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Abstract: The adhesion/delamination characteristics at the stamp/film interface are critical for the
efficiency of film microtransfer printing technology. To predict and regulate the interface mechanical
behaviors, finite element models based on the J-integral, Virtual Crack Closure Technology (VCCT),
and the cohesive zone method (CZM) were established and compared. Then, the effects of pulling
speed and interface parameters on the pull-off force, which is used to characterize the interface
adhesion strength, were investigated. Comparisons between the simulation results and previous
experimental results demonstrated that the model based on the CZM was more applicable than
the models based on the J-integral and VCCT in analyzing the adhesion/delamination behaviors
of the stamp/film interface. Furthermore, the increase in pulling speed could enlarge the pull-off
force for the viscoelastic stamp/film interface, while it had no influence on the pull-off force for
the elastic stamp/film interface. In addition, a larger normal strength and normal fracture energy
resulted in a larger pull-off force, which was beneficial to the realization of the picking-up process in
microtransfer printing.

Keywords: stamp/film interface; adhesion/delamination characteristics; J-integral; virtual crack
closure technology; cohesive zone model

1. Introduction

Flexible inorganic electronic devices, which are prepared by integrating ultrathin
functional elements based on traditional inorganic semiconductor materials with flexible
substrates, have shown attractive application prospects in the fields of the optical/electronic
industry and medical treatment due to their good electronic properties and unique flexibil-
ity [1]. One key step in the fabrication of flexible inorganic electronic devices is the epitaxial
growth of inorganic thin films [2]. To meet this processing requirement, multiple thin film
transfer techniques have been developed, such as temporary wafer bonding [3] and transfer
printing methods [4]. Among these techniques, microtransfer printing is one of the most
widely used transfer printing methods due to the advantages of environment-independent
temperature/corrosion properties, repeatability, and high precision [5]. The principle of
the microtransfer printing technique is to transfer thin film components prefabricated on
donor substrate (i.e., inorganic semiconductor substrate) to target substrate (i.e., flexible
substrate) using a flexible stamp. Two steps including picking-up and printing are com-
monly involved in this technique. In the picking-up step, the stamp is brought into contact
with the thin film and then peeled away to remove the film from the donor substrate,
while in the printing step, the inked stamp contacts the target substrate and is retrieved
to print the film onto the target substrate. The interfacial adhesion caused by van der
Waals interactions at the micro scale is the pivotal factor influencing these two steps [5].
Successful microtransfer printing requires that the adhesion at the stamp/film interface
is stronger than that at the film/donor substrate interface to delaminate the film and the
donor substrate in the picking-up step, while it is weaker than that at the film/target
substrate interface to delaminate the film and the stamp in the printing step [6]. However,
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the above requirements cannot always be satisfied, and controls of adhesion and delam-
ination at interfaces, especially the stamp/film interface, still have difficulties [7,8]. To
date, obtaining a high fabrication yield remains challenging [5,9,10], and thus the industrial
application of microtransfer printing is delayed [1]. To optimize the existing microtransfer
printing technologies and develop new efficient methods, many efforts have been made to
develop methods for regulating the adhesion between stamp and film [1,5]. Evaluating the
feasibility of adhesion regulation methods primarily requires prediction of the mechanical
behaviors of the stamp/film interface.

