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Abstract: The motivation of this work is to enhance the long-term frost resistance of circulating
fluidized bed fly ash (CFA)-based multisolid waste cementitious material (CSM). In this research,
CSM2 is prepared by 30 wt.% CFA, 20 wt.% blast furnace slag (BFS), 10 wt.% red mud (RM), 10 wt.%
phosphorus slag (PS), and 30 wt.% cement clinker (CC). The strength and mass of CSM are detected
by a press and electronic balance. The hydration products, polymerization degree, thermogravimetric,
micromorphology, pore structure, and harmful element leaching are detected by XRD, MAS NMR,
TG-DTG, SEM-EDX, MIP, and ICP-MS. The major findings indicate that the strength loss, mass
loss, and strength of CSM2 after 25 freeze–thaw cycles (CSM2-25) are 2.35%, 0.36%, and 49.95 MPa,
respectively, which is superior to other CSMs and still meets the performance requirements of fly ash
Portland cement 42.5#. The main hydration products are C-S-H gel, C/N-A-S-H gel, and ettringite
during the freeze–thaw cycle. The polymerization degree and thermogravimetric loss of hydration
products in CSM2-25 are 50.65% and 12.82 wt.%, respectively, which are higher than those of other
CSMs under the synergy of CFA, BFS, RM, and PS. In addition, the microscopic results show that
the interface between the paste and aggregate, micromorphology, and pore structure of CSM2-25 are
the densest when the mass ratio of Ca/(Si + Al) is 0.81. These characteristics are beneficial to the
improvement of long-term frost resistance in CSM2. Finally, the leaching results of harmful elements
in CSM2 after 25 freeze–thaw cycles still meet the WHO standard of drinking water. Therefore, this
work provides a reliable reference for the preparation of green cementitious materials with great frost
resistance by using CFA, BFS, RM, and PS.

Keywords: circulating fluidized bed fly ash; frost resistance; pore structure; harmful elements;
cementitious materials

1. Introduction

The frost resistance of concrete refers to its ability to maintain strength and appearance
integrity under the action of freeze–thaw cycles, which is one of the important indicators
of concrete durability [1,2]. In addition, internal stress and cracks are generated in the
freeze–thaw cycle process of concrete [3]. At the same time, the performance and internal
structure of concrete are destroyed. Specifically, the internal cracks of concrete are increased
due to the repeated effect of seasonal temperature changes, which lead to the strength
loss and mass loss of concrete [4,5]. Concrete with poor frost resistance cannot reach
normal service life, resulting in rework, transformation, and other investment waste [6,7].
Therefore, the frost resistance of concrete is very important for the development of the
construction industry.

Concrete is one of the most important building engineering materials, which is usually
prepared by cement and aggregate [8,9]. However, the production of traditional cement
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not only consumes energy and natural materials but also discharges a large amount of
CO2 [10,11]. According to the statistics of relevant departments, production of cement in
China was 2.36 billion tons in 2021, which is approximately 55% of the cement production
in the world. The CO2 emissions of the cement industry in China are 1.36 billion tons
in 2021, accounting for 12% of the total CO2 emissions of the country. Therefore, the
cement industry is the key industry for CO2 emissions in China. The reduction task of
CO2 emissions from cement is arduous and faces new opportunities for development. At
present, it has become a developing trend to utilize solid waste as a partial replacement
for cement in the preparation of low-carbon cementitious materials [12–14]. This method
is not only beneficial to reduce CO2 emissions in the cement industry and environmental
pollution of solid waste but also to improve the utilization of solid waste [15,16]. Therefore,
the preparation of cementitious materials using solid waste is a research hotspot in the
construction industry to reduce cement consumption [17,18].

Circulating fluidized bed fly ash (CFA) and red mud (RM) are the byproducts of power
plants and aluminum plants in China, respectively [19–21]. The annual average emissions
of CFA and RM are 280 million tons and 105 million tons, respectively, and their harmful
elements can pollute the ecological environment [22–24]. Relevant scholars found that the
excellent strength, volume stability, and environmental performance were reflected when
the cementitious material was prepared by CFA and RM at hydration for 28 days [23]. Blast
furnace slag (BFS) and phosphorus slag (PS) are solid wastes from ironmaking plants and
phosphorus plants that contain active silicon-aluminum components [25,26]. Its mechanical
properties, micro densification, and polymerization degree are improved at curing for
28 days as the cementitious material contains BFS and PS [27,28]. The above research has
contributed much to the utilization of CFA, RM, BFS, and PS to improve the performance
of cementitious materials at 28 days. However, there are few studies that have focused on
the long-term (>28 days) frost resistance of cementitious materials prepared from CFA, RM,
BFS, and PS. In particular, the frost resistance mechanism of the cementitious materials is
missing. Therefore, an effective scheme is proposed by this study to fill this research gap.

