented for
different geotechnical engineering problems, such as soil stabilization [69], slope stability
analysis [70], and foundation settlement predictions [71]. A comprehensive explanation
of ANNs is beyond the scope of this study. Many previous studies have described the
structure and functioning of ANNs [72,73]. A typical ANN structure comprises several
processing elements (also called nodes) that are often organized in different layers, for
instance; an input layer, an output layer, and one or more hidden layers. Multilayer net-
works are more robust than single-layer networks. The optimum hidden layer in ANNs
may be determined using the trial-and-error technique. The input from the previous layer
(xi) from each node is multiplied by a modifiable connection weight

(
wji
)
. At each node,

weighted input signals are added. A threshold value
(
φj
)

is also added at this stage. A
nonlinear transfer function ( f (.)) is then applied to this joint input

(
Ij
)

to generate the
node output

(
yj
)
. The transfer functions normally used are linear, sigmoidal, and/or their

combination. The output of one layer serves as input for the nodes in the next layer, and
the process is iteratively repeated. The operation of ANNs is summarized in Figure 1, and
the following relations (Equations (1) and (2)) present the aforementioned process:

Ij =
n

∑
i=1

wji + φj (1)

yj = f
(

Ij
)

(2)

Information propagation in ANNs commences at the input layer where data are fed.
The system weights are then adjusted iteratively using learning rules to find the optimal
set of weights. The procedure for adjusting the connection weights is known as “training”.
It is pertinent to mention that the Levenberg–Marquardt backpropagation is the most
frequently used training method for multilayer networks. The stopping criterion is an
important aspect of the ANNs model, which determines whether the model has been
trained sufficiently. Model training is stopped based on two criteria: (i) if there are slight
changes in the training error with increasing iterations; and/or (ii) if it reaches a sufficiently
small value. However, studies have reported that adopting such techniques for stopping
criteria may lead to overtraining issues or premature stopping. To overcome this problem,
application of the cross-validation method has been proposed that involves splitting the
data into three distinct sets, i.e., training, testing, and validation. ANNs use the training set
(biggest among these) to identify patterns in the data. Network training aims to determine
the set of weights wji between the neurons to obtain the global minimum of the error
function according to the following relation (Equation (3)). The primary purpose of the
testing set is to assess the generalization capability of the trained network while its final
check is conducted using the validation dataset.

yk
j = f

(
nk−1

∑
j=1

wk
ji + yn−1

j

)
(3)
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For the current study, ANNs were preferred due to their apparent advantages over
other data mining techniques. The application of ANN is advantageous from various fronts,
such as effective and efficient data analysis, their superior abilities to handle both complex
and nonlinear problems, and their reliable predictions.

2.3. Overview of GEP

Gene expression programming (GEP) was initially proposed by Koza (1992), and is
inspired by Darwin’s theory of evolution and natural selection. GEP has been successfully
implemented for solving various geotechnical and geological applications. Like traditional
GAs and GPs, GEP uses a population-based strategy to solve prediction problems. The pro-
cess is initialized with random generation of individuals, followed by induction of genetic
variations in the parent population using genetic operators (crossover, elitism, mutation),
finally selecting the offspring based on their fitness values. Figure 2 presents the main steps
involved during the prediction through the GEP. All the steps are successively applied to
diversify and enrich the offspring population. The fundamental difference between the
two algorithms is the nature of individuals/populations. In GA, individuals represent the
linear strings with fixed lengths (chromosomes); in the GP, these imply nonlinear entities
of different shapes and sizes (parse trees); in the GEP, the individuals are first encoded as
fixed-length linear strings (genome), which are subsequently expressed as nonlinear entities
of various shapes and sizes (expression trees or ETs). This hybridization strategy of GEPs
makes them extremely versatile and reliable compared with other existing evolutionary
methods. A GEP model is built on input variables, arithmetic operations, and mathematical
formulations. The predictive performance of a GEP algorithm is highly dependent on
model parameters, such as the number of chromosomes (candidates models), the number
of genes (indicating subsections of candidate models), linking function (used for connecting
subsections), head size (shows the complexity of a subsection), mutation and crossover
(genetic operators), and the maximum number of generations. Termination conditions
are employed to evaluate whether the model performance has achieved the expectations
of the predictions. The head in the GEP model comprises symbols for representing both
functions and terminals. For a given prediction problem, the length of tail “t” is calculated
as a function of the length of head “h” using a maximum number of arguments (n) of the
function according to the following expression Equation (4):

t = h(n− 1) + 1 f (4)

