
Citation: Galiakhmetova, L.K.;

Pavlov, I.S.; Bayazitov, A.M.;

Kosarev, I.V.; Dmitriev, S.V.

Mechanical Properties of Cubene

Crystals. Materials 2022, 15, 4871.

https://doi.org/10.3390/ma15144871

Academic Editor: Enrique Casarejos

Received: 9 June 2022

Accepted: 8 July 2022

Published: 13 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Mechanical Properties of Cubene Crystals
Leysan Kh. Galiakhmetova 1,† , Igor S. Pavlov 2,† , Ayrat M. Bayazitov 2,3,† , Igor V. Kosarev 3,†

and Sergey V. Dmitriev 2,3,*,†

1 Institute for Metals Superplasticity Problems of RAS, 450001 Ufa, Russia; rysaeva.l.h@gmail.com
2 Mechanical Engineering Research Institute of the Russian Academy of Sciences—Branch of Federal Research

Center “Institute of Applied Physics of RAS”, 603024 Nizhny Novgorod, Russia; ispavlov@mail.ru (I.S.P.);
ayrseptember@mail.ru (A.M.B.)

3 Institute of Molecule and Crystal Physics, UFRC of RAS, 450075 Ufa, Russia; igork23v@mail.ru
* Correspondence: dmitriev.sergey.v@gmail.com
† These authors contributed equally to this work.

Abstract: The fullerene family, whose most popular members are the spherical C60 and C70 molecules,
has recently added a new member, the cube-shaped carbon molecule C8 called a cubene. A molecular
crystal based on fullerenes is called fullerite. In this work, based on relaxational molecular dynamics,
two fullerites based on cubenes are described for the first time, one of which belongs to the cubic
system, and the other to the triclinic system. Potential energy per atom, elastic constants, and
mechanical stress components are calculated as functions of lattice strain. It has been established
that the cubic cubene crystal is metastable, while the triclinic crystal is presumably the crystalline
phase in the ground state (the potential energies per atom for these two structures are −0.0452 and
−0.0480 eV, respectively). The cubic phase has a lower density than the monoclinic one (volumes
per cubene are 101 and 97.7 Å3). The elastic constants for the monoclinic phase are approximately
4% higher than those for the cubic phase. The presented results are the first step in studying the
physical and mechanical properties of C8 fullerite, which may have potential for hydrogen storage
and other applications. In the future, the influence of temperature on the properties of cubenes will
be analyzed.

Keywords: cubene; elastic constants; equilibrium phases; fullerite; molecular dynamics

1. Introduction

The existence of large carbon molecules was predicted and described in some early
papers, but a paper [1] published in 1985 caused an avalanche of publications on fullerenes.
The smallest spherical fullerene is C20; the most common molecules are C60 and C70,
but fullerenes with a larger number of carbon atoms are easily obtained [2,3]. Probably the
smallest possible carbon cluster is a cubic C8 molecule called cubene [4].

Cubenes C8 and cubanes C8H8 [5,6] are less studied than C60 and C70 fullerenes.
The cubene molecule is highly strained, since a bond angle of 90◦ is energetically unfavor-
able; however, as follows from the ab initio study [7], the molecule should be stable because
its energy corresponds to a deep minimum. Structural, electronic, and optical properties of
cubane C8H8 and cubanoids (cubane-like molecules with hydrogen substituted by other
atoms) were analyzed using a DFT approach [8].

Derivatives of cubane such as octanitrocubane and heptanitrocubane are excellent
candidates for storage of large amounts of energy [9]. Thermochemical calculations show
that 4145 kJ/mol is released during decomposition of the first, and 4346 kJ/mol of the
second. Cuban can be used to obtain various bioisosteres, i.e., compounds obtained by
replacing a group of atoms with a cubane, while maintaining the biological activity of
the original compound. Thus, new substances with improved properties compared to the
parent compound for pharmaceutical and agrochemical applications can be created [10].
Cubanes are also promising for hydrogen storage technologies [11–13].
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Covalently bonded arrays of cubanes were shown to be possible [14]. Chemical modi-
fication of cubanes and cubane oligomers was analyzed in the work [15]. The electronic
structure of C8 and B4N4 cubic systems was analyzed [16]. It was shown that the func-
tionalization of a chain of covalently bonded cubanes leads to a significant change in its
conductivity [17,18]. This means that the electronic properties of cubane-based oligomers
can be tuned by functionalization for applications in nanoelectronics.

