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Abstract: The paper presents the finite element modeling of the dynamic properties of a delta
robot attached to a steel frame. A distinguishing feature of the proposed modeling method is the
application of the Guyan reduction method in modeling of frame foundations. The frame in question
was analyzed in two variants: (i) without attached robot and (ii) with attached robot. Based on the
established model, the dynamic properties (i.e., natural frequencies, mode shapes, and frequency
response functions) of the frame in the two variants were analyzed. The obtained results were then
experimentally verified and validated. It was found that the developed model showed an average
relative error for natural frequencies of 4.3% in the case of the frame and 5.6% in the case of the frame
with the robot. The paper demonstrated the validity of the proposed model, allowing accurate and
fast determination of robotic system dynamic properties.
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1. Introduction

Parallel delta robots have been widely used in various industries, especially in pick-
and-place applications [1], which rely on the cyclical movement between defined posi-
tions [2]. To achieve high efficiency, the cycle times are minimized, which in turn causes the
appearance of substantial dynamic loads [3]. Those time-varying loads frequently cause
vibrations that adversely affect the accuracy and repeatability of the robot’s positioning [4].
The minimization of those vibrations is most often performed by a proper robot design [5]
or by the optimization of the robot’s trajectory [6]. However, a reliable method for mod-
eling dynamic properties is needed to properly design a robot structure or to perform its
trajectory optimization [7].

Kermanian et al. [8] developed formulations for the dynamic analysis of parallel robot
considering its links flexibility. These formulations were based on: (i) the co-rotational
finite element method (CRFEM) and (ii) rigid finite element method (RFEM). The first
method involved using CRFEM to describe the deformation of each element directly in
its co-rotated frame without the need of expressing any intricate kinematic relations. The
second one, based on the RFEM, made it possible to simplify the form and derivation of
kinetic energy of a flexible link. The proposed methods were used to study the dynamics
of a circular and non-circular pick and place trajectory. The comparison of the obtained
results showed that between the two methods for the same number of nodes the results
differed in the worst case by 6%. However, in terms of computational costs, the RFEM
based method always reduces the simulation time by 31–46%. It was therefore concluded
that presented methods allow for efficient analysis of dynamic properties of a parallel robot
with the geometrical nonlinearities that occur to flexible links due to the large deformation.

Zhang et al. [9] presented the finite element analysis of the dynamic performance of a
modular reconfigurable parallel robot. To assess the dynamic properties of the robot, the
modal analysis was conducted, and the frequency response functions were determined
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for four different configurations. Based on the resonance frequencies, amplitudes, and the
main vibration direction of each configuration the weak links of the robot system were
found and the robot performance under the action of external forces was assessed. In
conclusion, a theoretical basis for the design of the robot system with higher precision
was developed.

Righettini et al. [10] proposed a new method for determining the mode shapes of
the linear delta robot [11]. The presented approach consisted in building a model that
combines the properties of a delta robot and a belt transmission of a prismatic joint. The
established model consisted of a rigid part representing the inertia of the delta robot and
a configuration-dependent lumped stiffness element representing the belt transmissions.
The model-based modal analysis conducted showed that the system natural frequencies
and the directions of the end-effector modal displacements strongly depend on its position
in the working space. The proposed approach constitutes a useful support for the system
design in evaluating the end-effector vibration direction for a given vibration mode.

Shehata et al. [12] presented a procedure for parameters estimation in multibody
system model of the delta robot. The model was based on Lagrange formulation and elabo-
rated using Matlab Simscape Toolbox. The identification module was applied to estimate
parameters of the model by comparing the simulated model output with experimental
motor measurements. The developed model was used to predict end-effector displacement,
angular velocities of the motors and the reaction forces and torques acting on the base
frame due to joint rotation. It was concluded that the developed procedure can be used to
identify and optimize the structure of the delta robot mechanism.

