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Abstract: The interfacial fracture of rock joints is an important although easily ignored issue in jointed
rock engineering. To conduct this study, an interface crack model of rock joints was proposed. By
analyzing the ratio of stress intensity factor to fracture toughness, the fracture mode of the interface
crack was studied. Based on the Mohr-Coulomb criterion, an interface fracture criterion considering
T-stress was established. To verify the proposed fracture criterion, laboratory and numerical tests
were conducted. Finally, the effect of relative critical size α, internal friction angle ϕ and cohesion
c on the initiation of an interface crack was comprehensively discussed. It is concluded that the
proposed fracture criterion can predit the initiation of the interface cracks properly. With an increase
in cohesion c, mode II fracture toughness KIIC also clearly increases. When the absolute value of KI is
small, the effect of α is much larger than that of ϕ. In addition, with an increase in the absolute value
of the mode I stress intensity factor, the ϕ of the joint plays a more important role in the initiation of
the interface crack.

Keywords: interface crack; fracture criterion; rock joints; interfacial fracture; T-stress

1. Introduction

Natural rock masses are composed of a rock matrix and discontinuities. The existence
of discontinuities, such as rock joints, has a significant influence on the strength and
deformation properties of rock masses. Generally, it can be found that the prime failure
modes of rock masses are the shear slips along the rock joints [1,2]. There are also often flaws
inside the rock joints, which have a serious influence on the shear mechanical properties of
rock joints [3]. To better understand the failure process of rock joints caused by cracks, the
mesomechanics method (i.e., fracture mechanics) should be adopted, as it has been used in
rock mechanics [4–6]. Therefore, the study on the interfacial fracture of rock joints has an
important theoretical and practical significance.

Until now, there have been three methods to study the failure of rock joints, namely
laboratory experiments, numerical modeling, and theoretical research. Experimental re-
search tends to focus on the influence of the filling material, surface roughness or matedness
of the contact surfaces and the coupling of external environments on the failure of rock
joints by laboratory tests. For example, She and Sun [7] conducted compressive shear tests
on cement-filled joints and investigated the peak shear strength of these joints. Tang and
Wong [8] conducted direct shear tests on artificial rock joints with different contact states
and analyzed the variation of the peak shear strength. Zhao et al. [9] carried out several
groups of direct shear tests on wetting-treated rock joint specimens and studied their shear
failure behavior. However, large numbers of tests are time-consuming and it is a difficult to
create some specific conditions in laboratory tests, such as setting the interface crack in the
rock joint. Moreover, this kind of study can only reveal some common macro-mechanical
properties of the rock joints.

Meanwhile, different from experimental technique, numerical simulation is a suitable
method to investigate the mesoscopic failure of rock joints. For example, Guo and Qi [10]
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simulated rock specimens with unfilled joints using the finite difference method and
investigated the progressive failure mode of jointed rocks with various undulate joints
from a mesoscopic view. Tian et al. [11] proposed an interface model to simulate the shear
failure of cemented concrete–rock joints using the finite element method and analyzed
the effect of gradual bond failure processes of cohesive interface elements on the post-
peak performance of joints. Park and Song [12] simulated the direct shear test to study
the influence of meso-parameters on the shear failure of rock joints based on the bonded
particle model. Asadi et al. [13] carried out the shear test simulations on rough rock
joints using a particle flow code and studied the effects of the meso-properties as well as
the geometrical features on the fracture shear behavior. Compared with the continuum
models, the discontinuous models, such as the discrete element method, have some unique
characteristics, especially the advantage of simulating crack propagation [14]. Although
the failure of rock joints have been investigated from a mesoscopic perspective, the effect
of an interface crack in the rock joints, which is the main factor in joint failure, has not
been researched.