The GEP model was selected for the analysis because the method can provide a simple
mathematical prediction model that may be used by practitioners in the field with high
confidence for other similar problems.

2.4. AI Modelling

Two AI approaches, i.e., ANN and GEP, were used to estimate the resilient modulus
(Mr) of stabilized aggregate bases, as previously mentioned. Because of its high accu-
racy and quick convergence characteristics, the Levenberg–Marquardt backpropagation
technique was employed to train the ANN model with 70% of the data [74]. Several experi-
mental trials were conducted with one, two, and three hidden layers and multiple neurons.
As shown in Table 3, the best results were obtained employing a single hidden layer with
10 neurons. Between training and validation, the data was split up on a random basis. The
anticipated yield was assessed using the correlation coefficient R. A single hidden layer
of neurons was utilized to predict the resilient modulus using five inputs supplied in the
form of five neurons.
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Figure 2. Expression trees (ETs) of the GEP model in the current study (* denotes multiply sign,
/ denotes division, +, and − denote addition and subtraction, respectively).

Table 3. Setting parameters for the ANN model.

Parameter Setting

Sampling

Training records 492
Validation/testing 212

General

Type Input–output and curve fitting
Number of hidden neurons 10

Training Algorithm Levenberg–Marquardt
Maximum Iterations 1000

Data division Random

Using a defined number of input variables, the GEP algorithm generates a basic
mathematical model to estimate a single target variable [61]. Moreover, the purpose of this
study was to formulate a mathematical model that could account for the Mr of stabilized
aggregate bases using the input features. Additionally, in the case of training the GEP
model, the data were split into training and validation subsets. For the changeable setting
factors, such as the number of genes, chromosomes, and head size, the trial-and-access
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approach was employed to achieve the hyperparameters of the GEP model [75–77]. Using
the MAE, RSE, and RMSE as fitness functions, the setup parameters were altered according
to Table 4. After training, the performance of the developed GEP model was evaluated.
Additionally, the GEP models were evaluated using two main indices, i.e., R and MAE.
Table 4 shows the five models that were generated in the current study. With the R value
considerably more than 0.8 for all the training and validation datasets, all the proposed GEP
models were in close agreement with the actual datasets. The model constructed utilizing
30 chromosomes with 8 head sizes and 5 genes, on the other hand, had the strongest
correlation among the lowest R and MAE values in both the training and validation stages.
As a result, the GEP model attained in the third trial (Table 4) was utilized to generate a
mathematical equation based on the ETs (Figure 2) and the MATLAB model obtained from
the modeling process. To generate the ETs, function sets were used where addition was
selected to link these trees. It was also discovered that increasing the complexity of the
function set boosted the model’s resilience; however, this increased the complexity of the
output equation. As a result, the model was given a basic function set.

Table 4. Details of trials undertaken for selecting hyperparameters of GEP model.

Trial No. Total
Datasets

No. of
Inputs

Fitness
Function

No. of
Chromosomes

No. of
Genes

Head
Size

Order of
Variable

Importance

Training Dataset Validation Data

R MAE R MAE

1 704 5 RMSE 30 3 8 32154 0.83 748 0.827 814
2 4 31452 0.854 783 0.89 743
3 5 31425 0.86 764 0.89 742
4 100 4 10 31245 0.85 790 0.877 782
5 5 32154 0.82 829 0.85 805
6 MAE 32154 0.8 806 0.82 800
7 RSE 31254 0.85 776 0.87 794