Yang et al. [13] proposed the modification of a delta structure to improve the loading
stiffness of the robot over the entire workspace. The modification consisted in applying a
non-spherical ball-socket joint. An analytical model that included a link flexibility and a
joint clearance was derived. Then, the loading deflection as a function of these parameters
was calculated. The developed model provided the necessary data to assess the non-
spherical ball-socket joints’ influence on the total variation of the loading deflection. The
experimental results show that the non-spherical ball-socket joint design reduces the total
variation in the loading deflection of the end effector by up to 81% compared to that of a
traditional robot with spherical ball–socket joints when performing positioning over the
entire workspace at the assigned height. The proposed modeling methodology is to be
used in the design leading to the improvement of positioning accuracy.

The latest research deals with a very wide spectrum of problems related to the dynam-
ics of parallel kinematic robots. However, the literature barely mentions the experimental
verification of natural frequencies, mode shapes, and frequency response functions to
describe its dynamic properties. Moreover, little work is devoted to the analysis of the
operation of the entire base-robot-object system. An industrial robot placed on a specially
designed base, together with the load to be carried, forms a BRO system with specific
dynamic characteristics. The design of the base is usually left to the end user of the robot
themselves. The dynamic properties of the base largely determine the dynamics of the
entire BRO system which was experimentally confirmed by Cheng and Li [14].

The aim of this paper is to develop an effective method of modeling the dynamic
properties of a robotic system, especially concerning the dynamic properties of a frame.
The developed methodology may serve as a tool for designing robot frames focused on
minimizing the robot’s vibrations by changing the frame structure. The main novelty of
the presented paper is the use of Guyan reduction for modeling the foundation of the robot
frame. The distinguishing feature of the article is also carrying out a full two-stage (for
the frame itself and for the frame with the robot) verification of the dynamic properties of
the structure.

The paper is structured as follows: Section 2 presents the research object, a delta robot
attached to a steel frame. This section also contains the finite element model building
procedure and experimental test stand. In Section 3, the obtained results based on a model
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and experiment are compared. This Section also contains an appropriate discussion. A
summary and key conclusions are provided in Section 4.

2. Materials and Methods
2.1. Analyzed Object

The analyzed object is a FANUC M-3iA/6A delta robot (FANUC Corporation, Ya-
manashi, Japan) intended for picking, packing, and assembly operations attached to a steel
frame. The mass of a robot was 175 kg.

The delta robot under analysis is a five degrees of freedom space mechanism with
three rotating legs and an end-effector with two swivel axes. Each leg is connected to the
fixed platform and the movable platform by means of a set of spherical joints. The motion
of the robot is controlled by three motors mounted on the fixed base that actuate the three
legs to realize the movement of the moving platform.

The frame to which the robot is attached is made of the steel profiles: (i) vertical—
square hollow section with dimensions 150 × 150 × 8 mm, (ii) horizontal—square hollow
section with dimensions 120 × 120 × 8 mm, (iii) braces—steel tubes of diameter 108 mm
and wall thickness 5 mm and (iv) ring supports—square hollow section with dimensions
100 × 100 × 5 mm. The steel ring to which the robot is mounted is made of 30 mm thick
sheet metal. The frame itself is attached to the floor with the use of special anchors. Such
connection ensures that the position of the frame remains unchanged during the operation
of the robot. The height of the frame is determined by the range of the robot and the fact
that the robot is ultimately designed to perform pick-and-place operations between two
belt conveyors placed under it. The frame was designed based on the criterion that the
deflection of the frame with the attached robot should be less than 0.5 mm. As a result,
a generalized stiffness was obtained, determined from [15] in the X and Y directions at
7.14 × 103 N/mm and 17.2 × 103 N/mm in the Z direction. The weight of the frame was
828 kg. The structure of a steel frame with the delta robot attached is depicted in Figure 1.
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Figure 1. Analyzed frame (a) dimensions and (b) robot assembly.