Theoretical research is a key aspect to the study of the failure of rock joints. So
far, the effect of surface roughness of joint surfaces on the failure of rock joints [15–17] or
establishing strength model which consider various physical parameters (e.g., dilation angle
and morphology of rock joints) [18–20] is hot topic of the theoretical research. However,
generally, in these studies, a semiempirical method has been used, which cannot explain
the failure of the joint interface from the mesomechanics. In fact, the failure of rock joints
always starts at its positions of weakness (i.e., flaws), which can be studied to good effect
by fracture mechanics. To study the initiation mechanism of cracks, there are three main
theories: maximum tangential stress criterion [21], strain energy density criterion [22], and
energy release rate criterion [23]. Among these, the maximum tangential stress criterion
(MTS) is the most widely used in rock material for its simple form and precise physical
meaning [24–26]. In order to predict crack initiation angle more accurately, T-stress near
crack tip was introduced to the MTS criterion [27]. The initiation of a crack which is in
single medium can be well solved by the theories above-mentioned. When a crack is in
the rock joint interface, which is termed as interface crack, the theories are difficult to
apply to such case due to the discontinuity of strength parameters along the joint. For
interface cracks, the related theoretical research is mainly focused on the interface crack
of composite materials (bimaterials) with strong interface, for which the stress field at the
crack tip exhibits oscillatory singularity induced by mismatching of the dissimilar materials
on both sides of the interface [28,29]. For example, in Cartesian coordinates, Deng [30] first
derived analytical solution of the crack-tip stress field for the dissimilar materials. Zhou
and Li [31] obtained full elastic fields of the interface crack tip and corresponding energy
release rate for orthotropic bi-material. Banks-Sills [32] presented failure criteria for a crack
between two dissimilar materials based on energy release rate. Mega et al. [33] proposed
several two- and three-dimensional mixed-mode interface failure criteria for predicting
delamination failure in multidirectional, laminate composites. Zhang et al. [34] proposed a
modified critical energy density criterion for peridynamic interface bond failure analysis.
In fact, for the cracks in the rock joint interface, both sides of the interface are the same
materials and there is a fracture process zone at the crack tip of rock-like materials [35], for
which classical interfacial fracture mechanics is also unsuitable for determining the fracture
of the interface crack of rock joints. Moreover, the strength parameters of the rock joint
interface are much lower than that of rock matrix, which is termed as weak interface. The
weak interface will affect the occurrence of mode I fracture [36] which is always occurred as
the cracks is in rock matrix [37]. Therefore, establishing a fracture criterion for the interface
crack in the rock joint is very urgent.

In this paper, the interface crack model of rock joints is proposed for the first time.
Moreover, by using fracture mechanics, the fracture mode of the interface crack is deter-
mined, and a new fracture criterion for interface cracks of rock joints is proposed. Lastly,
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the new fracture criterion is verified by the experimental and numerical tests using the
discrete element method.

2. Interface Crack Model

Generally, there are many defects (weaknesses) in the rock joints. Hence, a model of a
rock joint containing a pre-existing crack is shown as in Figure 1. In this model, for joints
with a small thickness, the joint can be simplified to a mathematical interface where the
interface crack exists.
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For the interface crack, Deng [30] derived general expressions of the crack-tip stress
field for dissimilar materials, which is given as:
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where ε is the oscillation index, r and θ are polar coordinates when the ordinate origin is
assumed to be at the crack tip, and kn, ηI

n, ηII
n , σ̂I

n(θ), σ̂II
n (θ) and σ̂III

n (θ) are expressions in
the derivation. Due to the complexity of the expressions for these parameters, the specific
expressions are not listed here. The details can be found in [30].