3. Results and Discussions
3.1. Comparison between Predicted and Experimental Results

This subsection deals with the comprehensive analysis of the proposed models using
ANN and GEP for the prediction of Mr, based on the slope of the regression line for all the
three datasets, i.e., training, validation, and testing set. The performance of the proposed
models depends on the closeness of the datapoints to the regression line [78]. For a good
model performance, the slope of the regression line must be nearer to unity, and equal
for an ideal fit. It can be clearly seen in Figure 3a that, for ANN, the slope of regression
line of the training, validation, and testing sets are 0.96, 0.99, and 0.94, respectively, which
are nearer to an ideal fit (1:1). However, for GEP model, these values are 0.72, 0.72, and
0.76, respectively (Figure 3b). As shown in the figures, the variation of experimental and
predicted output by ANN is close to the 45◦ line. The ANN gives an outburst performance
with slope of best-fitted line, nearly equaling unity. However, in the testing stage, it can
be recorded that the slope is considerably reduced. The GEP is better in terms of the
closeness of the slope in all the three stages. The dispersion of the Mr shows that both the
proposed models accurately consider the influence of all five input variables to predict
Mr, which possesses a strong correlation and lower biasness [59,79]. The variation of the
datapoints over its range further shows that there is no overfitting issue in all the developed
models [80,81].

Furthermore, the error values of each individual data point used for the prediction
of Mr using ANN and GEP are graphically presented in Figure 4. The maximum positive
and maximum negative errors recorded are 2879.68 and −2323.25, respectively (in the case
of ANN), and 1722.21 and −1020.7, respectively (in the case of GEP). For a given wide
range of experimental records, a total of 98% and 78% datapoints have an error value in
range [–1000, 1000] for ANN and GEP models, respectively. It shows that the error values
of the ANN model are mainly scattered around zero, which depicts its robust performance.
Like the slope of the regression line, error analysis also shows the comparatively better
performance of the ANN model followed by the GEP approach [22].
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Figure 3. Comparison of experimental and predicted results: (a) ANN; (b) GEP.

3.2. Formulation of Mr

Seven GEP models were derived with varying fitness functions (i.e., RMSE, MAE, and
RSE), number of chromosomes, genes, and head size. The best-performing model based
on R and MAE with 30 chromosomes, 5 genes, and 8 head size was retrieved for further
validation. In Figure 2, the best-performing GEP model is shown in the form of ETs in order
to deduce an empirical equation for determining the Mr. As illustrated, sub-ETs (1–5) have
four basic mathematical functions: +, −, ÷, and ×. After decoding the sub-ETs, the GEP
equation obtained is explicitly presented in Equations (5)–(10), which could be used for
estimating the Mr. Based on the number of datapoints, the developed model satisfies the
minimum required limit for an ideal model, and is reliable and effective for estimation of
Mr [82–84].

Mr = A + B + C + D + E (5)

A = (CSAFR× (129.73 + (11.39× σ4))) + (129.73×DMR) (6)

B = 85.86 + σ4 + σ3 − (6.54× σ4) (7)

C = DMR×
((

DMR2 + (1.74×DMR)
)2

+ 2.78
)

(8)

D = σ3 + 1592.14 + (46.45×CSAFR) (9)

E = σ3 + CSAFR− (((6.78×WDC)− σ4)× (3.18 + DMR)) (10)
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Figure 4. Error analysis of the proposed models: (a) ANN; (b) GEP.