In this research, circulating fluidized bed fly ash-based multisolid waste cementitious
material (CSM) is prepared by CFA, BFS, RM, and a silicon-aluminum-based solid waste
(fine blast furnace slag (FBFS)/PS/gasification slag (GS)). The freeze–thaw cycle experiment
of CSM is investigated to understand the frost resistance. Concretely, the frost resistance of
the three CSMs are comprehensively compared, and the optimal mass ratio of Ca/(Si + Al)
is determined according to the frost resistance in CSM. More importantly, the mechanism of
frost resistance in CSM has been discussed in detail during 25 freeze–thaw cycles. Therefore,
this work is expected to provide a novel idea to create the long-term frost resistance of
cementitious materials by using the synergy of CFA, BFS, RM, and PS.

2. Materials and Methods
2.1. Physicochemical Performances of Raw Materials
2.1.1. Raw Materials

The circulating fluidized bed fly ash (CFA)-based multisolid waste cementitious ma-
terial (CSM) is composed from CFA, Bayer red mud (RM), blast furnace slag (BFS), ce-
ment clinker (CC), and a silicon-aluminum-based solid waste (fine blast furnace slag
(FBFS)/phosphorus slag (PS)/gasification slag (GS)). CFA and RM are provided by a ther-
mal power plant and an aluminum plant, respectively, in Yangquan City, Shanxi Province,
China. BFS is supplied by Longze Co., Ltd., Gongyi City, Henan Province, China. CC is
produced from a cement plant in Hebei Province, China. Silicon-aluminum-based solid
waste: FBFS comes from a steel plant in Hejin City, Shanxi Province, China. PS and GS are
provided from a phosphorus plant in Guizhou, China and a coal gasification plant in Inner
Mongolia, China, respectively.
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2.1.2. Chemical Compositions

The oxide compositions of the CFA, RM, BFS, CC, and silicon-aluminum-based solid
waste (FBFS, PS and GS) are shown in Table 1. The main chemical components of CFA are
T-CaO (CaO), SiO2, Al2O3, SO3, Fe2O3, and f-CaO. The chemical components of RM are
CaO, SiO2, Al2O3, Fe2O3, and Na2O. The main oxides of BFS, FBFS, PS, and GS include CaO,
SiO2, and Al2O3. CC is one of the raw materials for preparing cement, and its chemical
components are CaO, SiO2, and Al2O3.

Table 1. Chemical composition of raw materials.

Oxide T-CaO f-CaO SiO2 Al2O3 SO3 Fe2O3 MgO TiO2 P2O5 F K2O Na2O LOI Total

CFA 12.73 4.10 34.15 24.04 6.67 5.31 1.25 0.76 0.23 - 0.82 0.20 10.38 96.54
RM 21.09 - 19.02 22.46 0.29 15.15 0.46 4.33 0.67 - 0.57 6.01 8.84 98.89
BFS 34.14 - 34.64 18.64 1.66 0.86 6.96 0.77 0.04 - 0.63 0.62 0.50 99.46
CC 63.87 - 22.75 5.76 0.38 3.17 2.06 0.24 0.19 - 0.82 0.33 0.03 99.60

FBFS 39.74 - 29.19 15.02 2.73 0.82 9.38 0.81 0.02 - 0.50 0.47 0.60 99.28
PS 46.67 - 36.79 2.93 1.30 0.13 1.32 0.20 3.34 3.04 0.69 0.98 1.85 99.24
GS 26.41 - 34.79 15.96 0.49 9.53 0.98 0.89 0.07 - 0.70 4.89 3.94 98.65

Note: The loss on ignition (LOI) of CFA, RM, BFS, FBFS, PS, GS, and CC was measured at 800 ◦C for 4 h.