For bimaterials, the interface crack-tip stress field exhibits oscillatory features. How-
ever, for rock joint, both sides of the joint interface are the same materials. Therefore, the
bimaterial becomes homogeneous, which is illustrated by ε = 0. Crack-tip stress fields
with oscillatory features are simplified to those of traditional fracture mechanics problems.
Therefore, the stress field at the interface crack tip of the joint is as follows [38]:

σx(r, θ) = KI√
2πr
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2
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2
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(
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)
σy(r, θ) = KI√
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2
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2 + KII√

2πr
cos θ

2

(
1− sin θ

2 cos 3θ
2

) (2)

where KI and KII are the stress intensity factors for crack mode I and II, respectively.
The interface crack model is shown in Figure 1. In Figure 1, the stress on a crack

surface whose dip angle is β can be described as: σy = σ(1+k)
2 + σ(1−k)

2 cos 2β

τxy = σ(1−k)
2 sin 2β

(3)

where k is the ratio of minimum principal stress to maximum principal stress, and σy and
τxy are the normal and shear stresses of the joint plane, respectively.
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Then, according to the basic theory of fracture mechanics [38], the stress intensity
factors of mode I and II cracks are given as{

KI = −σy
√

πa

KII = −τxy
√

πa
(4)

where a is the half-length of the crack.
In Equations (3) and (4), σy is a positive value, which represents the tensile stress.

Under compression conditions, the value of the stress intensity factor KI should be negative,
which illustrates that KI is able to restrain the initiation of cracks [39].

3. Initiation of Interface Crack
3.1. Determination of Crack Initiation Angle

According to the maximum circumferential stress criterion, the crack will initiate along
the direction of maximum tensile stress. However, for interface crack in rock joints, the
crack exists in a joint plane with a strength much lower than that of rock block [40], which
means that the fracture toughness of the joint plane is much weaker than that of rock block.
Therefore, the rock near the interface crack tip cannot be regarded as homogeneous material.
In this study, the fracture toughness of mode I and mode II fractures in the direction of
joint extension (θ = 0) is defined as KIC_joint and KIIC_joint, respectively, and as KIC_matrix
and KIIC_matrix for the other directions (θ 6= 0), respectively.

When the interface crack is under biaxial compression, the stress field at the crack tip
in the polar coordinate can be described as [38]:

σr =
1

2
√

2πr

[
KI(3− cos θ) · cos θ

2 + KII(3 cos θ − 1) · sin θ
2

]
σθ = 1

2
√

2πr
cos θ

2 [KI(1 + cos θ)− 3KII sin θ]

τrθ = 1
2
√

2πr
cos θ

2 [KI sin θ + KII(3 cos θ − 1)]

(5)

The fracture modes (here only mode I and mode II fractures are considered) depend
on σθ and τrθ , regardless of which kind of stress is applied [41]. Accordingly, whether
mode I or II fractures occur at the initiation angle θIC or θIIC depends on the critical value
of the circumferential tensile stress σθ or the shear stress τrθ . Here, different joint dip
angles β (15◦, 30◦, 45◦, 60◦) and ratios of minimum principal stress to maximum principal
stress k (0, 0.1, 0.3, 0.5, 0.7) were chosen in order to analyze the initiation condition of the
interface crack.

In order to better analyze the relationship between stress intensity factors and fracture
toughness, the stress intensity factors in different direction angles θ near the crack tip can
be defined as [41]:  KI(θ) = lim

r→0
σθ

√
2πr

KII(θ) = lim
r→0

τrθ

√
2πr

(6)

Equation (5) was substituted into Equation (6), resulting in:{
KI(θ) =

1
2 cos θ

2 [KI(1 + cos θ)− 3KII sin θ]

KII(θ) =
1
2 cos θ

2 [KI sin θ + KII(3 cos θ − 1)]
(7)

Whether a mode I or mode II fracture occurs depends on whether KI max or KII max
takes precedence to reach its critical value, KIC or KIIC [41]. Therefore, the fracture mode
can be determined by:

KI(II)max

KI(II)C
= 1 (8)
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where KI(II)max is the maximum of the mode I or II stress intensity factor around the
crack tip.

The KIIC/KIC ratio is about 2.6 [41] and the fracture toughness in other directions
(θ 6= 0) is about 4 times that in the direction of joint extension (θ = 0) [42]. In order to
determine the initiation angle and the representative conclusions, the ratio of fracture

toughness in other directions and that in the direction of joint extension (
KI(II)C_matrix
KI(II)C_joint

) was

selected to be 4. The variation in
KI(II)(θ)

KI(II)C
in various conditions was calculated as in Figure 2.