As far as the numerical techniques for predicting the adhesion/delamination char-
acteristics of the stamp/film interface are concerned, three kinds of mechanical models
including a model based on J-integral theory, a model based on the virtual crack closure
technique (VCCT), and a model based on the cohesive zone method (CZM) are mainly
used. Both the model based on J-integral theory and that based on the VCCT treat the
interface adhesion/delamination in the microtransfer printing process as a crack propaga-
tion problem and evaluate the adhesion or delamination state of the interface according
to the energy release rate, defined as the energy per area necessary to cause the crack to
propagate [7,11]. The J-integral is an energy contour integral proposed to quantitatively
characterize the strength of the stress and strain field around a crack tip, which equals the
energy release rate for linear elastic fracture problems [12]. Based on the J-integral method,
Tucker et al. [7] established a mechanical model of the stamp-film-substrate system and
calculated the energy release rate by introducing initial cracks at the interface and using
finite element simulation. Effects of the initial crack length and interface toughness on the
interface adhesion/delamination behaviors were investigated. However, the stamp was
modeled as an elastic solid. Cheng et al. [13] abandoned the elastic assumption of the stamp
and proposed a viscoelastic model for calculating the energy release rate at the stamp/film
interface from the J-integral. The pull-off force required to fail the interface was obtained by
setting the energy release rate equal to the interface toughness, and the superiority of the
finite element model to the analytical model in revealing the relationship between pull-off
force and pulling speed was demonstrated. Similar to the J-integral method, the VCCT
method, which was proposed based on the Irwin energy theory [14], is another commonly
used technique to calculate the energy release rate. This method assumes that the strain
energy released upon an increment of crack growth is equal to the energy required upon the
same increment of crack closure. Based on the VCCT method, Carlson et al. [15] illustrated
influences of the shear displacement of the stamp on the energy release rate by establishing
and solving a finite element model of the stamp–film system containing an interfacial preset
crack. Simulation results of the pull-off force reflected similar trends to the experimental
ones even though the preset crack length was arbitrary. Furthermore, the VCCT method
was also adopted by Kim-Lee et al. [11] and Minsky et al. [16] to examine the effects of differ-
ent factors on the adhesion behavior at the stamp/film interface and provide understanding
of the mechanics of interface delamination. However, in the above three studies, the mate-
rial of the stamp was assumed to be linear elastic. Different from the J-integral method and
VCCT method, the model based on the CZM treats the interface adhesion/delamination
in the microtransfer printing process as an interface damage problem and evaluates the
adhesion or delamination state of the interface according to the cohesive law [17]. In this
method, a cohesive interface is defined at the stamp/film interface and the cohesive law
characterizing the interface traction force–separation displacement relationship is used
to describe the non-linear nature of the interface strength. Using the CZM approach,
Jiang et al. [17] modeled the viscoelastic stamp/film interface and investigated the effects
of the viscoelastic modulus and relaxation time of the stamp on the area of retrieved film in
the stamp through finite element simulations. Subsequently, Al-okaily et al. [18] adopted
the CZM approach to model the stamp/film interface thermo-mechanical delamination
in the laser microtransfer printing technique and demonstrated the capabilities of this
approach. Both of the above studies applied the bilinear cohesive law to represent the
degradation and failure of the stamp/film interface.
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Although the above mechanical models provide methods for predicting the interface
adhesion/delamination behavior, their applicability is not clear as they are used separately
in different studies. In order to determine the suitability of these three numerical calculation
models, this paper intends to compare the results of these models and determine the most
proper one. To achieve this, the layout of this paper is arranged as follows. First, interface
mechanical models based on the J-integral theory, VCCT, and CZM are established for the
microtransfer printing problem of a thin film by a flat stamp using the classical kinetically
controlled operation mode. Then, these three models are solved separately by adopting
the commercial finite element package Abaqus to obtain the adhesion/delamination be-
havior of the stamp/film interface. Their results are compared and analyzed to assess
the applicability of different models and determine the most suitable model. Finally, the
influences of the microtransfer printing technological parameters and material interface
parameters on the mechanical behavior of the stamp/film interface are investigated. For
the convenience of analysis, the materials of the film and stamp are selected to be silicon
and polydimethylsiloxane (PDMS), respectively, which were adopted in most of the previ-
ous studies [7,11,15–18]. For other materials, the simulation approaches and calculation
methods presented in this paper can also be applied.

2. Stamp/Film Interface Mechanical Models

Figure 1 shows the schematic diagram of the stamp, film, and interface, in which the
film thickness hfilm is much smaller than the stamp thickness and the film width wfilm is
much smaller than its length. Therefore, the film and stamp can be taken to deform under
the plane strain conditions. To predict the adhesion/delamination mechanical behaviors of
the stamp/film interface, the models based on J-integral theory, the VCCT, and the CZM
are established in this section and an energy-based criterion for crack propagation is used.
The Griffith criterion [19] is a simple and effective fracture criterion selected in J-integral
theory and VCCT [7,11].The crack propagation condition given by the Griffith criterion
is G > Γ0, in which G denotes the energy release rate and Γ0 is the interface toughness
measured by experiments. In J-integral theory, the J-integral value is equivalent to the en-
ergy release rate for linear elastic materials, which were assumed in previous studies [7,11].
The VCCT is a method proposed based on the Griffith criterion [20]. Furthermore, in
the cohesive zone model, an energy-based crack propagation criterion in which the area
enclosed under the traction–separation curve equals the critical energy release rate is often
utilized [17]. Therefore, through the parameter energy release rate, the models based on
the J-integral, VCCT, and CZM can be linked and compared. Brief introductions of the
establishing methods for these three models are presented as follows.
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2.1. Mechanical Model Based on J-Integral Theory for the Stamp/Film Interface