Molecule crystals composed of fullerenes are called fullerites; they possess many
promising physical, mechanical, and chemical properties for applications. Polymerization
of fullerites under high pressure and temperature produces extremely hard materials with
bulk modulus from 454 GPa to 644 GPa [19]. Fullerite demonstrates an anomalously slow
thermal relaxation due to the excitation of internal vibrational degrees of freedom [20].

The mechanical properties of molecular crystals may differ from those of elemen-
tal solids, since the rotational degrees of freedom of molecules may play an important
role [21–25]. There exist many examples of molecular crystals where rotations of molecules
were analyzed [26–30]. Such crystals support rotobreathers that are dynamical regimes,
in which one molecule (or particle) rotates, while others oscillate [31–35]. Properties of
graphene can be described using particles with rotational degrees of freedom [36,37].

Metamaterials with particles having rotational degrees of freedom (polygons or poly-
hedrons) can be created artificially [38–42]. The rotational degrees of freedom can produce
negative thermal expansion [21–25] or auxetic behaviour (negative Poisson’s ratio) [38–42].
The crystal has been potentially used in several applications, such as bearing material for
total hip implants [43].

The crystal structure of fullerites is of great importance, since the structure determines
the properties of crystals. Fullerite C60 can be packed into a simple cubic or face-centered
cubic (fcc) lattice [44,45]. In both lattices, a primitive translational cell contains one fullerene
molecule. In the theoretical work [46], it was shown that, for C60, the fcc structure is more
stable than hexagonal close-packing (hcp), but for C70 hcp has lower energy than fcc lattice.
The fcc structure of C60 at 0 K has an orthorhombic distortion due to ordering of fullerenes.
At higher temperatures, there is a transition to an orientationally disordered fcc lattice [46].
As can be seen, many studies have been carried out to predict and analyze the structure
of fullerites C60 and C70, but we have not been able to find any information about the
structure for fullerite C8 except for the study [47] where cubic cubane C8H8 was described.
In the present study, we set ourselves the task of finding the equilibrium phases of a cubene
crystal and their mechanical properties.

2. Materials and Methods

Molecular dynamics is used to simulate the structure and mechanical properties of
cubene crystals. Carbon–carbon interactions are described by the harmonic potential,
while non-valence interactions are described by the Lennard–Jones potential. Each cubene
interacts with the nearest, second and third neighboring cubenes. Below is a detailed
description of the model.

A model of cubene molecule is shown in Figure 1. Each vertex of a cube with side ρ0
contains a carbon atom. The covalent bonding of atoms in cubenes makes them relatively
rigid. Cubenes interact with each other through much weaker van der Waals bonds.

In the present work, the equilibrium phases of a cubene crystal are described, and, in
this case, cubene deformation plays an insignificant role. Therefore, covalent bonds are
described by a simple harmonic potential. It is assumed that each carbon atom interacts
through covalent bonds with the three nearest atoms and with the most distant atom,
for example, atom 1 interacts with atoms 2, 4, 5, and 7 (see Figure 1). The interaction
between the farthest neighbors is introduced to ensure the stability of the cubic shape of
the molecule.
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Figure 1. Cubene molecule model. Each vertex of a cube with side ρ0 contains a carbon atom.
Numbering of atoms in a cubene is shown. It is assumed that each carbon atom interacts through
covalent bonds with the three nearest atoms and with the farthest atom; for example, atom 1 interacts
with the atoms 2, 4, 5 and 7. Covalent bonds are described by the harmonic potential of stiffness K
and equilibrium length ρ0 for the nearest neighbors and

√
3ρ0 for the farthest neighbors.

The equilibrium phases of cubene crystal are found using perturbative relaxational
molecular dynamics. In this approach, the positions of the atoms are first perturbed to
drive the system away from a local potential minimum, and then the structure is relaxed to
reach a deeper energy minimum. Initially, cubenes with random orientation are arranged
in the fcc lattice with periodic boundary conditions. The simulations are carried out for
a computational cell that includes 2× 2× 2 primitive translational cells of the fcc lattice.
The total number of cubenes in the computational cell is M = 8, and the total number of
carbon atoms is 64. The structure relaxation is performed with respect to the coordinates of
the carbon atoms and with respect to the vectors specifying the periodic cell of the structure
in order to achieve the state with zero forces acting on the atoms and zero external stresses
applied to the computational cell.