It is noted that to better facilitate the calculation and illustrate the results, the non-dimension
of KI(II)(θ) (i.e., KI(II)(θ)/σ

√
πa) was used to analyze the stress intensity factor distribution

and mode I fracture toughness of rock matrix KIC_matrix was set set as 1.
As can be seen from Figure 2a–d, when k is set to 0.1 for the mode I stress intensity

factor, the maximum value increases first and then decreases with an increase in the
crack dip angle β (the angle between the crack and horizontal direction). The angle (θ)
corresponding to the maximum value gradually decreases with increase in the crack dip
angle β, which is in agreement with the experiments by Rao et al. [41]. Although the mode
I stress intensity factor reaches its maximum when the crack dip angle β is about 60◦, the
mode II fracture still occurs due to a lower fracture toughness in the joint plane. From
Figure 2c,e–h, it is concluded that the mode I stress intensity factor maximum decreases as
confining pressure increase and the mode I stress intensity factor is negative in all directions
when k is equal to 0.7, which illustrates that the existence of confining pressure inhibits the
growth of the mode I stress intensity factor. Considering the above analysis, the conditions
such that the crack dip angle β is about 60◦ and the confining pressure is 0 are most suitable
for a mode I fracture to occur. However, as shown in Figure 2e, the maximum of KI(θ)/KIC
and |KII(θ)|/KIIC are 0.3779 and 0.6662, respectively. According to Equation (8), a mode II
fracture will still occur and the interface crack will initiate along the joint plane.

Therefore, for interface cracks in rock joints, a mode II fracture often occurs, which is
different from traditional rock fracture mechanics, where a mode I fracture more commonly
occurs and the initiation angle is about 70.5◦ [43].
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3.2. Crack Initiation Criterion

Since a mode II fracture generally occur for interface cracks in rock joints, the crack
initiation stress cannot be determined by the maximum circumferential stress criterion.
Therefore, in this study, a new fracture criterion is proposed, which is used to predict the
initiation stress of the interface crack under compression-shear conditions.

When traditional fracture mechanics theory is used to study the crack initiation mech-
anism of rock, the Williams expansion is frequently used, which can be written as [44]:

σij = A1r−1/2 f 1
ij(θ) + A2 f 2

ij(θ) + A3r1/2 f 3
ij(θ) + · · · (9)

where r and θ are polar coordinates when the ordinate origin is assumed to be at the crack
tip. In the first term, A1 can be regarded as the stress intensity factors of KI or KII when the
constant terms are absorbed into the trigonometric function f n

ij terms. In the second term,
A2 represents the stress that is directly applied to the crack line on the normal plane. The
third term is the high order term.

In traditional fracture mechanics theory, only the singular stress term r−1/2 in Williams
expansions is considered, which incurs a difference between the theoretical and experimen-
tal results [45]. Moreover, for rock material, there is a fracture process zone at the crack
tip [46]. For the stress field of the fracture process zone at the crack tip, the proportion
of singular stress term decreases and the T-stress term increases [47]. Thus, the effect of
T-stress should be considered.

Based on Equation (5), when T-stress is considered, the following is derived:
σr =

1
2
√

2πr
[KI(3− cos θ) + KII(3 cos θ − 1)] + Tx cos2 θ + Ty sin2 θ

σθ = 1
2
√

2πr
cos θ

2 [KI(1 + cos θ)− 3KII sin θ] + Tx sin2 θ + Ty cos2 θ

τrθ = 1
2
√

2πr
cos θ

2 [KI sin θ + KII(3 cos θ − 1)] + 1
2
(
Ty − Tx

)
sin(2θ)

(10)

The T-stress can be described as [45]:{
Tx = σ

(
cos2 β + k sin2 β

)
Ty = σ

(
sin2 β + k cos2 β

) (11)

According to the above analysis, for the interface crack, a “shear fracture” (i.e., mode II
fracture) along the joint will generally occur. Moreover, the initiation stress of the interface
crack is determined by the stress states of the fracture process zone [48], which illustrates
that the initiation stress is a function of the stress in the fracture process zone. Therefore,
the Mohr–Coulomb criterion, which is used to describe the shear failure of materials, can
be adopted to describe the initiation of the interface crack. The formula can be written as

τ = c + σ tan ϕ (12)

where c is the cohesion, ϕ is the internal friction angle, τ is the shear stress and σ is the
normal stress of joints.