The J-integral denotes the path-independent contour integral around the crack tip [12],
which is proposed based on the energy conservation principle and can evaluate the available
energy to delaminate the given interface. Under the linear elastic fracture mechanics
assumption, the J-integral value equals the energy release rate, and its definition for two-
dimensional problems can be expressed as [12]

J =
∫
τ

(
wdy− Ti

∂ui
∂xi

ds
)

(1)

where w =
∫ εij

0 σijdεij and Ti = σijnj. ui denotes the displacement vector, ds is the increment
of length along the integral path, τ represents the path around the crack tip, w is the strain
energy density, and Ti denotes the stress component at any point along the integral path.
σij and εij are the stress and strain tensors, respectively, and nj is the unit normal vector
along the integral path.

In order to use the finite element method to calculate the J-integral at the crack tip of
the stamp/film interface, cracks with length c at both ends of the interface need to be preset,
as shown in Figure 2a. The two-dimensional finite element model established in Abaqus
software [21] is shown in Figure 2b. The mesh elements near the crack tip are locally refined
to improve the accuracy of calculation. Swept mesh is adopted in the refinement zone and
generated along the sweep path to improve the mesh quality.
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2.2. Mechanical Model Based on the VCCT for the Stamp/Film Interface

In the virtual crack closure technique (VCCT), the energy release rate is evaluated
according to the force at the node of the crack tip and the displacement at the node behind
the crack tip. For the two-dimensional problem, the energy release rate G for four-noded
elements is calculated as [22] 

G ≈ GI + GII

GI =
Fy1∆v3,4

2B∆a
GII =

Fx1∆v3,4
2B∆a

(2)

where GI and GII are components of the energy release rate under crack-opening mode I
and in-plane shear mode II, respectively. B is the thickness of the cracked body, ∆a is the
micro-increment of crack, Fx1 and Fy1 are the force components acting on node 1 of crack
tip, and ∆v3,4 is the opening displacement between nodes 3 and 4 behind crack tip.

In order to calculate the energy release rate at the crack tip of stamp/film interface
by combining the VCCT and finite element method, initial defects, i.e., cracks, should be
specified at the interface. As shown in Figure 3a, the introduction of initial cracks with
length c in the unbonded area at both ends of the interface can be realized by setting
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bonding units in the middle area of the interface. The two-dimensional finite element
model established in Abaqus is shown in Figure 3b.
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2.3. Mechanical Model Based on the CZM for the Stamp/Film Interface

The cohesive zone method (CZM) is a widely used theory based on damage mechanics
for predicting crack initiation and propagation [23]. It regards the vicinity of the crack tip
as a crack process zone [24], and the cohesive damage zone is formed by introducing the
degradation mechanism (that is, the material softening or weakening) in front of the crack.
The constitutive relationship between surface traction force and relative separation dis-
placement at the interface in the cohesive zone, which is known as the traction–separation
law or cohesive law, is used to describe the adhesion between materials. The form of the
traction–separation law, such as the commonly encountered Dugdale law, bilinear law,
and exponential law, as shown in Figure 4, is crucial to the effectiveness of simulating the
interface [25]. The essence of the traction–separation law is to characterize the interaction
between atoms or molecules of the material [26]. For the microtransfer printing technique,
it is usually carried out in dry and uncharged environments, and the van der Waals force
is the main source of the interaction between atoms or molecules. Therefore, the normal
interaction at the stamp/film interface can be characterized by the Lennard–Jones surface
force law derived from the intermolecular pair potential, which is written as [27]

Tn =
8∆γ

3ε

[(
ε

∆n + ε

)3
−
(

ε

∆n + ε

)9
]

(3)

where Tn is the normal adhesive force per unit area between two surfaces, ∆n denotes the
surface relative displacement, ∆γ is the work of adhesion, and ε denotes the equilibrium
distance between two flat surfaces.