Our model is built in the spirit of the work [20], where the deformation of valence
bonds is described by the harmonic potential, and intermolecular interactions by the
Lennard–Jones potential. Following this work, the potential energy of the cubene crystal
described by the periodic computational cell with M cubenes can be written as follows:

P =
M

∑
m=1

12

∑
n=1

Un +
M

∑
m=1

4

∑
k=1

Vk + ∑
i>j

φ(|Ri,j|). (1)

The first term on the right-hand side of Equation (1) describes the valence interac-
tions between nearest atoms in the cubenes; there are 12 nearest bonds in each cubene.
The harmonic potential is used:

Un =
K
2
(|rn| − ρ0)

2, (2)

where K = 31.77 eV/Å2 is the bond stiffness [48], |rn| is the distance between two nearest
neighbors in a cubene molecule and ρ0 = 1.418 Å is the equilibrium bond length. From
Figure 1, it can be seen that the twelve bonds between nearest neighbors connect the
following pairs of atoms: 1-2, 2-3, 3-4, 4-1, 1-5, 2-6, 3-7, 4-8, 5-6, 6-7, 7-8 and 8-5.

The second term on the right-hand side of Equation (1) describes the valence interac-
tions between farthest atoms in the cubenes; there are four longest bonds in each cubene;
they are described by the harmonic potential:

Vk =
K
2
(|rk| −

√
3ρ0)

2, (3)

where K is the bond stiffness the same as for the bonds between nearest atoms, |rk| is the
distance between two farthest neighbors in a cubene molecule and

√
3ρ0 = 2.456 Å is the
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equilibrium bond length. From Figure 1, it can be seen that the four bonds between farthest
neighbors connect the following pairs of atoms: 1-7, 2-8, 3-5 and 4-6.

The third term on the right-hand side of Equation (1) describes the van der Waals
interactions between carbon atoms of different cubenes. The computational cell includes
8M atoms numbered by the index i = 1, 2, ..., 8M. The i-th atom has the radius vector
ri = (ri,x, ri,y, ri,z), and Ri,j = r j − ri. The van der Waals interactions are described by the
Lennard–Jones potential

φ(ξ) = 4ε
[(σ

ξ

)12
−
(σ

ξ

)6]
, (4)

where ε = 0.002757 eV and σ = 3.393 Å [49]. The van der Waals interactions are taken into
account with the cut-off radius so that each cubene interacts with 12 nearest, 6 next-nearest,
and 24 next-next-nearest cubenes. Van der Waals interactions between atoms belonging to
the same cubene are not taken into account.

A comment should be made on the choice of interatomic potentials used in this work.
To date, a number of interatomic potentials have been developed for carbon materials,
the most popular of which are REBO-I [50], REBO-II [51], C-EDIP [52], Tersoff [53], LCBOP-
I [54], ReaxFFC-2013 [55] and AIREBO [56] potentials and recently developed machine-
learning potential GAP-20 [57]. Each potential has been designed for specific purposes.
In this study, we do not consider high pressures or temperatures, so the potential can be
greatly simplified to speed up the simulation. The van der Waals bonds describing the
interaction between cubenes are two orders of magnitude weaker than covalent bonds
within a cubene. Therefore, for our study for covalent bonds, the simplest harmonic
potential is sufficient.

A home-made code written in the C++ algorithmic language is developed for sim-
ulations. Components of the stress tensor σij are calculated as described, e.g., in [58].
The gradient method is used to minimize the potential energy of the crystal Equation (1)
with respect to the coordinates of carbon atoms and with respect to the translation vectors
of the computational cell. The relaxation is complete when the maximal force acting on
atoms does not exceed 10−9 eV/Å and the value of the maximal stress component does not
exceed 10−6 eV/Å3.