3.3. Importance of Input Variables

This section deals with the ultimate effect of selected input variables on the Mr based
on ANN and GEP established models. The prime objective of conducting a sensitivity study
is to investigate how the uncertainty regarding an outcome of the mathematical models or
systems can be assigned to different uncertain sources [57,85]. Mostly the efforts in the wide
area of ANN studies have concentrated on leading to formation of additional rules and
procedures for training, enhancing network design, and expanding into unique domains
of ANN applicability. However, there has been insufficient research on the acquisition of
deep information for understanding the structure of back-end processing and the inner
interpretations produced during ANN modelling in response to a particular complex
problem. The ANNs are often portrayed to their users and clients in the form of black boxes
with complex internal architectures that work to transform inputs into desired outputs. For
neural networks of significant complexity levels, it is not generally feasible to determine or
comprehend the precise processes behind the activation levels of hidden neurons or the
weights of an ANN network in relation to the issue under investigation. Thus, determining
the association between every explanatory variable and every response parameter in an
ANN has always been a challenging task [86]. In the current research, relative importance
(ranking) analysis for input variables utilized in the ANN modelling was performed based
on significance of weights utilizing the technique provided in past studies [86,87], which
can also be shown in Equation (11). The training dataset was used for the sensitivity
analysis and the significance of the weights. In addition, the Milne’s approach was solely
used to the connection weights in the ANN network.

I IF(%) =
∑hid

i=1
Wij

∑in
j=1|Wij| ×Woi

∑out
k=1

(
∑hid

i=1

∣∣∣∣ Wik
∑in

i=1|Wij| ×Woi

∣∣∣∣) (11)
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In the above equation, I IF(%) is the importance of input variables in percentage; “in“,
“out“, and “hid“ denote the number of inputs, outputs, and hidden layers, respectively.
The process of recalculating the output, while considering substitutional assumptions, to
find the impact of inputs using the sensitivity study is efficacious in ANN modelling for
determining the back-end relation between inputs and between response parameters in a
developed model [87].

Unlike the ANN, the GEP algorithmic structure provides a simple mathematical
equation that helps in conducting the sensitivity of the proposed model using Equations
(12) and (13) to judge the influence of input variables on the Mr value.

Ri = fmax(yi)− fmin(yi) (12)

I IF(%) =

(
Ri

∑
j=1
n Rj

)
× 100 (13)

where fmax(yi) and fmin(yi) are the maximum and minimum predicted Mr values for the
ith input domain. While calculating the Ri, all other inputs were maintained equal to unity.

Figure 5a,b represent the relative importance of each input on the Mr which is reflected
from the developed ANN and GEP models. Note that DMR is the most influential input
in both the ANN and the GEP models. The increasing trend of inputs considering their
influence on the Mr in the ANN model is DMR (62.63%) > CSAFR (22.96%) > WDC (7.72%) >
σ4 (3.89%) > σ3 (2.77%). However, for the GEP model the importance of input variable
follows the trend: DMR (56.13%) > WDC (17.08%) > CSAFR (11.05%) > σ4 (10.33%) >
σ3 (5.39%).

Figure 5. Importance of the variables reflected from (a) the ANN model and (b) the GEP model.
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3.4. Parametric Study

It is important to check and verify the robustness of the developed ANN and GEP
models using parametric analysis. The trends of the response parameter (Mr) were assessed
against the input variables and verified using the experimental results in the dataset to
obtain the models with higher degree of accuracy and competence level [88,89]. Figure 6
(ANN) and Figure 7 (GEP) portray the expected increase in the Mr with an increase in
DMR, σ3, and σ4. On the other hand, in both the models, the predicted Mr decreases with
WDC. In addition, in the case of ANN, an increased CFASR resulted in a decreasing trend
of Mr. Conversely, in the GEP, the reverse trend is observed, i.e., increased CSFAR resulted
in an increased Mr. The simulated variations in the Mr with changes in the inputs are
consistent and in line with trends in the actual experimental data, indicating the robustness
and accurateness of the established ANN and GEP models.

Figure 6. Parametric study of the ANN model.

3.5. Performance Evaluation of the Models

It is important to mention that the models attaining higher accuracy in the validation
stage are more accurate, reliable, and robust [90,91]. The higher predictive accuracy in
the training stage does not ensure the better performance of the models [57,92]. The per-
formance of the AI models also depends on the number of data points and total number
of inputs (independent variables) used for the prediction output (dependent parameter).
The minimum acceptable ratio between the number of experimental records (data points)
and the independent variables is 3 and preferably higher than 5, as suggested by Frank
et al. [93,94]. In the current research, the ratios for the training, testing, and validation sub-
sets were equal to 492/5 = 98, and 106/5 = 21 each, respectively, which were considerably
greater than the prescribed limit in the literature.
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Figure 7. Parametric study of the GEP model.