Equation (10) is substituted into Equation (12) and θ set as equal to 0 (the initiation
angle of the interface crack in the rock joint is 0◦), deriving the following:

KII√
2πr

+ tan ϕ

[
KI√
2πr

+ Ty

]
= c (13)

Both sides of Equation (13) are multiplied by
√

2πr, and the following equation can
be obtained:

KII + tan ϕ
(

KI + Ty
√

2πr
)
= c
√

2πr (14)
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For Equation (14), r = rc and, for simplification, the critical radius rc is presented in the
dimensionless form of α =

√
2rc/a. Moreover, the stress field of the fracture process zone

is considered. Then, Equation (11) is substituted into Equation (14), deriving:

KII + tan ϕ(1 + α)KI = αc
√

πa (15)

In Equation (15), the term c
√

πa is consistent with the definition of stress intensity
factor in form, and as such is the mode II fracture toughness produced by the cohesion c.
When the average mode II fracture toughness of the fracture process zone is considered,
the following is obtained:

KIIC = c
√

2πrc (16)

Substituting α =
√

2rc/a into the right side of Equation (15) and combining with
Equation (16) obtains:

αc
√

πa =
√

2rc/a · c
√

πa = c
√

2πrc = KIIC (17)

Equation (17) is substituted into Equation (15), and the fracture criterion of the interface
crack can be obtained:

KII + tan ϕ(1 + α)KI = KIIC (18)

4. Verification Study
4.1. Verification by Experimental Study

Tan and Xu [49] conducted double-edge notched single-edge compression tests
(DNSCTs) on the layered concrete, as shown in Figure 3. In their study, the influence
of the pouring interval of two layers on the bond characteristics was investigated. For
specimens with the same pouring interval, the cohesion c can be determined by direct
shear tests and the mode II fracture toughness can be determined by the DNSCT. For
the specimens with different pouring intervals, the relationship of KIIC and c is shown in
Figure 4. As shown in Figure 4, there is a linear relationship between KIIC and c, where the
fitting coefficient R2 is 0.9980.
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In this test, the interface crack is in a pure shearing state. For this condition, the
proposed fracture criterion can be generated as the following expression:

KII = KIIC = c
√

2πrc (19)

From the above equation (Equation (19)), the theoretical relationship between KIIC and
c can be obtained. Therefore, the theoretical result is in good agreement with the real test
result. Hence, the criterion can be verified by real tests.

Generally, it is difficult to control the test conditions of mode II fractures. Therefore, it
is very challenging to obtain the mode II fracture toughness from real tests. However, by
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using the theoretical study in this paper, the quantitative relation between mode II fracture
toughness and the shear strength parameter c is determined, avoiding the difficulty of
conducting the real test.
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4.2. Verification by the Numerical Study

Due to the difficulty of conducting the test in the laboratory using the interface crack
specimens, to comprehensively and thoroughly verify the proposed fracture criterion of
the interface crack, a numerical test is used here.