Comparisons between the Lennard–Jones surface force law and three commonly used
traction–separation laws are depicted in Figure 4, in which Tmax denotes the maximum
traction force and δn is the characteristic length in the normal direction. It can be seen that
the traction–separation displacement relationship described by the exponential law is close
to that described by the Lennard–Jones surface force law, which can be used to analyze the
adhesion/delamination problem at the stamp/film interface.
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The control equations of the exponential law in the two-dimensional plane state [28] are

Tn = −φn

δn
exp

(
−∆n

δn

){
∆n

δn
exp

(
−∆2

t

δ2
t

)
+

1− q
r− 1

[
1− exp

(
−∆2

t

δ2
t

)](
r− ∆n

δn

)}
(4)

Tt = −
φn

δn

(
2

δn

δt

)
∆t

δt

{
q +

(
r− q
r− 1

)
∆n

δn

}
exp

(
−∆n

δn

)
exp

(
−∆2

t

δ2
t

)
(5)

φn = e · σmax · δn (6)

where Tn and Tt are normal and tangential tractions across the surface, respectively. φn
is the fracture energy of normal separation. σmax is the normal strength at the cohesive
surface, that is, the maximum stress. ∆n and ∆t are the interface separation displacements
in the normal and tangential directions, respectively, and δn and δt are the corresponding
characteristic lengths. q = φt/φn and r = ∆n*/δn are the coupling constants between the
normal and tangential directions. φt is the fracture energy of tangential separation. ∆n* is
the normal displacement after complete shear separation under Tn = 0.

In order to analyze the interface adhesion/delamination problem by combining the
CZM with the finite element method, cohesive elements with properties following the
traction–separation law should be preset along the interface, as shown in Figure 5a. In
addition, the model shown in Figure 5b, which introduces initial cracks with length c at
both ends of the interface through inserting cohesive elements only in the middle region of
the stamp/film interface, is also established. This model is used to compare with the model
based on the VCCT and investigate the influence of initial cracks on the mechanical behav-
iors of the interface. The two-dimensional finite element models established in Abaqus
are shown in Figure 5c,d. Since the exponential law represented by Equations (4) and (5)
is not available as cohesive elements in commercial finite element software, the user sub-
routine approach [29] is used in the present analysis to develop user-defined cohesive zone
elements at the stamp/film interface.
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Figure 5. Schematics of models based on the CZM for the stamp/film interface. (a) Mechanical model
without preset cracks; (b) Mechanical model with preset cracks; (c) Finite element model without
preset cracks; (d) Finite element model with preset cracks.

In the above three kinds of finite element models, the stamp and film are simulated
by the plane strain reduction integral element (CPE8R), and the number of elements and
nodes are determined by the mesh-independent analysis. The boundary conditions are that
the bottom boundary of the film is constrained and the displacement load is applied on the
top boundary of the stamp.

3. Results and Discussions
3.1. Validation of the Modeling Methods

In order to verify the finite element modeling methods based on J-integral theory, the
VCCT, and the CZM presented in Section 2, this paper compares the results with those of
Chai et al. [30], Kimlee et al. [11], and Zhang et al. [31] through establishing the same models
as them, as shown in Figure 6. Figure 6a,b demonstrates the results of the models based on
J-integral theory and the VCCT, respectively. In these models, the stamp, film and substrate
are assumed to be elastic materials with Young’s moduli of Estamp, Efilm, and Esubstrate and
Possion’s ratios of υstamp, υfilm, and υsubstrate, respectively. The width and thickness of the
film are wfilm and hfilm. A crack of length c is preset at the stamp/film interface, and a
tensile force F is applied at the top of the stamp. It can be seen that the dimensionless
energy release rate at the stamp/film interface obtained by these two models increases with
the increase in the dimensionless initial crack length. Furthermore, the present results are
similar to those in references [11,30], and discrepancies between them may be caused by the
difference in mesh sizes. Figure 6c depicts results of the model based on the CZM for the
thin-plate bonding structure model in which the same structure size and parameters of the
CZM as with Zhang’s case [31] are set in the present analysis. Although the present paper
adopts the user-defined element subroutine (UEL) approach to develop cohesive elements,
while reference [31] adopts the user-defined material subroutine (VUMT) approach, their
results show good agreements. The above comparisons illustrate the correctness of the
present modeling methods.
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model based on CZM and those of reference [31].