For the relaxed structure, the potential energy per atom and the elastic constants
Cij are calculated as described, for example, in [58]. By doing so, the elastic constants in
Hooke’s law 

σxx
σyy
σzz
σxy
σxz
σyz

 =



C11 C12 C13 C14 C15 C16
C21 C22 C23 C24 C25 C26
C31 C32 C33 C34 C35 C36
C41 C42 C43 C44 C45 C46
C51 C52 C53 C54 C55 C56
C61 C62 C63 C64 C65 C66





εxx
εyy
εzz
εxy
εxz
εyz

, (5)

are determined. Note that, for any crystal, Cij = Cji and, consequently, the maximum
number of elastic constants is 21, although there are fewer of them for crystals with
high symmetry.

We also calculate the potential energy, stress components, and elastic constants of the
cubene crystal as the functions of homogeneous strain. After applying the homogeneous
deformation, the structure is relaxed with respect to atomic displacements in order to
achieve practically zero forces acting on the atoms. Stress components and elastic constants
are calculated for relaxed structure. Briefly, the research flow can be described as follows.
First, equilibrium phases are found, then the stability of the phases with respect to uniform
deformation is analyzed, and then properties of the phases, such as energy, stress–strain
curves, and elastic constants, are calculated.
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3. Results

Let us present the numerical results obtained for cubene crystals. First, two equilibrium
phases will be described. Then, the stability of the phases with respect to uniform elastic
deformation will be demonstrated. Finally, elastic constants and stress–strain curves will
be presented for both equilibrium phases.

3.1. Two Equilibrium Phases

The structure relaxation was carried out for 50 initial configurations with randomly
oriented cubenes having centers of gravity at the sites of the fcc lattice with the distance
between nearest neighbors equal to 5.3 Å. In many cases, metastable structures with a
relatively high potential energy have been obtained. In some cases, two equilibrium phases
with a relatively low potential energy were found. One of them has cubic symmetry, and the
other belongs to the triclinic system. These two phases are described below.

The structure of the crystal will be defined by the translation vectors of the primitive
cell, a, b, c, and coordinates of the carbon atoms in the cell, ξi. Then, the radius-vector of
any atom in the crystal can be expressed as follows:

rαβγi = αa + βb + γc + ξi, (6)

where α, β, and γ are arbitrary integers.

3.1.1. Metastable Cubic Phase

A primitive translation cell of cubic phase includes two cubenes, see Figure 2. Transla-
tion vectors of a primitive cell for the cubic phase are

a = (δ, 0, 0), b = (δ, δ, 0), c = (δ/2, 0, δ/2), (7)

where δ = 7.39223 Å. The translation vectors have lengths (in angstrom)

|a| = δ = 7.392, |b| =
√

2δ = 10.454, |c| = δ/
√

2 = 5.227. (8)

The angles between translation vectors are

â, b = 0.7854 = 45◦, â, c = 0.7854 = 45◦, b̂, c = 1.0472 = 60◦. (9)

Volume per one cubene is 101.00 Å3.
Coordinates of 16 carbon atoms in a primitive translation cell are (in angstrom):
1-st cubene:
ξ1 = (1.41966, 0.00162041, 1.4202),
ξ2 = (1.89262, 0.941731, 0.470774),
ξ3 = (0.942768, 0.469339,−0.469764),
ξ4 = (0.470234,−0.471199, 0.480089),
ξ5 = (0.479549, 0.951046, 1.89302),
ξ6 = (0.952083, 1.89158, 0.943166),
ξ7 = (0.0026573, 1.41876, 0.0030558),
ξ8 = (−0.470304, 0.478654, 0.952482).
2-nd cubene:
ξ9 = (5.11614, 5.11488, 0.00305583),
ξ10 = (4.16686, 5.5877, 0.943167),
ξ11 = (3.22632, 4.63785, 0.470774),
ξ12 = (4.17603, 4.16545,−0.469764),
ξ13 = (5.58896, 4.17477, 0.952481),
ξ14 = (4.63925, 4.64716, 1.89302),
ξ15 = (3.69914, 3.69774, 1.4202),
ξ16 = (4.64843, 3.22492, 0.480089).
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Figure 2. Structure of cubic cubene. The larger the z coordinate, the larger circle shows the carbon
atom. Red (green) color is used for the lower (upper) plane of the structure (only two planes of
cubenes are shown). The centers of gravity of the cubenes are close to the points of the fcc lattice.
Vectors of the primitive translation cell, a, b, and c, are given by Equation (7). A primitive translational
cell includes two cubenes differently oriented in space.