2.2. Finite Element Model

The finite element models of the objects in question were built using the Midas
NFX 2018 R1 preprocessor [16] (Midas Information Technology Co., Ltd., Seongnam,
Korea). The discretization of the frame and main body of the delta robot was carried
out according to the methodology presented in [17]. A structured mesh built from eight-
node, cubic, isoparametric finite CHEXA elements and six-node, five-sided, isoparametric
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CPENTA elements was used. The utilized finite elements were characterized by linear
shape functions and three translational degrees of freedom in each node.

The delta robot legs were discretized using the one-dimensional, two-nodded beam
elements based on the classical beam theory (CBAR). The beam elements were characterized
by a linear shape function and six degrees of freedom in each node (three translational and
three rotational).

The frame foundation was modelled by using the structured mesh composed of the
CHEXA elements. Since the foundation is built with different materials, the mesh sets
representing different material domains were connected using the nodes coincidence.

The linear–elastic isotropic material model (MAT1) was used in finite element for-
mulation. The material properties used were presented in Table 1, (nominal values were
used in finite element modeling), and the detailed procedure for their determination can be
found in [18].

Table 1. Properties of materials included in the analyzed structure.

Property Steel Gray Cast Iron Concrete Resin

Modulus of elasticity, E 210 ± 5 GPa 100 ± 3 GPa 18.3 ± 0.2 GPa 7.1 ± 0.05 GPa
Poisson’s ratio, υ 0.28 ± 0.03 0.26 ± 0.03 0.15 ± 0.02 0.3 ± 0.05

Density, ρ 7812 ± 35 kg/m3 6958 ± 30 kg/m3 2400 ± 6 kg/m3 2200 ± 6 kg/m3

Loss factor, η 0.001 0.003 0.04 0.01

To describe the damping properties of the modelled frame a complex stiffness model
was used, according to which the damping matrix C can be expressed as [19]:

C = iηK, (1)

where: K—model stiffness matrix; i—imaginary unit, η —loss factor.
To sum up, the developed frame model consisted of 80,274 degrees of freedom

and 21,886 finite elements and for the frame with robot 164,166 degrees of freedom
(80,274 degrees of freedom for the frame and 83,892 for the robot) and 64,334 finite el-
ements (21,886 finite elements for the frame and 22,156 for the robot). The discrete models
for the frame and the frame with the robot are shown in Figure 2.
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The frame foundation model was reduced to a set of springs, to which the frame
was then attached. The springs preserved the exact stiffness of a foundation model. The
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purpose of applied model reduction was to find the m degrees of freedom (DOFs) system
preserving the dynamic characteristics of the full model with n DOFs, in which m << n.
The commonly used approach is to approximate the state vector q by means of trans-
formation q = TqR, where the transformation matrix TεRn×m and degrees of freedom
vector qRεRm×1:

MR
..
qR + KRqR = fR, (2)

where the reduced mass MR and stiffness KR matrices are:

MR = TTMT, (3)

KR = TTKT. (4)

where: K—full model stiffness matrix; M¯full model mass matrix.
To select the suitable reduction method a sensitivity analysis was performed [20]. It

included the determination of the significance of the impact of changing the parameters
describing the foundation model on the dynamic properties of the considered structures.
Consequently, it was found that the significant parameters are the moduli of elasticity and
the loss coefficients for concrete and resin. Thus, the Poisson’s ratios and the densities
have a negligible effect on the dynamic properties of the analyzed frame. With the above
in mind, it was stated that the use of Guyan reduction is a reasonable solution due to the
precise reduction in the stiffness of the structure [21,22].

The applied Guyan reduction [23] consists in reducing the degrees of freedom of the
finite element model to degrees of freedom located on the border of the model (master
DOFs). The reduction was made by removing slave degrees (indicated with subscript s) of
freedom defined as being outside the model boundary while master DOFs (indicated with
subscript m) retain the stiffness and inertia of the model. Partitioning of the state vector in
the master and slave DOFs allows divided system matrices into submatrices as follows:[

Mmm Mms
Msm Mss

][ ..
qm..
qs

]
+

[
Kmm Kms
Ksm Kss

][
qm
qs

]
=

[
fm
fs

]
, (5)

where:
..
qm, qm—master degrees of freedom—acceleration, and displacement respectively;

..
qs, qs—slave degrees of freedom—acceleration, and displacement respectively; Kmm, Kms,
Ksm, Kss—sub-matrices representing the associated degrees of freedom stiffness; Mmm, Mms,
Msm, Mss—sub-matrices representing the associated degrees of freedom stiffness.