3.2. Comparisons between the Results of Different Mechanical Models and Experiments

This section intends to carry out finite element simulations based on the three me-
chanical models for the stamp/film interface established in Section 2, and compares the
prediction results with experimental ones in Kim’s study [32]. The analysis condition in
the simulations is set to be in agreement with the experimental case [32], in which the
width and thickness of the silicon film are 100 µm and 3 µm, respectively, and its Young’s
modulus and Poisson’s ratio are 130 GPa and 0.18. For the viscoelastic stamp used in the
microtransfer printing, its material is simplified to be elastic in this section so that compar-
isons of results between the three models can be conducted and because the relationship
between the energy release rate and the J-integral for a viscoelastic interface is still unclear.
The Young’s modulus and Poisson’s ratio used for the stamp are 1.8 MPa and 0.49 [32],
respectively. Relevant parameters in the traction–separation law are shown in Table 1.

Table 1. Constitutive parameters in the CZM for the stamp/film interface.

σmax (MPa) δn (µm) δt (µm) q r

0.185 0.14 0.12 1 0
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Variations in the energy release rate or normal force calculated by the models based
on J-integral theory, the VCCT, or the CZM are shown in the Figure 7. It is found from
Figure 7a that the energy release rate obtained by both the model based on J-integral theory
and that based on the VCCT increases with the increase in the normal force under the same
preset crack size. However, the magnitude of the energy release rate is different. According
to the Griffith criterion, the interface begins to delaminate when the energy release rate
G reaches the fracture toughness Γ0. The normal force at this critical state is defined
as the pull-off force, which is used to characterize the strength of interfacial adhesion.
For the PDMS stamp/silicon film interface, the typical value of the fracture toughness is
Γ0 = 0.05 J/m2 [15]. It can be seen from Figure 7b that the normal force calculated by
the model based on the CZM for both the interface with a preset crack and that without
a preset crack increases with the increase in displacement until it reaches the maximum
value. At this juncture, the crack is generated and the interface reaches the critical state of
delamination. The force in this state is defined as the pull-off force in this model. After
the juncture, the normal force decreases with the increase in displacement due to the
propagation of cracks. The pull-off force results extracted from these three models are
depicted in Figure 8. As can be seen, the pull-off force decreases with the increase in the
preset crack length, which demonstrates the dependence of interface delamination on the
initial crack. In addition, the pull-off force predicted by the model based on the CZM falls
in between the results predicted by the model based on J-integral theory and that based
on the VCCT. The pull-off force between a flat stamp and a silicon platelet measured by
Kim et al. [32] are also presented in Figure 8 for comparison. These experimental data are
obtained by repeated measurements up to 100 times, which can reflect the influences of
the crack length to some extent as the initial flaw in every measurement may be different.
Through dividing the total measured pull-off force by the length of the silicon platelet,
the experimental results can be compared with the simulation ones, as the simulations
are conducted under the plane strain condition. After comparison, it is found that the
simulation results of the model based on the CZM are closer to the experimental data than
the model based on the J-integral and that based on the VCCT.
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Figure 7. Variations in the energy release rate or normal force calculated by the models based on the
J-integral, VCCT, and CZM. (a) Variations of energy release rate G with normal force F for the models
based on J-integral and VCCT; (b) Variations of normal force F with displacement U for the model
based on CZM.
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In summary, initial cracks need to be preset in both the model based on J-integral
theory and that based on the VCCT, and the delamination behaviors of the film/stamp
interface predicted by these two models change with the preset crack length. However, in
practical microtransfer printing processes, the initial crack size at the stamp/film interface
is unpredictable [11,15], which makes these methods have limitations. For the model based
on the CZM, the results show better agreement with the experimental data, which reflects
its feasibility in predicting the interface delamination. Furthermore, this model has the
ability to predict the initiation and propagation of interface delamination without presetting
initial cracks, and, therefore, it is more suitable for analyzing the adhesion/delamination
behavior of the stamp/film interface compared with the models based on J-integral theory
and the VCCT.

3.3. Analysis of the Mechanical Properties at the Stamp/Film Interface

The studies in Section 3.2 exhibit the suitability of the model based on the CZM in
analyzing the mechanical behaviors of the stamp/film interface under the assumption of
an elastic stamp. However, the widely used PDMS stamp demonstrates intrinsic time-
dependent viscoelastic properties. Neglect of the viscous dissipation which may occur
at the stamp/film interface during retracting is unreasonable. This section intends to
investigate the adhesion/delamination mechanical behaviors at the viscoelastic stamp/film
interface using the model based on the CZM without presetting initial cracks and analyze
the effects of the pulling speed and interfacial parameters on the pull-off force. For the
PDMS stamp under investigation, its hyperelastic properties are described by the Mooney-
Rivlin strain energy function with parameters C10 = 0.243243 MPa, C01 = 0.0608108 MPa,
and D1 = 0.131556 MPa [23], and its viscoelastic properties are described by the generalized
Maxwell model in Prony series with parameters g1 = 0.391892 and τ1 = 0.08 [23]. The width
and thickness of the silicon film are set to be 50 µm and 5 µm, respectively. The same
constitutive parameters in the CZM for the stamp/film interface as those in Section 3.2
are adopted.

