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Abstract: Carbon fiber-reinforced polymer (CFRP) has been widely implemented in electric vehicle
bodies and aircraft fuselage structures. The purpose of CFRP is to reduce the weight and impart
rigidity in the final product. A beam structure is typically used to bear the structural load, and the
rigidity of the beam can be changed by arranging the laminated fibers at different angles. In this
study, a composite I-beam is used as an example in engineering components. Because the theoretical
model of the superimposed composite I-beam is established, the theoretical formula is based on
the theoretical assumptions of the two-dimensional composite beam, and is combined with the
traditional composite plate theory to analyze the maximum bending stress, strain, and deflection.
During the theoretical derivation, it is assumed that the flanges of the I-beams are divided into narrow
and wide flanges. The beams are considered as structures of beams and flatbeds. When a narrow
flange is loaded in the side, the wide flange has no lateral deformation, and the lateral moments are
neglected. Therefore, the accuracy of this formula needs to be verified. The purpose of this study is to
verify the accuracy of theoretical solutions for the deflection and stress analysis of composite beams.
A finite element analysis model is used as the basis for comparing the theoretical solutions. The
results indicate that when the aspect ratio of the beam is >15, the theoretical solution will have better
accuracy. Without the addition of the material, when 0◦ ply is placed on the outermost layer of the
flange of the nonsymmetric beam, the effective rigidity of the beam is increased by 4–5% compared
with the symmetrical beam. The accuracy range of the theoretical solution for the composite beams
can be accurately defined based on the results of this study.

Keywords: CFRP; UAV; laminated composite beam; finite element analysis; effective stiffness

1. Introduction

Isotropic materials are widely used and their theoretical basis, design specifications,
and processing technology have matured. Single and homogeneous material properties
have limited the development of materials. Research on composite materials has been
developed towards a variety of applications; for example, Bistable morphing composites
for energy-harvesting [1]. The composite structure can generate kinetic energy by means of
piezoelectric actuation, thermal actuation, shape memory alloy actuation and magnetostric-
tive actuation. Venkata Siva C. Chillara [2] used shape memory alloys as fiber reinforced
elastomers combined with thermosetting reinforced polymer laminates to make bistable
laminate composites. Applications in biomedical magnesium alloy metal composites are
also often discussed in the field of manufacturing and application [3,4]. Because of the
stability of the magnesium alloy structure, it is often used in the biomedicine, aerospace,
and automobile industries. However, it is a big problem in processing. B. Ratna Sunil [3]
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used the friction stir processing technique to fabricate surface metal matrix composites,
and the properties of magnesium alloy composites are also discussed.

With the advancement of material technology and understanding of anisotropic ma-
terials, the application of high performance composite materials has gradually become
common. Fiber-reinforced polymer composites have replaced traditional metal materials.
Fiber-reinforced epoxy resin composites are also often used in the engineering field. Com-
posite materials use polymer materials as the base material. The methods commonly used
in the processing of materials, such as drilling, cutting or joining, are to make the material
more convenient to use. Ammar H. Elsheikh [5] proposed an optimizer of the parasitism–
predation algorithm (PPA), optimized for drilling the parameters of non-laminated glass
fiber-reinforced epoxy composites (GFREC). In addition, he proposed an estimation method
for the optimization of cutting parameters for basalt fiber-reinforced polymer composites [6].
This estimation model is composed of Long Short-Term Memory (LSTM) and Chimp Op-
timization Algorithm (CHOA). This method can successfully evaluate and optimize the
quality characteristics of laser-cut composites. Ezzat A. Showaib [7] used vibration welding
technology to join GFRP. The effect of fiber orientation on the strength of welded joints was
investigated for the joined materials.

The main reason for this is that composite materials have the advantages of light
weight, high specific strength, and high specific rigidity. Owing to these advantages,
several laminated composite materials have been used in the construction, machinery,
and aerospace industries. However, the mechanical properties of the composite materials,
selection of the materials, and optimal design of the structure are important topics in current
studies. The use of composite materials in aircraft construction began in the 1940s with
glass fiber-reinforced polymer as the backbone. Boron and carbon fibers were developed in
the 1960s, and aramid fibers, developed in the 1970s, have also been successfully used in
aviation structures. Carbon fiber-reinforced polymer (CFRP) has become the backbone of
composite materials owing to its advantages such as low cost and ease of processing. The
F-16 fighter fin outer panel is an example of CFRP application. With the gradual increase in
demand for CFRP applications, the waste of related composite materials has also increased.
It is estimated that the European market will reach 304,000 tons of thermosetting glass
fiber composite waste per year, and the US CFRP waste is estimated to be approaching
2 million tons. Therefore, the treatment mechanism of composite material waste is becoming
an increasingly important issue. Currently, composite materials can be reused by cutting
and crushing waste composite materials. The recycled composite material parts are then
pulverized to form a composite material powder. Thermosetting composite powders are
often found in fillers. For example, thermosetting composite powder is often added to
cement to increase its strength.