2.1.3. Phase Composition

The mineral composition of CFA, RM, and BFS is shown in Figure 1. The main
minerals of CFA are active silicon aluminum, quartz (SiO2), anhydrite (CaSO4 (SO3)),
hematite (Fe2O3), free calcium oxide (f-CaO), and kyanite (Al2SiO5). The phases of RM are
composed by katoite (Ca3Al2 (SiO4) (OH)8), cancrinite (Na6Ca2Al6Si6O24 (CO3)2 2H2O),
andradite (Ca3Fe2 (SiO4)3), and hematite (Fe2O3). The main phases of BFS are the active
silicon aluminum, calcium silicon (Ca2Si), dicalcium silicate (Ca2SiO4), and SiO2.
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Figure 2 shows the XRD results of silicon-aluminum-based solid wastes (PS, GS, and
FBFS). The phase of PS is composed by active Si-Al and aluminum silicon (Al4Si). The
mineral composition of GS includes active Si-Al, SiO2, and clinoferrosilite (FeSiO3). The
main minerals of FBFS are active Si-Al, quartz (SiO2), calcium silicate (Ca2SiO4), and zoisite
(Ca2Al3 (SiO4)3 (OH)). These active Si-Al participates in the secondary hydration reaction
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to generate gel products, which are for the development of long-term frost resistance in the
CSM system rather than FBFS and GS.
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Figure 2. XRD results of FBFS, PS, and GS.

2.1.4. Specific Surface Area

The particle size of solid wastes and cementitious materials is usually expressed by the
specific surface area. CFA, RM, BFS, CC, FBFS, PS, and GS were ground in a cement mill for
a certain time. Then, the specific surface areas of the raw materials were tested by the Blaine
method of GB 175-2007 [29], and the results are shown in Figure 3. The specific surface
areas of CFA, RM, BFS, CC, FBFS, PS, and GS were 525m2/kg, 734 m2/kg, 446 m2/kg,
378 m2/kg, 449 m2/kg, 425 m2/kg and 400 m2/kg, respectively.
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2.2. Experimental Design of CSM

According to the requirements of the GB/T 41060-2021 [30], CSM1, CSM2, and
CSM3 were prepared by CFA, RM, BFS, CC, and a silicon-aluminum-based solid waste
(FBFS/PS/GS), as shown in Table 2. The different mass ratios of (T-CaO)/(SiO2 + Al2O3)
(Ca/(Si + Al)) of the three CSMs were also calculated. Table 2 shows that the mass ratios of
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Ca/(Si + Al) of CSM1, CSM2, and CSM3 are 0.79, 0.81 and 0.75, respectively. The compre-
hensive comparison of the frost resistance and microstructure of the three CSMs is analyzed
in the next section based on different mass ratios of Ca/(Si + Al).

Table 2. Proportion of raw materials and Ca/(Si + Al) mass ratio (wt.%).

Sample CFA RM BFS CC Silicon-Aluminum-Based
Solid Wastes

Ca/(Si + Al)
Mass Ratio

CSM1 30 10 20 30 10 (FBFS) 0.79
CSM2 30 10 20 30 10 (PS) 0.81
CSM3 30 10 20 30 10 (GS) 0.75

2.3. Technical Framework of CSM

The performance and microstructure items of CSMs are summarized in Figure 4. Accord-
ing to the dosage of the raw materials established in Table 2, CSM (40 × 40 × 160 mm3) was
produced. The mortars were prepared by raw material (450 g) and standard sand (1350 g)
with a mass ratio of 1:3 (15 mortar samples were prepared corresponding to each CSM).
Then, the CSM mortar was stored for 28 days in a standard curing box with temperature
(20 ± 1 ◦C) and relative humidity (95 ± 1%). At the same time, the strength value of the
CSMs was evaluated on the press display before freeze–thaw cycling. The strength loss
rate and mass loss rate of the CSM mortar hardened body were calculated according to
GB/T 41060-2021 [30], as shown below.
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The strength loss rate of CSMs was calculated according to Formula (1).

S =
e0 − ei

e0
×100% (1)

S—Strength loss rate of CSM after i freeze–thaw cycles (%);
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e0—Compressive strength value of CSM before freeze–thaw cycling (MPa);
ei—Compressive strength value of CSM after i freeze–thaw cycles (MPa).

The mass loss rate of CSMs was calculated according to Formula (2).

ω =
m0 − mi

m0
×100% (2)

ω—Mass loss rate of CSM after i freeze–thaw cycles (%);
m0—Mass value of CSM before freeze–thaw cycle (MPa);
mi—Mass value of CSM after i freeze–thaw cycles (MPa).

The frost resistance mechanism of CSM was analysed by XRD, MAS-NMR, TG-DTG,
SEM-EDX, and MIP.

