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Calculation details 

We carried out our calculations in Vienna Ab initio Simulation 

Package (VASP), in which the Generalized Gradient Approximation (GGA) 

and Perdew - Burke - Ernzerhof (PBE) functional was adopted to 

exchange-correlation approximation. The kinetic energy cut-off for plane-
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wave basis was set as 500 eV, the convergence criteria for total energy and 

ion were set as 1.0 × 7 eV and -0.005 eV, respectively. The k-mesh of 20 

× 20 × 1 was adopted in self-consistent calculation, and the k-points path 

in first Brillouin region for band structure and phonon dispersion was set 

as Γ - X - S - Y - Γ, as shown in Figure 1(e). Also, we selected 4 × 5 × 1 

supercell (160 atoms) to calculate the phonon dispersion and lattice thermal 

conductivity with 4 × 4 × 1 q- points mesh.  

Carrier mobility  

The carrier mobility was first calculated by the method of deformation 

potential theory (DPT) proposed by Bardeen and Shockley, which can be 

expressed as:  𝜇 = ℏ∗ ∗( )                     (S1) 

Where 𝜇 , ℏ, 𝑘 , and 𝑇 are in-plane mobility, the reduced Planck 

constant, Boltzmann constant, and temperature. 𝑚∗ can be obtained by 

using the second derivative of the energy near the VBM and CBM with 

respect to the wave vector, i.e, 𝑚∗ = ℏ /( ) , here 𝐸  and 𝑘  are the 

energy and wave vector, respectively, and 𝑚∗ is the geometric average of 

the effective mass along the a and b directions, i.e, 𝑚∗ = 𝑚∗𝑚∗ .  

And then, we adopted the acoustic phonon-limited method (APM) 

proposed by Lang et al. in 2016, which can be applied to anisotropic 2D 

materials, and its calculation methods are as follows:  
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𝜇 = ℏ( ) ( ) √√ ×         (S2) 

𝐴 = 𝐸 + (∆ ) , 𝐵 = 𝐸 ∆𝐸                          (S3) 𝐸 = , ∆𝐸 =                           (S4) 𝐶̅ = , ∆𝐶 =                            (S5) 𝐼 = ̅ (∆ ) , 𝐽 = ̅∆ ̅ − ̅ (∆ )                    (S6) 

 
Table S1 The total energies, and cleavage energies (Ef) for the monolayers.  

Monolayers Bulk (eV) Mono (eV) S (Å2)  a (Å2)  b (Å2)  Ef (J/m2) 
CuSbS2 -289.32 -143.64 22.74 6.04 3.77 0.72 
CuSbSe2 -371.53 -184.69 25.20 6.34 3.97 0.68 
CuBiS2 -453.71 -225.46 23.98 6.18 3.88 0.93 
CuBiSe2 -536.26 -266.74 26.31 6.47 4.07 0.85 

 

 
Figure S1 The Electron Localization Functions (ELFs) for monolayer (a) CuSbS2, (b) CuSbSe2, (c) 
CuBiS2, and (d) CuBiSe2.  
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Figure S2 The energy variations as well as the top/side view of the snapshots from the ab initio 
molecules dynamics simulation for the monolayer (a) CuSbS2, (b) CuSbSe2, (c) CuBiS2, and (d) 
CuBiSe2 at 500 K.  
 
Table S2 Bader charge analysis results for the monolayers. 

Monolayers Cu (e) Sb/Bi (e) S/Se (e) 
CuSbS2 0.49 0.99 0.74 
CuSbSe2 0.37 0.76 0.57 
CuBiS2 0.48 0.98 0.73 
CuBiSe2 0.36 0.79 0.56 

 

 
Figure S3 The band structures at PBE functional without (black line) and with SOC (red line) for 

monolayer (a) CuSbS2, (b) CuSbSe2, (c) CuBiS2, and (d) CuBiSe2.  
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Figure S4 The partial density of states of monolayer (a) CuSbS2, (b) CuSbSe2, (c) CuBiS2, and (d) 
CuBiSe2.  

 

 
Figure S5 (a, d, g, j) Total energy difference between the unstrained and strained CuMN2 (M = Sb, 
Bi; N = S, Se) monolayer along the a and b directions; (b, e, h, k) Energy shift of VBM and CBM 
for the monolayers with respect to the lattice dilation and compression along a direction; (c, f, i, l) 
Energy shift of VBM and CBM for the monolayers with respect to the lattice dilation and 
compression along the b direction. These results are calculated by GGA+PBE functional without 
SOC.  
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Table S3 The effective mass (m*/m0), elastic modulus (C2D/N·m-1), deformation 
potential constant (El/eV), electron (μe /cm2·V-1·s-1) and hole mobility (μh /cm2·V-1·s-1), 
and relaxation time (τ /fs) of monolayers at PBE functional without SOC.  

Monolayers Direction Type m* C2D El 
DPT  APM 

μ  μ τ 

CuSbS2  a-axis electron 2.12  61.64 1.35  477.09   169.72  204.64  

  hole 0.83   0.82  3175.85   566.57  268.12  

 b-axis electron 0.24  34.38 3.26  403.56   850.67  115.99  

  hole 0.66   3.22  145.41   349.35  130.61  

CuSbSe2  a-axis electron 1.68  51.83 1.80  310.01   407.39  389.20  

  hole 0.69   0.35  19458.67   1452.69  567.04  

 b-axis electron 0.26  26.31 1.20  2329.38   2688.94  390.42  

  hole 0.66   3.16  125.11   497.50  188.05  

CuBiS2  a-axis electron 2.01  55.59 2.66  101.42   90.99  103.93  

  hole 0.93   0.64  5209.96   638.95  338.54  

 b-axis electron 0.34  46.17 2.55  546.82   478.59  91.63  

  hole 0.38   3.17  430.71   736.19  159.72  

CuBiSe2  a-axis electron 0.76  47.03 2.70  335.64   449.27  194.25  

  hole 0.77   0.75  4119.16   764.24  336.58  

 b-axis electron 0.38  28.09 1.94  772.63   911.09  198.00  

  hole 0.40   3.28  247.06   713.95  163.73  
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Figure S6 (a, d, g, j) Total energy difference between the unstrained and strained CuMN2 (M = Sb, 
Bi; N = S, Se) monolayer along the a and b directions; (b, e, h, k) Energy shift of VBM and CBM 
for the monolayers with respect to the lattice dilation and compression along a direction; (c, f, i, l) 
Energy shift of VBM and CBM for the monolayers with respect to the lattice dilation and 
compression along the b direction. These results are calculated by GGA+PBE functional with SOC.  
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Figure S7 The band structures at GGA+PBE functional and MLWFs calculated by Wannnier90 
code. The close coincidence of two curves suggests that the Boltzmann electron transport equation 
solved by wannier90 code is accurate and reliable. 
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Figure S8 Electron transport properties of 2D CuMN2 (M = Sb, Bi; N = S, Se). (a, e, i, m) seebeck 
coefficients, (b, f, j, n) electrical conductivities, (c, g, k, o) electron thermal conductivities and (d, 
h, i, p) Power factors along a- (black line) and b- directions (red line) without SOC functional.  

 

 
Figure S9 ZT values of the monolayer (a) CuSbS2, (b) CuSbSe2, (c) CuBiS2, and (d) CuBiSe2 
without SOC functional.  
 