The slope of the regression line for both model gives a broader knowledge of the
variation of the data points around the 45◦ line [95,96]. As explained in Section 3.1 (Figure 3),
neither of the developed models have any overfitting issues. Furthermore, the literature
proposed that R depict the linear reliance of output and input variables, and must be
greater than 0.8 for a strong correlation between experimental and predicted results [90,97].
However, R is insensitive to multiplication and division and cannot be used solely to
assess the overall functioning of the models [22,98]. Thus, to assess the performance of the
developed ANN and GEP model for the prediction of Mr, the detailed statistical analysis
using the correlation coefficient (R), the mean absolute error (MAE), the root squared error
(RSE), and the root mean squared error (RMSE) is provided in Table 5 for the three subsets
of each model.

Table 5. Statistical evaluation of the developed models.

Model Statistical Parameter Training Set Testing Set Validation Set

ANN

MAE 245 255 227
R 0.983 0.986 0.985

RSE 0.033 0.028 0.03
RMSE 60.52 62.03 61.42

GEP

MAE 764 742 743
R 0.86 0.89 0.88

RSE 0.37 0.32 0.29
RMSE 60.6 62.31 60.81
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3.5.1. ANN Model

The ANN model is efficient in solving complex nonlinear engineering problems
and provides higher accuracy. As presented in Table 5, the RANN nearly equals unity in
training (0.983), testing (0.986), and validation (0.985) stages, and the RSE approaches zero
(RSE = 0.033 for training, 0.028 for testing, and 0.03 for validation set), showing a strong
prediction capability for the neural networks. Similarly, the other error metrics (MAE and
RMSE) are also lower compared with the actual experimental values in the database and
are almost consistent in each stage. Thus, the developed ANN model has reliable and
suitable performance in the prediction of Mr. However, it is hard to extract a proposed
empirical formulation from the neural network algorithms due to their black box nature,
restricting its wide-scale adoption [89,99].

3.5.2. GEP Model

Like ANN, as presented in Table 5, the magnitude of RGEP of the proposed model is
greater than 0.8 but lower than that of the ANN predictive model for each subset of data. The
R values for the training, testing, and validation stages are 0.86, 0.89, and 0.88, respectively,
with the lower RSE metric equaling 0.37, 0.32, and 0.29, respectively. The RMSEs of both the
predictive models are closer to each other in all three stages, showing that both models have
almost an equal amount of higher error value. Moreover, the MAE statistic of GEP was higher
as compared with ANN, giving the leading place to the ANN predictive model. However,
the GEP algorithm along with an acceptable performance measure also gives a mathematical
empirical model, which can be used to find the targeted vales independently.

3.6. Comparison of the Models

The predictive results of the ANN and GEP models for each single data point are graphi-
cally presented in Figure 8a,b, respectively. The experimental and predicted values by ANN are
seen to largely diverge as compared with the GEP model. In each case (ANN and GEP), the
predicted values clearly follow the actual experimental results and remain closer to each other.
In accordance with the R value, the performances of the ANN model in the training, testing, and
validation sets are 12.5%, 9.74%, and 10.65% better than the proposed GEP mathematical model.
Although, the RMSE statistics of both models are almost similar in each stage. The comparative
analysis of the ANN and GEP validates the fact that the ANN prediction is more accurate
than the GEP model. The superior performance of the ANN is attributable to the complex
computation capability of the ANN algorithmic structure while training the model [99,100].
However, the GEP is efficient in providing a mathematical equation with an acceptable perfor-
mance measure. The proposed GEP equation can be used for future prediction of the Mr within
the range of the input variables shown in Table 1. The GEP may serve as an appropriate and
applicable modelling technique, and it may create a new domain for the reliable, effective, and
accurate explicit formulation of several civil complex engineering problems; therefore, it can be
utilized by any design practitioner or consultant without requiring familiarity with GEP.