2.4. Test Methods
2.4.1. Performance Test

According to the experimental operation of GB/T 41060-2021 [30], the compressive
strength of the three CSMs was tested with standard press equipment (HYE-300-10). The
mortar was put into the experimental box, and then the box with the CSMs was put into the
freeze–thaw cycle equipment. The central temperatures of the CSMs during the freeze–thaw
cycle experiment were −18 ± 2 ◦C and 5 ± 2 ◦C, respectively. A freeze–thaw cycle was
completed within 7 h, and the melting and freezing time was not less than 3 h. The number
of freeze–thaw cycles of the CSM mortar was 25 in this work, and the strength and mass
values were tested by press equipment (HYE-300-10) and an electronic balance (JE3001)
every 5 freeze–thaw cycles. The strength loss rate and mass loss rate of the CSM mortar
hardened body were calculated by Formulas (1) and (2). Moreover, the mass percentage of
f-CaO in CFA was accurately measured based on EN 451-1-2017 [31], and the SO3 content
in CSM was determined by XRF. Then, the LOI of raw materials was obtained by a high-
temperature furnace at 800 ◦C for 4 h according to GB 175-2007 [29], and the specific surface
areas of raw materials were checked following GB 175-2007 [29].

2.4.2. Microstructure Analysis

The mineral composition of CSMs was determined by a German D8 Advance X-ray
diffractometer (XRD). The polymerization degree and structure of silicon aluminum in
CSMs were tested by a JMM-EC600R 29Si MAS spectrometer. The mass loss of CSMs
at different temperatures was detected by NETZSCH STA 449 F3/F5 instruments in the
United States. The micromorphology of the CSMs and the interface between the paste
and aggregate were photographed by a Gemini cold field scanning electron microscope
and energy dispersive X-ray (SEM-EDX). The pore structure parameters of the CSMs were
tested by AutoPore V 9620, a high-performance automatic mercury intrusion porosimeter
(MIP) from the Mcmurrittick company in the United States. The pores of the CSM are filled
with mercury under external pressure. The porosity can be calculated by data processing
of the electrical signal generated by Mercury entering the CSM pores. Inductively coupled
plasma–mass spectrometry (ICP–MS) 7800 (Agilent Corporation, Santa Clara, CA, USA)
was used to analyze the leaching of Na, As, Cd, and Hg.

3. Results and Discussion
3.1. Strength Loss and Mass Loss

The requirement for 42.5 fly ash Portland cement (P. F 42.5) based on GB 175-2007 [29]
is that the compressive strength of the cementitious material is not less than 42.50 MPa after
25 freeze–thaw cycles (the compressive strength of CSMs is ≥15 MPa and ≥42.5 MPa at
3 days and 28 days, respectively). The compressive strength of CSMs with 0–25 freeze–thaw
cycles is shown in Figure 5. It is obvious from Figure 5 that the compressive strength of the
three CSMs gradually decreases with the number of freeze–thaw cycles from 0 to 25. This
indicates that the compressive strength of the three CSMs is lost under the action of freeze–
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thaw cycles. The strength loss rate of CSMs corresponding to Figure 5 is shown in Figure 6.
Figure 6 shows that the strength loss rate of the three CSMs gradually increases with the
number of freeze–thaw cycles. Concretely, the strength loss rates of CSM1, CSM2 and CSM3
are 4.25%, 2.35% and 4.97% when the number of freeze–thaw cycles is 25, which meets the
requirements (≤25.00%) of the strength loss rates in GB/T 41060-2021 [30]. In addition,
the compressive strength values of CSM1, CSM2, and CSM3 are 45.10 MPa, 49.95 MPa
and 43.05 MPa after 25 freeze–thaw cycles, which meet the strength requirements of P.
F 42.5 in GB 175-2007 [29]. According to the results of Figures 5 and 6, the compressive
strength of CSM2 is higher than other CSMs and the strength loss rate of CSM2 is lower
than other CSMs when the Ca/(Si + Al) mass ratio is 0.81. This means that the long-time
frost resistance of CSM2 is optimal based on the synergy of CFA, BFS, RM, and PS.
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Figure 7 shows the mass loss of the three CSMs at different numbers of freeze–thaw
cycles. It is obvious from Figure 7 that the mass loss rate of the three CSM samples gradually
increases with the number of freeze–thaw cycles from 0 to 25. This indicates that the tiny
blocks are shed in the CSM matrix with the progress of the freeze–thaw cycle. The mass loss
rates of the three CSMs are 0.38%, 0.36% and 0.44% when the number of freeze–thaw cycles
is 25, which meets the requirements (≤5.00%) of the mass loss rate in GB/T 41060-2021 [30].
The mass loss rate of CSM2 is lower than that of the other CSMs when the Ca/(Si + Al)
mass ratio is 0.81. This phenomenon indicates that the polymerization degree of the CSM2
system is higher, which is conducive to the stable connection of aggregates [32]. The frost
resistance of CSM2 is optimal according to the comprehensive strength loss and mass loss.
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3.2. Phase Composition Analysis