The numerical simulation material is siltstone [50]. The numerical model is generated
by particle flow code (PFC2D), and the contact model between particles is the bonded-
particle model (BPM). The size of the two-dimensional model is such that the width
is 50 mm and the height is 100 mm. There is a consecutive joint in the model. For a
comprehensive study, four models, for which the inclination angles of the joint are 35.8◦,
45◦, 54.2◦, and 63.4◦ from the horizontal, have been constructed, as shown in Figure 5. The
interface crack is in the middle of the joint, which has a length of 12 mm. The particle
diameters of these models satisfy a uniform distribution, with a range between 0.17 mm
and 0.3 mm. For the different numerical models, there are different numbers of particles,
contacts, etc. For example, for the numerical model with a joint angle of 45◦, there are
28,296 particles, 76,451 contacts, 75,946 parallel bonds and 289 smooth-joint contacts. The
particle density of siltstone is 2400 kg/m3, and the average porosity is 7%, which is the
same as the physical parameters of real specimens [50].
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In this study, the smooth-joint contact model (SJM) is used to simulate the behavior of
the joints. As shown in Figure 6, the SJM suggests that the particles will overlap with each
other along the smooth interface. Hence, this contact model can simulate the behavior of
the joints more realistically, which avoids the unrealistic mechanicals properties of joints
induced by the bumpiness or roughness of the interface surfaces [51]. Therefore, in this way,
the initiation of an interface crack under uniaxial compression can be simulated accurately.
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4.2.1. Calibration of Micro-Parameters

For the particle flow code, micro-parameters are used and their calibration is crucial.
In order to simulate the behavior of single-jointed rock, the numerical model of the single-
jointed rock specimen is calibrated based on the stress-stain curve obtained by a real
experiment [50], as shown in Figure 7. From Figure 7, it is clear that the mechanical
behavior of numerical model is in agreement with that of the real specimen. For the single-
jointedrock specimen, the joint inclination angle is 68◦. The calibrated micro-parameters of
the numerical model are listed in Table 1.
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Table 1. Micro-parameters of the numerical model.

Micro-Parameters Symbol Units Value

Minimum particle radius Rmin mm 0.17
Ratio of maximum to minimum ball radius λ / 1.76

Ratio of normal to shear stiffness of the particle kn/ks / 1.6
Ratio of normal to shear stiffness of the parallel bond kn/ks / 1.6

Young’s modulus of the particle Ec GPa 7.3
Young’s modulus of the parallel bond Ec GPa 7.3

Particle friction coefficient µ / 0.611
Particle density ρ kg/m3 2400

Parallel-bond tensile strength σb MPa 30.0
Parallel-bond cohesion cb MPa 50.0

Smooth-joint particle friction coefficient µsj / 0.36
Smooth-joint tensile strength σsj MPa 6.0

Smooth-joint cohesion csj MPa 7.7

4.2.2. Results of Numerical Study

To reproduce the real static response of the specimen, the displacement loading from
the upper wall is applied, which simulates the lab uniaxial compression. By fixing the
bottom wall and moving the upper wall down, causing an increase in upper loading, the
initiation of the interface crack can be clearly simulated. According to [52], the quasi-
static loading rate can be set to 0.1 × 10−3 mm/min. By using numerical studies, the
initiation stress of the interface crack specimens can be obtained, as shown in Figure 8.
It should be noted that the initiation stress is determined when the first fractures occur
around the crack tip. In Figure 8, the red lines denote the fractures at the interface crack
tip. The initiation stress of the interface crack with different joint inclination angles are
55.23 MPa for β = 35.8◦, 28.28 MPa for β = 45◦, 19.50 MPa for β = 54.2◦ and 20.01 MPa for
β = 63.4◦. The corresponding mode I and II stress intensity factors can be calculated based
on Equations (3) and (4), as listed in Table 2.
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Table 2. Stress intensity factors of interface crack with different inclination angles.

Dip Angle 35.8◦ 45◦ 54.2◦ 63.4◦

KI (MPa·m0.5) −4.55 −1.77 −0.83 −0.50
KII (MPa·m0.5) 3.28 1.77 1.16 1.01

Liu [45] pointed out that for metal and polymethyl methacrylate materials, the test
results are ideal when α is equal to 0.1. For rock material, the critical radius rc is larger than
that of metal and polymethyl methacrylate material and related research [47] recommended
that relative critical size α of less than 1 is appropriate. Therefore, the proposed fracture
criterion with a varied relative critical size α, which range from 0.1 to 0.9, are compared
with the numerical results. The mode I and II stress intensity factors and the interface crack
fracture criterion with a varied relative critical size α are summarized in Figure 9.
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As shown from Figure 9, based on the new fracture criterion, the theoretical curves
(µ = tan20◦ = 0.36) are linear. As the relative critical size α increases, the slope and intercept
increase monotonically, which illustrates that the mode II fracture toughness and initiation
stress of the interface crack increase. When α = 0.6, the numerical test results are in better
agreement with the theoretical results. Moreover, according to Equation (14), the critical
size rc can be determined as 1.08 mm.