3.1.2. Stable Triclinic Phase

A primitive translation cell of triclinic phase includes one cubene, see Figure 3. Trans-
lation vectors of a primitive cell for the triclinic phase are (in angstrom)

a = (7.34266, 0, 0), b = (3.34246, 3.65657, 0), c = (4.00020, 0.359778, 3.63883). (10)

The translation vectors have lengths (in angstrom)

|a| = 7.343, |b| = 4.954, |c| = 5.420. (11)

The angles between translation vectors are

â, b = 0.8302 = 47.57◦, â, c = 0.7405 = 42.43◦, b̂, c = 0.9920 = 56.84◦. (12)

The volume per cubene is 97.70 Å3, which is less than that of the cubic phase and, therefore,
the triclinic phase is denser.

Coordinates of eight carbon atoms in a primitive translation cell are (in angstrom):
ξ1 = (0.985844,−0.408445, 0.510329),
ξ2 = (1.907106, 0.599395, 0.891091),
ξ3 = (1.348457, 1.474166,−0.074438),
ξ4 = (0.427158, 0.466286,−0.455156),
ξ5 = (0.064547, 0.069598, 1.475858),
ξ6 = (0.985846, 1.077477, 1.856576),
ξ7 = (0.427160, 1.952208, 0.891091),
ξ8 = (−0.494102, 0.944369, 0.510329).
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Figure 3. Structure of triclinic cubene. The larger the z coordinate, the larger circle shows the carbon
atom. Red (green) color is used for the lower (upper) plane of the structure (only two planes of
cubenes are shown). Vectors of the primitive translation cell, a, b, and c, are given by Equation (10).
A primitive translational cell includes one cubene; therefore, all cubenes have the same orientation
in space.

3.2. Energy of Cubic and Triclinic Cubene Crystals

Potential energy per atom for equilibrium cubic cubene is −0.045185 eV and, for
equilibrium triclinic cubene, it is lower and equal to −0.047987 eV. The triclinic phase
has the lowest energy among all structures obtained by relaxation of randomly oriented
cubenes. We assume that the triclinic cubene crystal has the lowest possible energy, but we
cannot provide a rigorous proof of this fact.

It is important to demonstrate that the crystals are stable with respect to application
of elastic strain. The potential energy per atom was calculated for various values of the
strain component εij, while all other strain components were equal to zero. The results are
plotted in Figure 4 for (a) cubic and (b) triclinic crystals. Note that the application of any
strain component, positive or negative, leads to an increase in the potential energy of the
crystal. This means that cubic and triclinic crystals are structurally stable up to ±5% strain.

Figure 4. Potential energy per atom of cubic (a) and triclinic (b) cubene crystals depending on strain
εij. Only one component of the strain tensor is varied, the rest are equal to zero..

For a cubic crystal, the curves for the normal strain components εxx, εyy, and εzz in
Figure 4a coincide, the same is true for the shear strains εxy, εxz, and εyz. This fact reflects
the lattice symmetry.

For the low-symmetry triclinic phase, the curves in Figure 4b do not match, but the
difference is small for normal and shear strains. It can be concluded that the triclinic phase
is weakly anisotropic.
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3.3. Elastic Constants for the Cubene Crystals

The stress components are related to the strain components according to Hooke’s
law Equation (5), which for the cubic crystal assumes the form (elastic constants are given
in GPa) 

σxx
σyy
σzz
σxy
σxz
σyz

 =



464.5 177.1 177.1 0 0 0
177.1 464.5 177.1 0 0 0
177.1 177.1 464.5 0 0 0

0 0 0 177.1 0 0
0 0 0 0 177.1 0
0 0 0 0 0 177.1





εxx
εyy
εzz
εxy
εxz
εyz

. (13)

It is well known that isotropic elastic media are characterized by two independent
elastic constants, while crystals with cubic symmetry generally have three independent
elastic constants [59–62]. There are only two independent elastic constants in Hooke’s law
Equation (13), since pairwise interatomic potentials are used, and the Cauchy relation is
satisfied, which imposes an additional restriction on elastic constants [63] .