The phase composition of CSM2 after 0 and 25 freeze–thaw cycles (CSM2-0 and
CSM2-25) is shown in Figure 8. The main phases of CSM2 are the amorphous phase, et-
tringite (Ca6Al2(SO4)3(OH)12·26H2O), portlandite (Ca(OH)2), calcite (CaCO3), metaheulan-
dite (CaAl2Si7O18·7H2O), unreacted quartz (SiO2), hematite (Fe2O3), dicalcium silicate
(Ca2SiO4), and katoite (Ca3Al2(SiO4)(OH)8). As shown in Figure 8, the phase type of CSM2
does not change with increasing freeze–thaw cycles. However, a comprehensive compari-
son of the XRD results shows that the diffraction peak intensity of the amorphous phase
in CSM2 decreases slightly with the number of freeze–thaw cycles. This result indicates
that a small number of amorphous phases in CSM2 were destroyed in the 25 freeze–thaw
alternation environments.

The phase composition of CSM1, CSM2, and CSM3 at 25 freeze–thaw cycles (CSM1-25,
CSM2-25, and CSM3-25) is shown in Figure 9. According to the comprehensive comparison,
the diffraction peak intensity of amorphous phases in CSM2 at 25 freeze–thaw cycles is
higher than that of other CSMs when the mass ratio of Ca/(Si + Al) is 0.81. This result shows
that the number of amorphous phases in CSM2-25 is the maximum based on the synergy of
CFA, BFS, RM, and PS, which can improve the ability of CSM2 to resist freeze–thaw cycles.
Therefore, the strength loss and mass loss of CSM2 is lower than those of the other CSMs
after 25 freeze–thaw cycles.
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3.3. Si-Al Structure Analysis

Nuclear magnetic resonance (NMR) spectroscopy is used to study the absorption
of radio-frequency radiation by atomic nuclei, and it is the most powerful tool for qual-
itative analysis of the composition and structure of various inorganic substances. The
number of relative bridge oxygen bonds in the 29Si NMR spectrum is represented by SiQn

(n = 0–4). Then, Zhang [33] found that the polymerization degree of silicon oxygen tetrahe-
dral structure [SiO4] was quantitatively calculated by the number of relative bridge oxygen
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(RBO). The calculation formula of the polymerization degree of RBO in CSM is shown in
Formula (3):

RBO =
1
4
(1 × Q1

∑ Qn +2 × Q2

∑ Qn +3 × Q3

∑ Qn +4 × Q4

∑ Qn ) =
1
4

∑ n·Qn

∑ Qn (3)

where Qn is the relative peak area of the 29Si NMR spectrum with RBO number n.
The 29Si NMR spectra and relevant data are shown in Figure 10 and Table 3, respec-

tively. As seen from Figure 10 and Table 3, the [SiO4] of five relative bridge oxygen bonds
are found in CSM: SiQ0, SiQ1, SiQ2(1Al), SiQ3(2Al) and SiQ4. Their relative peak areas were
fitted by MestReNova software and are displayed in Table 3. Meanwhile, the degree of
polymerization in the three CSMs was calculated according to Formula (3). SiQ0: Ca2SiO4
or Ca3SiO5 in CC; SiQ2 (1Al) or SiQ3 (2Al): C-A-S-H gel and N-A-S-H gel (C/N-A-S-H gel).
In Table 3, SiQ2 or SiQ3 show a large peak area, which proves the presence of C/N-A-S-H
gel in CSM. These results also indicate that the amorphous phase (Figures 8 and 9) contains
C/N-A-S-H gel, and this finding is consistent with that of Walkley et al. [34]. It can be seen
from the 29Si NMR spectra of CSM2 in 0 and 25 freeze–thaw cycles (CSM2-0 and CSM2-25)
in Figure 10b,d that there is a slight rise in the peak of SiQ0, and the peaks of SiQ2(1Al) (or
SiQ3(2Al)) and SiQ4 become narrow when the number of freeze–thaw cycles for CSM2 is
from 0 to 25. This phenomenon indicates that the C-S-H gel and C/N-A-S-H gel produced
by CSM2 are slightly damaged under the action of freeze–thaw cycling. The 29Si NMR
results of the three CSMs after 25 freeze–thaw cycles are comprehensively compared, as
shown in Figure 10a–c. The SiQ2(1Al) (or SiQ3(2Al)) peak area of CSM is optimal (88.75 or
95.00) when the mass ratio of Ca/(Si + Al) is 0.81. Hence, the number of C/N-A-S-H gels
is the maximum in CSM2-25. In addition, CSM2-25 contains an extra SiQ4 relative to the
other CSMs. Therefore, the number of hydration products in CSM2-25 is more than that of
other CSMs.
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Table 3. Relevant data of 29Si MAS NMR in CSM.