5. Discussion

In Equation (18), there are three controlling parameters, which are the cohesion c,
internal friction angle ϕ and relative critical size α. The influence of those parameters on
the initiation of interface crack is analyzed as follows. Moreover, some comparisons with
other studies were also discussed.

5.1. Effect of Cohesion c

To study the effect of cohesion c, the parameter c is taken as 7.7 MPa, 17.7 MPa and
27.7 MPa, and the other parameters, such as internal friction angle ϕ and relative critical size
α, were fixed as 20◦ and 0.6, respectively. According to these conditions, the corresponding
results are summarized in Figure 10. It can be seen that with the increase in cohesion c,
the mode II fracture toughness KIIC is 0.87 MPa·m0.5, 1.54 MPa·m0.5 and 2.31 MPa·m0.5,
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respectively, which illustrates that the mode II fracture toughness KIIC increases with the
increase in cohesion. The initiation stress of the interface crack increases with the increase
in cohesion. It should be noted that the slope of the relationship curves between mode I and
II stress intensity factors remains unchanged, which indicates that there are no differential
effects of varying cohesion c on the initiation of the interface crack.
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In essence, the fracture toughness is the characteristic constant of materials, which
represents the resistance to the propagation of a crack [38]. When there is no normal stress
on the joint plane (pure shearing), the resistance to the propagation of crack (i.e., mode
II fracture toughness) is provided by the cohesion, which is generated by the mutual
attraction between the molecules. Therefore, when the cohesion c increases, the mode II
fracture toughness increases linearly.

5.2. Effect of Internal Friction Angle ϕ

To study the effect of the friction angle ϕ, parameter ϕ was taken as 20◦, 25◦, 30◦ and
35◦, and the other parameters, such as cohesion c and relative critical size α, were fixed
as 7.7 MPa and 0.6, respectively. According to these conditions, the corresponding results
are summarized in Figure 11. It can be seen from Figure 11 that the relationship curves
between mode I and II stress intensity factors monotonically increase, and with the increase
in internal friction angle ϕ, the slope of the curves enlarges. However, the intercept term
of the curves remains unchanged. This indicates that the internal friction angle affects the
interface crack initiation stress and has no influence on the mode II fracture toughness KIIC.

The internal friction angle is another shear strength parameter, which represents
frictional properties and the shear strength of the contact area [53]. When there is no
normal stress on the joint plane, the mode II fracture toughness is provided by the cohesion.
Therefore, the mode II fracture toughness KIIC will not be affected by the internal friction
angle. When there is normal stress on the joint plane, the mode I stress intensity factor
KI is negative in the fracture process zone. With an increase in the internal friction angle,
more driving force is needed to overcome the frictional strength in the fracture process
zone. Therefore, the slope of the relationship curves between mode I and II stress intensity
factors increases with the increase in the internal friction angle.
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5.3. Effect of Relative Critical Size α

To study the effect of relative critical size α, parameter α was taken as 0.4, 0.5, 0.6 and
0.7, and the other parameters, such as cohesion c and internal friction angle ϕ, were fixed
as 7.7 MPa and 20◦, respectively. According to these conditions, the corresponding results
are summarized in Figure 12. It can be seen from Figure 12 that the relationship curves
between mode I and II stress intensity factors monotonically increase, and with the increase
in relative critical size α, both the slope and intercept of the curves enlarge. Comparing
Figures 11 and 12, it can be concluded that when the absolute value of KI is small, the effect
of α on the initiation of the interface crack is much greater than that of ϕ. Then, with the
increase in |KI|, the internal friction angle ϕ of the joint plays a more important role in the
initiation of the interface crack.
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The relative critical size is also regarded as the characteristic constant of materials in
the field of rock fracture mechanics [45]. When the relative critical size increases, more
driving force is needed to overcome the cohesion and frictional strength. Therefore, both
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the slope and intercept of the relationship curves between mode I and II stress intensity
factors enlarge.