Solving the second row in Equation (5) for qs results in:

qs = −K−1
ss [Msm

..
qm + Mss

..
qs + Ksmqm], (6)

assuming that there are no loads acting on slave degrees of freedom (fs = 0) and neglecting
the inertia terms results in the transformation of the state vector for Guyan reduction:[

qm
qs

]
=

[
I

−K−1
ss Ksm

]
qm = TGqm, (7)

where: TG—the Guyan transformation matrix; I—identity matrix.
In the analyzed case, the reduction of the foundation model resulted in a decreasing

in the number of degrees of freedom from 6468 to 120 (for a single foundation model). This
is a 98% reduction of the foundation model dimensionality. Moreover, it should be noted
that the mean difference between the full model and the reduced model in both analyzed
variants was less than 1%. Therefore, it can be concluded that the applied reduction has a
negligible impact on the accuracy of the model.

Next, a dynamic properties analysis was performed, i.e., the natural frequencies
and mode shapes were determined as well as the frequency response functions. The
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determination of modal model (natural frequencies and mode shapes) was carried out by
solving the eigenproblem formulated as follows:(

K − fn
2M

)
Φn = 0 (8)

where: M—mass matrix of the model; K—stiffness matrix of the model; fn—n-th value of
natural frequency, Φn—n-th natural vector. The calculations were conducted using Nastran
Solver (SOL103).

The frequency response functions were determined using a direct frequency response
method. In general, the procedure starts with the equations of motion and assumes an
oscillating load:

M
..
q(t) + C

.
q(t) + Kq(t) = f(ω)eiωt, (9)

where: ω—exciting frequency,
..
q,

.
q, q—vectors of degrees of freedom—acceleration, velocity,

and displacement respectively, f—external force vector.
Then proposing the solution q(t) is also in the form of an oscillating function:

q(t) = y(ω)eiωt, (10)

where: y(ω)—complex displacement vector. The velocity
.
q(t) and acceleration

..
q(t) is

determined by taking the derivative:

.
q(t) = iωy(ω)eiωt (11)

..
q(t) = −ω2y(ω)eiωt. (12)

Substituting Equations (10) and (12) into Equation (9):

− ω2My(ω)eiωt + iωCy(ω)eiωt + Ky(ω)eiωt = f(ω)eiωt, (13)

and dividing Equation (13) by eiωt, the following equilibrium is obtained:

(−ω2M+iωC + K) y(ω)= f(ω). (14)

On this basis, receptance y(ω), mobility
.
y(ω), and accelerance

..
y(ω). functions

are determined:
y(ω) = f(ω)

(
−ω2M + iωC + K

)−1
, (15)

.
y(ω)= ω f(ω)

(
−ω2M + iωC + K

)−1
, (16)

..
y(ω)= −ω2f(ω)

(
−ω2M + iωC + K

)−1
. (17)

In this case the calculations were carried out using a Nastran Solver (SOL108).

2.3. Dynamic Tests

To verify the established finite element models the experimental tests were carried
out as an impulse test. The structure was excited in three perpendicular directions us-
ing a Kistler 9728A20000 modal hammer with 1.5 kg head mass (Kistler Instrumente
GmbH, Sindelfingen, Germany). The responses were measured using the PCB triaxial
ICP accelerometers, model 356A01 (PCB Piezotronics, Depew, New York, NY, USA). The
arrangement of measuring points was depicted in Figure 3. In the case of the frame, the
measurement included 233 points (marked in emerald) in the case of the frame with the
robot 279 points (233 points for the frame and 46 points for the robot—marked in light
green). The measurements of the responses of the analyzed structures were carried out
using partial experiments involving measurements at 8 points simultaneously (measure-
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ments were carried out in this way due to the limited number of measurement channels of
the frontend used).
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Data acquisition was conducted using the Scadas Mobile Vibco and Testlab 2019.1
software (Siemens AG, Munich, Germany). The estimation of frequency response function
was performed with the use of the H1 estimator. Detailed information related to the
processing of the recorded signals were as follows: sampling rate 4096 Hz, frequency
resolution 0.5 Hz, number of averages 10.