3.7. Comparison of the Models

While comparing the developed ANN and GEP models with the existing literature,
it was observed that a similar type of data were modelled using an ANN and an ELM
optimized by PSO and a kernel-ELM (k-ELM). The training phases depicted R2 of 0.981,
0.693, and 0.64 for PSO-ELM, K-ELM, and PSO-ANN, respectively. The testing phase
revealed an accuracy slightly smaller than that of the training phase. It is evident that
the models developed earlier showed reliable comparable performance in relation to the
current models; however, the GEP model presented in the current study expresses Mr
in terms of input variables in the form of simple mathematical equation. Additionally,
the optimal model obtained here was also utilized for performing both parametric and
sensitivity analyses, which showed the contribution of each input parameter in yielding the
Mr value. The GEP model presented here can be efficiently used for practical implications
of the input variables while in the design and construction phases for different pavements.
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Figure 8. Comparison of the proposed models: (a) ANN; (b) GEP.

4. Concluding Remarks

For obtaining greater stiffness of subgrade materials under asphalt layers, aggregates
are stabilized using calcium oxides and other cementitious materials. Resistance against
wet–dry cycles (WDCs) is an important durability parameter for subgrade materials. This
study investigates prediction models for estimating the resilient modulus based on the
number of WDCs, the calcium oxide to SAF (silica, alumina, and ferric oxide compounds
in the cementitious materials) ratio (CSAFR), the ratio of maximum dry density to the
optimum moisture content (DMR), the confining pressure (σ3), and the deviator stress (σ4).
The following conclusions can be drawn from this study.

• The Pearson’s linear correlation obtained for the experimental data showed that WDC
showed a negative correlation, and CSAFR and DMR depicted a strong positive
correlation with the resilient modulus (Mr). The σ3 and σ4 showed slight positive
correlations. The results from the parametric and sensitivity analyses also reflected
similar interpretations of these variables. The results were corroborated by the pre-
vious literature. Thus, the results of the Pearson’s correlation, the sensitivity, and
the parametric analyses and the literature are in good agreement with each other,
rendering the developed models reliable for future use.

• The ANN model yielded the slopes of the regression line as 0.96, 0.99, and 0.94 for
the training, validation, and testing data, respectively, in comparison with 0.72, 0.72,
and 0.76, respectively, in the case of the GEP model. Values for R, MAE, and RMSE of
0.983, 245, and 60.52, respectively, were reported for ANN, whereas the GEP model
manifested 0.86, 764 kPa, and 60.6 kPa, respectively, for the training data. The ANN
model exceeded in accuracy in comparison with the GEP model.

• The sensitivity analysis revealed that DMR was the most influential parameter in
contributing to Mr in both the models. Additionally, the CSAFR and WDC were
reported as the next most important variables in the ANN modelling, whereas the
WDC and CSAFR governed in the case of the GEP model. The σ3 and σ4 exhibited
the least importance in estimating the Mr value. The parametric analysis of both
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the models showed that the Mr increased with DMR, σ3, and σ4. An increase in the
number of the WDCs reduced the Mr value.

A variety of civil engineers and practitioners could utilize these easy-to-use mathemat-
ical expressions (attained from GEP modelling) during the design stage of a project or on
site, preventing laborious and expensive laboratory testing for the determination of Mr. The
existing study is only valid for the given range of input and output parameters, and further
studies need to be conducted considering an even wider range between the maximum and
minimum values, and increasing the number of input parameters. In addition, the results
could be optimized using the latest available optimization techniques, such as PSO, GWO,
and SMA.
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BBO biogeography-based optimization
CSAFR calcium oxide to (silica, alumina, and ferric oxide compounds) ratio
DMR density to moisture content ratio
ELM extreme learning machine
EO equilibrium optimizer
ETs expression trees
FTCs freeze–thaw cycles
GA genetic algorithm
GEP gene expression programming
GP gene programming
IIF importance of input variables in percentage
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