Sample Peak Position (PPM) Assign Relative Polymerization
Degree of RBO

CSM1-25 −66.56 SiQ0 22.22 48.95%
−72.54 SiQ1 100.00
−78.66 SiQ2 (1Al) 77.78
−81.51 SiQ3 (2Al) 88.89

CSM2-25 −66.96 SiQ0 16.25 50.65%
−72.49 SiQ1 100.00
−78.00 SiQ2 (1Al) 88.75
−81.28 SiQ3 (2Al) 95.00
−101.65 SiQ4 6.25

CSM3-25 −65.95 SiQ0 25.49 44.91%
−72.30 SiQ1 100.00
−78.81 SiQ2 (1Al) 54.90
−81.77 SiQ3 (2Al) 56.86

CSM2-0 −66.68 SiQ0 12.96 52.16%
−73.11 SiQ1 100.00
−78.79 SiQ2 (1Al) 88.89
−83.76 SiQ3 (2Al) 96.30
−101.16 SiQ4 14.81

The 29Si NMR spectra of CSM1-25, CSM2-25, CSM3-25, and CSM2-0 were further
analyzed by MestReNova, and the results are summarized in Table 3. The polymerization
degree of CSM2 decreases slightly with the number of freeze–thaw cycles. This indi-
cates that part of the RBO of [SiO4] in CSM2 is slightly destroyed during freeze–thaw
cycles. The polymerization degree of CSM2-25 is highest (50.65%) when the mass ratio of
Ca/(Si + Al) is 0.81. This phenomenon occurs as the formation of C/N-A-S-H gel and C-S-H
gel is promoted by the participation of PS in the hydration reaction of CSM2. In summary,
the frost resistance of CSM2 is optimal as the aggregate of CSM2 is closely connected by
the high polymerization degree in the freeze–thaw cycle. The results of 29Si MAS NMR
analysis correspond to XRD in CSM.

3.4. Thermogravimetric Loss Analysis

The thermogravimetric (TG) method is a technique used to measure the relationship
between the mass loss and temperature under program-controlled temperatures. The
differential thermogravimetric method (DTG) is the first derivative curve of the TG curve.
The corresponding phase of mass loss at 60–216 ◦C is the thermal decomposition of gel
products (C-S-H gels and C/N-A-S-H gels) and ettringite [35–37]. The corresponding
phases of mass loss at 466–710 ◦C and 710–832 ◦C are attributed to the decomposition of
Ca (OH)2 and CaCO3, respectively [38,39]. Figure 11 shows the TG-DTG results of CSM1,
CSM2, and CSM3 after 25 freeze–thaw cycles (CSM1-25, CSM2-25, and CSM3-25). The
mass losses of CSM1-25, CSM2-25, and CSM3-25 in the range of 60–216 ◦C are 11.12%,
12.82%, and 10.92%, respectively. This result shows that the relative quantities of C-S-H
gels, C/N-A-S-H gels, and ettringite are greatest at CSM2-25 when the Ca/(Si + Al) mass
ratio is 0.81. This phenomenon shows that many hydration products of CSM2 are generated
based on the synergistic effect of CFA, BFS, RM, and PS, which is conducive to improving
its frost resistance. The mass losses of CSM1-25, CSM2-25, and CSM3-25 at 466–710 ◦C are
3.05%, 2.46%, and 3.18%, respectively. This result suggests that the residual Ca(OH)2 after
the hydration reaction is the minimum in CSM2, with a Ca/(Si + Al) mass ratio of 0.81. The
mass losses of CSM1-25, CSM2-25, and CSM3-25 at 710–832 ◦C are 2.17%, 1.86%, and 2.20%,
respectively. This phenomenon indicates that minimum carbonization of CSM2-25 occurs.
The reason for the above results is that the formation of hydration products in CSM2-25
is more easily promoted under the action of PS to fill the pores compared with FBFS and
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GS. Therefore, the frost resistance of CSM2 is superior to those of CSM1 and CSM3. The
TG-DTG results were consistent with the XRD and 29Si MAS NMR results.
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3.5. Microstructure Analysis