As a result of the impulse test conducted, 699 frequency response functions for frame
and 837 for frame with a robot were determined. The parameters of the modal models were
estimated using the Polymax algorithm [24,25]. The obtained modal models were validated
using the modal assurance criterion (MAC), by eliminating interdependent vectors in the
mode shape (the limit value of 10% was assumed) [26,27].

3. Results and Discussion

A comparison of the natural frequencies determined in the finite element model analy-
sis, with the results of the experimental studies, is presented in Table 2. The agreement of
the natural frequencies in is presented as the relative error δ, defined in the following way:

δ =

∣∣∣∣ fexp − fFEM

fexp

∣∣∣∣·100%, (18)

where: fexp—experimentally determined natural frequency; fFEM—finite element model
natural frequency.

The comparison of the calculated and experimentally verified mode shapes is pre-
sented in Figure 4.

When analyzing the obtained results, it can be noticed that a high compliance of the
natural frequency values was obtained, in the case of the frame the maximum relative error
did not exceed 10.0%, 4.3% on average; in the case of a frame with a robot, the maximum
error did not exceed 19.0%, 5.6% on average. In both analyzed cases, full compliance of the
mode shapes in the analyzed frequency range was achieved.

The largest discrepancies in the natural frequencies can be observed in case of modes
related with the frame vibrations in the Z direction, i.e., the fifth, sixth, and seventh mode
for the frame (with relative errors 7.1%, 5.8%, and 10%, respectively) and the fifth and sixth
mode for the frame with the robot (with relative errors 19.0% and 10.4%, respectively).
However, a more detailed analysis of dynamic properties, concerning receptance, showed
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that in Z directions resonance amplitudes are substantially lower than in X and Y directions.
Figures 5–7 show the graphs of the receptance function for the analyzed variants, where
the abovementioned discrepancies in Z direction are emphasized.

Table 2. Experimental verification of the natural frequencies of the frame and the frame with the robot.

Mode
Frame Frame with Robot

Experiment FEM Relative Error, δ Experiment FEM Relative Error, δ

1. 22 Hz 23 Hz 4.5% 17 Hz 18 Hz 5.8%
2. 23 Hz 23 Hz 0.0% 18 Hz 18 Hz 0.0%
3. 32 Hz 31 Hz 3.1% 32 Hz 30 Hz 6.3%
4. 51 Hz 50 Hz 1.9% 33 Hz 32 Hz 3.0%
5. 70 Hz 75 Hz 7.1% 42 Hz 34 Hz 19.0%
6. 86 Hz 81 Hz 5.8% 48 Hz 43 Hz 10.4%
7. 90 Hz 81 Hz 10% 55 Hz 54 Hz 1.8%
8. 93 Hz 91 Hz 2.1% 73 Hz 70 Hz 4.1%
9. 96 Hz 91 Hz 4.2% 81 Hz 81 Hz 0.0%

On average 4.3% On average 5.6%
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When analyzing the accuracy of the mapping of the receptance function, it can be
seen that the models satisfactorily reflect their real counterparts in the qualitative sense.
It is related to the achieved structural compliance of the model, and thus the compliance
of the mode shapes. Moreover, the model is characterized by a satisfactory ability to
reproduce the damping properties of the structure. This is especially evident in the case
of the amplitudes of the receptance functions for resonance frequencies. The quantitative
comparison (in terms of relative differences between the amplitudes of the receptance
function in resonances) shows that the best mapping was obtained for the X direction,
where the relative error values were respectively 17% for the frame and 76% for the frame
with the robot. In case of the Y direction, the relative error for the frame was 26%, and
for the frame with robot it was 181%. The highest average error was obtained for the
Z direction, the average error for the frame was 145%, and for the frame with the robot
was 370%.