5.4. Comparison with Other Studies

To further study the characteristics of this fracture criterion, it was compared with
several traditional crack initiation criterion, which are listed in Table 3. The classic MTS cri-
terion [21] and the MTS criterion considering T-stress [45] were chosen for this comparison.

Table 3. Comparison with other traditional theories.

Fracture (Initiation)
Criterion The MTS Criterion [21] The MTS Criterion Considering

T-Stress [45] The Proposed Criterion

Application scope Cracks in rock matix Cracks in rock matrix Cracks in rock joint
Fracture mode Mode I fracture Mode I fracture Mode II fracture

Initiation condition KImax/KIC = 1 KImax/KIC = 1 KIImax/KIIC = 1
Key parameters KI, KII KI, KII, α, rc, E 1, ν 2, β, f 3, kn

4, ks
5 KI, KII, ϕ, c, α, rc

Initiation angle 70.5◦ Variable 0◦

1 E is the Young’s elastic modulus of the rock matix. 2 ν is the Poisson’s ratio of the rock matix. 3 f is the friction
coefficient of the crack surfaces. 4 kn is the normal stiffness of the crack surfaces. 5 ks is the shear stiffness of the
crack surfaces.

As shown in Table 3, although the application scope and the fracture mode of the
proposed criterion are different from that of the two other traditional crack initiation
criterions, the initiation conditions are essentially the same, which depend on whether the
absolute value of the stress intensity factor reaches its fracture toughness. Although the
classical MTS criterion is concise, the MTS criterion considering T-stress is more accurate in
predicting the initiation angle. For the proposed criterion, the number of key parameters
is six, which is relatively concise and easy to understand. Moreover, based on the fixed
initiation angle, the initiation stress can be predicted well.

6. Conclusions

In order to solve the interfacial fracture of rock joints, the interface crack model of
joints was proposed for the first time. Moreover, based on the proposed interface crack
model, a new fracture criterion considering T-stress was proposed. Then, the proposed
fracture criterion was verified by the laboratory tests and numerical study. Finally, the
effect of relative critical size α, internal friction angle ϕ and cohesion c on the initiation of
the interface crack was discussed, with the following conclusions drawn:

(1) A Mode II fracture generally occurs in the interface crack of rock joints, which is
different from the fracture mode that often occurs in the rock matrix.

(2) The theoretical results calculated by the proposed fracture criterion are in good
agreement with the experimental and numerical results. Hence, the proposed fracture
criterion could be verified by the test results.

(3) The effect of T-stress was considered in the fracture criterion. It is shown that the
cohesion c and internal friction angle ϕ increase with the increase in relative critical
size α.

(4) The relative critical size α, internal friction angle ϕ and cohesion c all affect the
initiation of the interface crack. With an increase in cohesion c, mode II fracture
toughness KIIC clearly increases. When the value of KI is small, the effect of α on
the initiation of the interface crack is much greater than that of ϕ. Then, with an
increase in |KI|, the ϕ of the joint plays a more important role on the initiation of the
interface crack.

However, the proposed fracture criterion is primary study of the interface fracture in
rock joints. Only the case of pure mode II fracture was verified by experiments, and the other
conditions were verified by numerical simulations based on experimental data. Therefore,
designing more experiments and simulation conditions for the fracture criterion remain
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challenges for our future research. Moreover, the proposed fracture criterion combined
with cohesive zone model can be written into distinct element code modeling, which can
be used to analyze the interface fracture of jointed rock in geotechnical engineering.
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