The micromorphological characteristics of CSMs, the interface between paste and
aggregate (standard sand), and the mineral distribution were obtained by SEM-EDX with a
magnification of 2.0 k. The SEM-EDX of three CSMs after 25 freeze–thaw cycles (a CSM1-25,
b CSM2-25, and c CSM3-25) is shown in Figure 12. From the SEM-EDX results in Figure 12a,
the hydration products (C-S-H gel, C/N-A-S-H gel, and ettringite) are on the left and are
distributed in layers with a small number of voids [19]. The interface between the pastes
and standard sand (SiO2) is approximately 20.00 µm. The reason for this phenomenon is
that the volume of water in the pores of CSM1-25 expands due to freezing, resulting in many
cracks during the freeze–thaw cycle. Similarly, the left side in Figure 12c is the collection
of flocculent C-S-H gel, C/N-A-S-H gel and acicular ettringite in CSM3-25, and the right
side is standard sand (SiO2) [40,41]. The interface between the pastes and aggregates is
accompanied by a gap of approximately 50.00 µm. This indicates that the internal structure
of CSM3 is damaged in the freeze–thaw cycle. However, compared with Figure 12a,c, the
micromorphology of Figure 12b is relatively dense, and the gap between the pastes and
aggregates is less than 2.00 µm. This indicates that the connection of paste and aggregate
in CSM2 is the greatest. It can be explained that the synergy enhancement of CFA, BFS,
RM, and PS of CSM2 is optimal when the Ca/(Si + Al) mass ratio is 0.81, which forms
many hydration products to improve the connection of paste and aggregate. The SEM-EDX
results correspond to the XRD, 29Si NMR, and TG-DTG results.
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3.6. Pore Structure Analysis

The pore parameter distribution is one of the main factors affecting the frost resistance
of cementitious materials. The pore structure of the CSM pastes was determined by
mercury intrusion porosimetry (MIP). As shown in Figure 13, the log differential intrusion
and cumulative intrusion curves of CSMs after 25 freeze–thaw cycles (CSM1-25, CSM2-25,
and CSM3-25), and pore structure parameters such as total pore volume, average pore
diameter, porosity, and density are listed in Table 4. The total pore volume, average pore
diameter, and porosity of CSM2-25 were 0.1312 mL/g, 15.1200 nm, and 23.14%, respectively.
Although the total pore volume of CSM2-25 is higher than that of CSM1-25, the average
pore parameter of CSM2-25 is lower than that of CSM1-25. Meanwhile, the bulk density
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and apparent density of CSM2-25 are 1.7636 and 2.2947 g/mL, respectively, which are
higher than those of CSM1-25 and CSM3-25. This shows that the compactness of the pore
structure in CSM2 is higher than those of other CSMs, which is conducive to reducing the
formation of new cracks during the freeze–thaw cycle [42]. The reason for this phenomenon
is that the synergistic effect of CFA, BFS, RM, and PS in CSM2 is optimal. Therefore, the
strength loss and mass loss of CSM2 are lower than those of the other CSMs at the same
number of freeze–thaw cycles.
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Table 4. Pore structure parameters of CSM1-25, CSM2-25, and CSM3-25.

Samples Total Pore
Volume (mL/g)

Average Pore
Diameter (nm)

Porosity
(%)

Bulk Density
(g/mL)

Apparent Density
(g/mL)

CSM1-25 0.1014 18.0600 17.59 1.7339 2.1040
CSM2-25 0.1312 15.1200 23.14 1.7636 2.2947
CSM3-25 0.1814 17.3200 27.1100 1.4941 2.0497
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As shown in Figure 14, the log differential intrusion and cumulative intrusion curves
of CSM2 at five, 15, and 25 freeze–thaw cycles (CSM2-5, CSM2-15, and CSM2-25), and pore
parameters are shown in Table 5. According to the results in Figure 14 and Table 5, the total
pore volume and porosity of CSM2 slightly decrease, while the bulk density and apparent
density gradually increase with the number of freeze–thaw cycles from 0 to 25. This result
indicates that CSM2 can still maintain a compact structure to reduce crack generation
during freeze–thaw cycles. The reason for this phenomenon is that a better pore structure
is promoted, based on the high degree of polymerization and the dense microstructure.
Thus, the strength and mass of CSM2 are maintained by the better pore structure during
the freeze–thaw cycle.
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Table 5. Pore structure parameters of CSM2-5, CSM2-15, and CSM2-25.