3.3.1. The Effect of Pulling Speed

The influences of the viscoelastic properties of the stamp on the force–displacement
curves are shown in Figure 9, in which the Young’s modulus and Poisson’s ratio of the
elastic stamp are set to be equal to the corresponding initial parameters of the viscoelastic
stamp. It is found that the force–displacement curve is independent of the pulling speed
of the elastic stamp, while it is dependent on the pulling speed of the viscoelastic stamp.
Furthermore, to illustrate the influence of viscoelasticity on the interface adhesion strength,
Figure 10 depicts variations of the pull-off force under different pulling speeds. As can be
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seen, the pull-off force for the viscoelastic stamp/film interface increases with the pulling
speed, reflecting the stamp’s viscous response effect. This result implies that delamination
between the viscoelastic stamp and the film is more likely to occur at a lower pulling speed.

Materials 2022, 15, x FOR PEER REVIEW 11 of 14 
 

 

As can be seen, the pull-off force for the viscoelastic stamp/film interface increases with 

the pulling speed, reflecting the stamp’s viscous response effect. This result implies that 

delamination between the viscoelastic stamp and the film is more likely to occur at a lower 

pulling speed. 

0 1 2 3 4
0

8

16

24

32

40

 F
 (

m
N

/m
m

)

U (mm)

 Result for elastic stamp with E=1.8 MPa, 

            u=0.48 under any pulling speed

 Result for viscoelastic stamp, v=8 mm/s

 Result for viscoelastic stamp, v=200 mm/s

 

Figure 9. Comparisons of the force–displacement curves for the elastic stamp and the viscoelastic 

stamp. 

1 10 100 1000

10

15

20

25

30

F
p

u
ll

-o
ff
 (

m
N

/m
m

)

v (mm/s)

 Results for the viscoelastic stamp

 Results for the elastic stamp

 

Figure 10. Effects of pulling speed on pull-off force. 

3.3.2. The Effect of Interfacial Cohesive Constitutive Parameters 

Although the cohesive zone model using the exponential law described in Section 2.3 

includes the fracture mode mixity, the dominant mode in stamp/film delamination during 

retraction of the stamp is the opening mode. Therefore, the results presented in this section 

are discussed in terms of the dominant normal strength σmax and the normal fracture en-

ergy ϕn. Figure 11a,b present variations of the pull-off force with the normal strength and 

the normal fracture energy at the viscoelastic stamp/film interface under the pulling speed 

of 2 μm/s. It is found that the pull-off force increases almost linearly with the increasing 

normal strength under a fixed characteristic length δn. This implies that a larger normal 

strength can enhance the adhesion between stamp and film, which is beneficial to the suc-

cess of the picking-up process in microtransfer printing. Furthermore, increases in the 

normal fracture energy can also increase the pull-off force when the normal strength is 

fixed. According to the relationship ϕn = eσmaxδn [28], the normal fracture energy is propor-

tional to the normal characteristic length δn which denotes the normal interfacial separa-

tion for damage initiation. Therefore, the larger the normal fracture energy, the later the 

damage initiation, and the more difficult the interface delamination. 

Figure 9. Comparisons of the force–displacement curves for the elastic stamp and the viscoelas-
tic stamp.

Materials 2022, 15, x FOR PEER REVIEW 11 of 14 
 

 

As can be seen, the pull-off force for the viscoelastic stamp/film interface increases with 

the pulling speed, reflecting the stamp’s viscous response effect. This result implies that 

delamination between the viscoelastic stamp and the film is more likely to occur at a lower 

pulling speed. 

0 1 2 3 4
0

8

16

24

32

40

 F
 (

m
N

/m
m

)

U (mm)

 Result for elastic stamp with E=1.8 MPa, 

            u=0.48 under any pulling speed

 Result for viscoelastic stamp, v=8 mm/s

 Result for viscoelastic stamp, v=200 mm/s

 

Figure 9. Comparisons of the force–displacement curves for the elastic stamp and the viscoelastic 

stamp. 