For the triclinic cubene crystal, the Hooke’s law reads (elastic constants are given
in GPa) 

σxx
σyy
σzz
σxy
σxz
σyz

 =



477.0 187.0 183.8 9.0 −9.9 16.2
187.0 481.6 179.1 16.4 20.1 −5.0
183.8 179.1 484.6 −26.0 −9.6 −10.5

9.0 16.4 −26.0 187.0 16.2 20.1
−9.9 20.1 −9.6 16.2 183.8 −26.0
16.2 −5.0 −10.5 20.1 −26.0 179.1





εxx
εyy
εzz
εxy
εxz
εyz

. (14)

In Equation (14), due to the Cauchy relations, one has C44 = C12, C55 = C13, and
C66 = C23. Analysis of the elastic constants confirms that the triclinic cubene crystal is
weakly anisotropic. The constants C11, C22, and C33 differ by no more than 1.6%. The con-
stants C44, C55, and C66 differ by no more than 4.2%.

A comparison of the elastic constants of the cubic and triclinic cubenes indicates
that the latter is stiffer. Indeed, in Equation (13), C11 = C22 = C33 = 464.5 GPa, and, in
Equation (14), these elastic constants are higher. The same applies to the shear moduli,
which, for a cubic crystal are C44 = C55 = C66 = 177.1 GPa, which is less than for a triclinic
crystal. The higher stiffness of the triclinic crystal is due to its greater density.

3.4. Stress–Strain Curves

The stress–strain curves for cubic and triclinic cubene crystals are presented in Fig-
ures 5 and 6, respectively. For the abscissa, the only nonzero strain component is used,
and the other strain components are zero. The normal stress components are shown by black
(σxx), red (σyy), and blue (σzz) lines. The shear stresses are plotted by yellow (σxy), cyan
(σxz), and gray (σyz) lines. In some cases, dashed lines are used to show overlapping curves.

As can be seen from Figures 5 and 6, when normal strain is applied, the shear stresses
are equal to zero in cubic crystal, but, in the triclinic crystal, they are not.

For the normal stress components, as the functions of the normal strain components
[panels (a) to (c) in Figures 5 and 6] within the studied strain range ±5% demonstrate, there
is a noticeable deviation from the linear dependence. On the other hand, the stress–strain
curves σij(εij) for i 6= j show a linear relationship in this strain range (see panels (d) to (f)
in Figures 5 and 6).

The elastic constants C11, C22, and C33 as the functions of strain are plotted in Figures 7 and 8
for cubic and triclinic cubene crystals, respectively. In the studied strain range±5%, these elastic
constants depend almost linearly on the normal strain components and weakly depend on the
shear strain components.

The elastic constants C44, C55, and C66 as the functions of strain are plotted in Figures 9 and 10
for cubic and triclinic cubene crystals, respectively. In the studied strain range±5%, these elastic
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constants depend almost linearly on the normal strain components and weakly depend on the
shear strain components.

Figure 5. Stress–strain curves for cubic cubene crystal. Only one component of the strain tensor is
varied, and the rest are equal to zero. The normal stress components are shown by black (σxx), red
(σyy), and blue (σzz) lines. The shear stresses are plotted by yellow (σxy), cyan (σxz), and gray (σyz)
lines. In some cases, dashed lines are used to show overlapping curves. Panels (a–f) correspond to
changing εxx to εyz, respectively.
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Figure 6. Stress–strain curves for triclinic cubene crystal. Only one component of the strain tensor is
varied, the rest are equal to zero. Line colors are the same as in Figure 5. Panels (a–f) correspond to
changing εxx to εyz, respectively.
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Figure 7. Elastic constants C11, C22, and C33 as the functions of strain for cubic cubene crystal (black,
red, and blue lines, respectively). Only one component of the strain tensor is varied, the rest are equal
to zero. Panels (a–f) correspond to changing εxx to εyz, respectively.
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Figure 8. The same as in Figure 7, but for the triclinic crystal. Panels (a–f) correspond to changing εxx

to εyz, respectively.



Materials 2022, 15, 4871 13 of 18

Figure 9. Elastic constants C44, C55, and C66 as the functions of strain for cubic cubene crystal (yellow,
cyan, and gray lines, respectively). Only one component of the strain tensor is varied, the rest are
equal to zero. Panels (a–f) correspond to changing εxx to εyz, respectively.
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Figure 10. The same as in Figure 9, but for the triclinic crystal. Panels (a–f) correspond to changing
εxx to εyz, respectively.