Nevertheless, it can be noticed that in the case of the X and Y directions the model
mapping is at a high level, both in terms of the character of receptance as well as the
agreement of amplitudes in resonances.

Analyzing the obtained results, it can be seen that for the frame with the attached robot,
the first two mode shapes tend to vibrate in X and Y directions, respectively. These are
so-called rocking vibrations low-frequency modes, which manifest themselves in significant
amplitudes of the receptance functions. They are particularly important from the point
of view of the proper operation of the robot. To be precise, movements performed by the
robot as part of pick-and-place operations can excite these mode shapes, which in turn will
lead to the movement of robot attachment, causing errors in the robot’s positioning [28].

The third mode shape is characterized by torsional vibrations of the structure around
the Z axis. This mode, like the previous ones, may lead to a reduction in the accuracy
of the robot’s positioning, in particular when the end-effector deviates from the robot’s
vertical axis.

The remaining determined modes are mainly related to the vibrations of the steel rim
in the Z direction and as in the previous analyzed cases, they may affect the accuracy of the
robot’s positioning. However, they are of less importance that first three modes in terms of
receptance amplitudes.
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4. Conclusions

The paper presents the methodology for modeling the dynamic properties of a delta
robot with a steel frame. The developed methodology is based on the finite element
method and the Guyan reduction. The established model was used to determine the
frame dynamic properties understood as values of natural frequencies, mode shapes, and
frequency response functions. The two-stage verification, considering the frame itself and
the frame with the mounted robot, proved the high accuracy of modeling results, when
compared with the experimental test results. The maximum relative error in the case of
the frame did not exceed 10.0%, 4.3% on average; in the case of a frame with a robot,
the maximum error did not exceed 19.0%, 5.6% on average. In both analyzed cases, full
compliance of the mode shapes in the analyzed frequency range was achieved.

Analogous comparison in case of the receptance function in resonances shows that
the best mapping was obtained for the X direction, where the relative error values were
respectively 17% for the frame and 76% for the frame with the robot. In the case of the Y
direction, the relative error for the frame was 26%, and for the frame with a robot, it was
181%. The highest average error was obtained for the Z direction, the average error for the
frame was 145%, and for the frame with the robot, 370%.

The main limitation of the proposed methodology is the poor mapping of the natural
frequencies’ values related to the mode shapes characterized by main movement in the
Z direction. However, due to the low significance of the Z receptance in comparison to
other directions, this limitation should not be treated as eliminating the method from use.
Nevertheless, it should be considered in the future work. The future work will include the
use of a model updating algorithm (including a complex sensitivity analysis) to increase
the accuracy of the model.

The developed methodology will serve as a tool for designing robot frames in further
works. The design will focus on minimizing the robot’s vibrations by changing the frame
structure. It is planning to apply a passive dampers (based, for example, on the use of
a polymer concrete filling of the structure [29]) or active ones in the form of an attached
external actuator system [30].
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18. Dunaj, P.; Berczyński, S.; Chodźko, M.; Niesterowicz, B. Finite Element Modeling of the Dynamic Properties of Composite

Steel–Polymer Concrete Beams. Materials 2020, 13, 1630. [CrossRef] [PubMed]
19. Neumark, S. Concept of Complex Stiffness Applied to Problems of Oscillations with Viscous and Hysteretic Damping; H.M. Stationery

Office: London, UK, 1962.
20. Dunaj, P.; Dolata, M.; Tomaszewski, J.; Majda, P. Static stiffness design of vertical lathe with steel-polymer concrete frame. Int. J.

Adv. Manuf. Technol. 2022, 121, 1149–1160. [CrossRef]
21. Parsa, G.; Sina, K.S. Investigation of the accuracy of different finite element model reduction techniques. Struct. Monit. Maint.

2018, 5, 417–428. [CrossRef]
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