Samples Total Pore
Volume (mL/g)

Average Pore
Diameter (nm)

Porosity
(%)

Bulk Density
(g/mL)

Apparent Density
(g/mL)

CSM2-5 0.1524 14.9700 23.84 1.5637 2.0531
CSM2-15 0.1374 15.3900 23.19 1.6881 2.1976
CSM2-25 0.1312 15.1200 23.14 1.7636 2.2947
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3.7. Leaching of Harmful Elements

The premise of solid waste utilization is that the leaching of harmful elements must
be qualified [43]. Therefore, it is important that the leaching of harmful elements in CSMs
meet environmental requirements after 25 freeze–thaw cycles (CSMs-25) [44]. Leaching
tests of three CSMs-25 are performed according to Chinese standard GB 5086.1-1997 in
this research [45]. The liquid/solid ratio is 10, and the turnover frequency is 30 ± 2 r/min
(18 h). Then, ICP–MS was used to detect the leaching results of Na, As, Cd, and Hg. Finally,
the leaching results of CFA, RM, PS, GS, CSM1-25, CSM2-25, and CSM3-25 are shown in
Table 6. It is obvious that the leaching results of Na, As, Cd, and Hg in CFA, RM, PS, and
GS exceed the WHO standard for drinking water [46], and these results are unqualified.
However, the leaching concentration of harmful elements in the three CSMs-25 meets the
WHO requirements for safe drinking water [46]. As such, the leaching concentration of Na+

in CSM2 is lower than that of other CSMs when the mass ratio of Ca/(Si + Al) is 0.81. The
leaching concentrations of Na, As, Cd, and Hg in CSM2-25 are 82.6927 mg/L, 0.0025 mg/L,
0.0005 mg/L, and <0.0001 mg/L. These findings indicate that the Na, As, Cd, and Hg of
CFA, RM, PS, and GS are still consolidated by CSM2 at 25 freeze–thaw cycles. The reason
for this phenomenon is that the consolidation capacity of CSM2 is optimal based on the
synergy of CFA, BFS, RM, and PS during 25 freeze–thaw cycles. Thus, CSM2 is a green
cementitious material with long-term frost resistance.

Table 6. Leaching results of heavy metals (mg/L).

Sample (mg/L) Na As Cd Hg

CFA 5.2753 0.0441 0.0015 <0.0001
RM 685.6372 0.0491 0.0016 0.0022
PS 12.5648 0.0007 <0.0001 <0.0001
GS 37.3006 0.0046 0.0005 <0.0001

CSM1-25 96.3796 0.0025 0.0003 <0.0001
CSM2-25 82.6927 0.0025 0.0005 <0.0001
CSM3-25 105.5107 0.0012 0.0007 <0.0001

WHO drinking water standard [46] ≤200.0000 ≤0.0100 ≤0.0030 ≤0.0010

4. Conclusions

In this work, the strength loss, mass loss, and frost resistance mechanism of circulat-
ing fluidized bed fly ash (CFA)-based multisolid waste cementitious material (CSM) are
discussed. The major conclusions are as follows.

(1) The strength loss, mass loss, and strength of CSM2 after 25 freeze–thaw cycles (CSM2-
25) are 2.35%, 0.36%, and 49.95 MPa, respectively, which meets the performance
requirements of fly ash Portland cement (42.5#). The frost resistance of CSM2 is
excellent based on synergy of CFA, BFS, RM, and PS.

(2) The thermogravimetric loss and polymerization degree of hydration products in
CSM2-25 are 12.82 wt.% and 50.65%, respectively, which are higher than those of other
CSMs. The reason is that the amount of hydration products (C-S-H gel, C/N-A-S-H
gel, and ettringite) in CSM2 is the maximum during the freeze–thaw cycle.

(3) The interface between paste and aggregate, micromorphology, and pore structure of
CSM2 are the densest based on the degree of high polymerization. These characteristics
are beneficial to the stable development of long-term frost resistance in CSM2.

(4) The leaching concentrations of Na, As, Cd, and Hg in CSM2-25 are 82.6927 mg/L,
0.0025 mg/L, 0.0005 mg/L, and <0.0001 mg/L, respectively, during the action of
25 freeze–thaw cycles, which still meet the WHO standard of drinking water. Therefore,
CSM2 is a green cementitious material with long-term frost resistance.
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