1 10 100 1000

10

15

20

25

30

F
p

u
ll

-o
ff
 (

m
N

/m
m

)

v (mm/s)

 Results for the viscoelastic stamp

 Results for the elastic stamp

 

Figure 10. Effects of pulling speed on pull-off force. 

3.3.2. The Effect of Interfacial Cohesive Constitutive Parameters 

Although the cohesive zone model using the exponential law described in Section 2.3 

includes the fracture mode mixity, the dominant mode in stamp/film delamination during 

retraction of the stamp is the opening mode. Therefore, the results presented in this section 

are discussed in terms of the dominant normal strength σmax and the normal fracture en-

ergy ϕn. Figure 11a,b present variations of the pull-off force with the normal strength and 

the normal fracture energy at the viscoelastic stamp/film interface under the pulling speed 

of 2 μm/s. It is found that the pull-off force increases almost linearly with the increasing 

normal strength under a fixed characteristic length δn. This implies that a larger normal 

strength can enhance the adhesion between stamp and film, which is beneficial to the suc-

cess of the picking-up process in microtransfer printing. Furthermore, increases in the 

normal fracture energy can also increase the pull-off force when the normal strength is 

fixed. According to the relationship ϕn = eσmaxδn [28], the normal fracture energy is propor-

tional to the normal characteristic length δn which denotes the normal interfacial separa-

tion for damage initiation. Therefore, the larger the normal fracture energy, the later the 

damage initiation, and the more difficult the interface delamination. 

Figure 10. Effects of pulling speed on pull-off force.

3.3.2. The Effect of Interfacial Cohesive Constitutive Parameters

Although the cohesive zone model using the exponential law described in Section 2.3
includes the fracture mode mixity, the dominant mode in stamp/film delamination during
retraction of the stamp is the opening mode. Therefore, the results presented in this section
are discussed in terms of the dominant normal strength σmax and the normal fracture
energy φn. Figure 11a,b present variations of the pull-off force with the normal strength and
the normal fracture energy at the viscoelastic stamp/film interface under the pulling speed
of 2 µm/s. It is found that the pull-off force increases almost linearly with the increasing
normal strength under a fixed characteristic length δn. This implies that a larger normal
strength can enhance the adhesion between stamp and film, which is beneficial to the
success of the picking-up process in microtransfer printing. Furthermore, increases in the
normal fracture energy can also increase the pull-off force when the normal strength is fixed.
According to the relationship φn = eσmaxδn [28], the normal fracture energy is proportional
to the normal characteristic length δn which denotes the normal interfacial separation for
damage initiation. Therefore, the larger the normal fracture energy, the later the damage
initiation, and the more difficult the interface delamination.
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4. Conclusions

Mechanical models based on J-integral theory, the VCCT, and the CZM for predict-
ing adhesion/delamination behaviors at the stamp/film interface were developed and
simulated through finite element modeling in this study. The pull-off force required to
fail the interface were extracted from the results of these three models, and its variations
with the preset crack length were presented. Through comparing between the simulation
results and previous experimental results, the choice of a priority mechanical model was
determined. Furthermore, to provide insight into the mechanical characteristics at the
stamp/film interface, the effects of the microtransfer printing technological parameter and
interface material parameters on the pull-off force were inspected based on the priority
model. The main conclusions are as follows.

The major disadvantage for models based on J-integral theory and the VCCT was
the introduction of initial fictitious cracks which made the delamination behaviors of the
stamp/film interface change with the preset crack length. The model based on the CZM
could not only predict results that were close to the model based on the VCCT in the
presence of fictitious cracks, but also predict the initiation and propagation of interface
delamination without presetting initial cracks. Furthermore, the simulation results of
the model based on the CZM are closer to the previous experimental data, exhibiting its
suitability in analyzing the adhesion/delamination behavior of the stamp/film interface.

Simulation results of the model based on the CZM without presetting initial cracks
indicated that the stamp/film interface adhesion strength characterized by the pull-off
force was independent of the pulling speed under the elastic assumption of the stamp,
while it increased with the pulling speed when accounting for the viscoelastic properties of
the stamp. Furthermore, the pull-off force of the viscoelastic stamp/film interface tended
to increase with increases in the normal strength and the normal fracture energy, which
was beneficial to the success of the picking-up process in microtransfer printing.
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