4. Discussion

Two equilibrium phases of the C8 molecular crystal were found for the first time based
on perturbative relaxation molecular dynamics simulations. The phase of cubic symmetry
is metastable with a sublimation energy of −0.045 eV per atom. A primitive translational
cell of a cubic cubene contains two cubenes with the volume of 101 Å3 per one cubene, see
Figure 2. A triclinic cubene has a sublimation energy of −0.048 eV per atom, its primitive
translational cell includes one cubene, and each cubene occupies a volume of 97.7 Å3, see
Figure 3. The triclinic phase is most likely the ground state of the cubene crystal.
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Stress–strain curves for cubic and triclinic cubenes were calculated in the strain range
±5%, see Figures 5 and 6, respectively. No phase transformations were observed in this
strain range; therefore, both phases in this strain range are structurally stable. Compo-
nents of normal stress in the strain range ±5% show noticeable deviation from the linear
Hooke’s law.

The elastic constants C11, C22, and C33 as the functions of strain for cubic and triclinic
cubene crystals are presented in Figures 7 and 8, respectively. Shear moduli C44, C55, and C66
depending on strain for cubic and triclinic cubene crystals are shown in Figures 9 and 10,
respectively. Elastic constants C11, C22, and C33 depend almost linearly on strain, while
constants C44, C55, and C66 are weakly dependent on strain.

Elastic properties of cubenes can be compared to that of fullerenes. Young’s modulus
of the fcc single crystal fullerite C60 at room temperature was measured in [64] to be
20± 5 GPa. For C60 fullerene nanowires, the Young’s modulus is 15.1± 1.39 [65], while, in
bcc tetragonal C60 nanowire, it is 30 GPa [66]. According to our calculations, stiffness of
cubenes is one order of magnitude higher, see Equations (13) and (14). This difference is
related to the small size of C8 cubenes, which greatly increases the number of van der Waals
bonds per atom. In addition, note that our calculations are made for zero temperature and,
as is well known, the rigidity of molecular crystals decreases very rapidly with increasing
temperature [64].

The limitations of our study are as follows. Since the harmonic potential is used to
describe covalent bonds, high pressure and the possible transformation of the structure
due to polymerization cannot be modeled within our model. The influence of temperature
was not taken into account and, consequently, the range of thermal stability of the obtained
structures was not established.

5. Conclusions and Future Work

Two equilibrium phases of C8 fullerite crystal were discovered by the relaxational
molecular dynamics method, one of which has cubic and the other triclinic symmetry, see
Figures 2 and 3, respectively. The energy per atom for the triclinic phase is 0.0028 eV lower
than that for the cubic phase, and triclinic fullerite is presumably the ground state structure.
Both phases are stable with respect to uniform strain ±5%, see Figure 4. The stability of
structures with respect to thermal vibrations was not analyzed in this work.

Stress–strain curves for cubic and triclinic fullerite demonstrate noticeable nonlinearity
in the range of uniform normal strain ±5%, see panels (a)–(c) in Figures 5 and 6. On the
other hand, stress–strain curves for shear strain are almost linear, see panels (d)–(f) in
Figures 5 and 6.

The elastic constants C11, C22, and C33 as the functions of strain are presented in
Figures 7 and 8 for cubic and triclinic cubenes, respectively. Similar results for shear moduli
C44, C55, and C66 can be seen in Figures 9 and 10 for cubic and triclinic cubenes, respectively.
Elastic constants C11, C22, and C33 vary almost linearly with strain, while constants C44,
C55, and C66 are weakly dependent on strain.

The results presented here are the first step in studying the physical properties of
cubenes. Future studies will analyze phonon dispersion curves, nonlinear dynamics of
cubenes including rotobreathers [31–35], and crowdions [67]. To solve these problems,
a more complex interatomic potential should be used [50–57]. The effect of temperature on
the mechanical properties and thermal expansion will be analyzed. Another interesting
line of future research is the development of continuum models capable of describing the
vibrational spectra of cubenes. We hope that our study will stimulate experimental work
on the mechanical and physical properties of cubenes. In particular, it would be of interest
to analyze the polymerization of cubenes during high-temperature treatment under high
pressure, similar to what was done in [68] for C60 and C70 fullerenes.
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