Unmanned aerial vehicles (UAVs) are playing an increasingly important role in the
aviation industry. This is particularly true in military applications. CFRP helps fuselage
structures reduce their weight by replacing current aerospace aluminum alloy structures,
which improves the UAV airtime by reducing fuel consumption. Commercially, owing
to the reduced weight of the fuselage structure, they can carry higher-capacity batteries
and heavier loads. UAVs must ensure high-quality flight safety during navigation. This
requires an accurate assessment of the structural integrity of the airframe. To achieve this,
it is necessary to gain insight into the force modes of these advanced composite materials,
as well as to assess the strength of the composite aerostructures. Alvarez-Montoya [8]
proposed the use of optical fiber sensors to obtain the strain signal of a wing composite
structure, which can monitor the health of the structure during flight. Gadomski [9] used
finite element analysis to analyze the stiffness, stress, and vertical displacement distribution
of carbon–epoxide composite beams in a wing and optimize the structure. Numerical scores
are also used for predictions in the analysis of composite wing structures [10]. Alsahlani
proposed the use of a low-order composite structure module to calculate typical wing
structures. Finite-element software was used to verify the results. The results indicated
that the maximum shear stress error was <4%. Galatas [11] combined the advantages of
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fused deposition modelling to rapidly produce complex shapes with composite sandwich
structures. The mechanical properties of CFRP were investigated using an artificial neural
network, which was used to improve the structural strength of the fixture of a quadrotor
UAV, excluding the beam structure. Zhang [12] proposed an optimal design method to
evaluate the stress and deflection of sandwich box girders composed of carbon fiber and
polymethacryimide foam. This optimized method can be used to design lightweight spars
for solar-powered UAVs.

Composite materials are used as structural components in several building materials.
Abdulhameed [13–15] reported techniques for fabricating short-span beams from CFRP
in the form of wedge-shaped concrete segments and laminates. This composite beam is
primarily used for large-scale segmental beams in the construction of bridges. In addition,
a new off-site and self-form segmental concrete masonry arch fabrication technique was
proposed. Wedge-shaped plain concrete voussoirs and CFRP composites are used to
manufacture arches. The CFRP improved the voussoir sliding load by 107%.

Beams are important structural components. The basic assumption of the theoretical
analysis is that for a slender isotropic beam, after the cantilever beam or simple supported
beam is subjected to bending deformation, the section is still perpendicular to the neutral
plane without deformation, and the deformation caused by shear force is ignored. The
deformation and displacement of warping, twisting, and extension caused by beam stress
are ignored. These assumptions were also used for the analysis of heterogeneous beams.
For the analysis of composite beams, Bank [16–18] modified the beam theory. The beam
deformation is based on the assumptions of the Timoshenko [19] and Euler–Bernoulli beam
theories, considering heterogeneity. The beam was subjected to three types of deformation:
(1) deflection caused by bending when subjected to a transverse load or pure bending load;
(2) rotation caused by twisting; and (3) displacement caused by axial extension. Therefore,
the prediction of the deformation of the composite beam was more accurate. Yang [20]
used the plate theory to derive the effect of shear deformation. Chandra [21] conducted
theoretical and experimental static analyses of a laminated I-type composite beam. Based
on the Vlasov type linear theory [22], the beam was subjected to tip bending and torsional
load, and considering the influence of the beam’s lateral shear deformation, the deformation
of the beam was predicted and compared with the experimental data.

Similar studies were conducted by Maddur and Chaturvedi. The Vlasov type [22] was
used to modify the first-order shear deformation theory to analyze the dynamic response
of an open-section composite beam. In addition, other numerical methods have been used
to solve the approximate values. Minguet and Dugundji et al. used a finite difference
solution in conjunction with experiments to analyze the static behavior of composite
blades when they are subjected to significant deflections. According to Rehfield and
Atilgan [23], the assumption for thin-walled beams is that only the deformation caused
by the lateral shear force is considered in the buckling analysis of open-section composite
materials. Stemple [24] used the finite element method (FEM) to analyze the effect of
warping on composite beams. Gordaninejad [25] used a combination of two different
materials, graphite/epoxy and aramid/rubber, to analyze the displacement of the neutral
plane of the beam after bending, considering the deformation caused by the shear force.

In addition to the traditional composite theoretical analysis, Madenci [26,27] used
mixed FEM equations and proposed a higher-order shear deformation theory to analyze
the shear stress of the laminated composite. A bending analysis of the functionally graded
material beams was also performed. This was combined with an artificial neural network
algorithm to estimate the maximum displacement of a functionally graded material beam.
Reddy [28] established a variable displacement FEM model for equivalent single-layer and
layerwise laminate theories. This analytical model can be used to calculate the stresses in
local areas of laminated composite structures.

Previous studies have mainly focused on discussing the external forces of composite
beams, such as bending, torsion, extension loads, and beam deformation (warping, deflec-
tion, torsion, and extension) predictions. Theories were proposed and experiments were
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conducted to verify this. Hence, under the basic assumptions of the beam and laminated
plate theories [29,30], both short beams (L/h < 10) and long beams (L/h > 10) ignore
shear, torsion, warping, bending, and elongation. The aim was to simplify the formula
and calculation. Several simplifying assumptions were made during the derivation of the
mathematical model; however, the accuracy of the derivation formula was not discussed.
Therefore, the main purpose of this study is to verify the accuracy of the formula through
FEM analysis, with the aim of providing a reference for future designers.

2. Theory of Composite Beams
2.1. Symmetrical Laminated Composite I-Beam

The laminated I-beam shown in Figure 1a can be divided into a combination of three
laminated plates of the web and upper and lower flanges. The assumptions of the composite
beam based on the Euler–Bernoulli beam theory are as follows. (1) The deflection of the
beam is smaller than the length of the beam (Figure 1b). Therefore, the deformed angles (θ)
of the beam are small and the square of the slope is significantly smaller and can be ignored.
(2) The section originally perpendicular to the central axis of the beam remained flat after
bending, and was perpendicular to the central axis after bending. The displacement field
can be expressed as [22]:

u1(x, z) = u − z
dw
dx

, u1 = 0, u3 = w(x)

During analysis, the flange was divided into two hypotheses: narrow and wide flanges.
The assumption of a narrow flange is that the beam width is approximately equal to the
beam height; therefore, it can be considered as a beam. When the beam is subjected to a
lateral load, the lateral strain is generated, and the lateral moment can be ignored. The
assumption of a wide flange is that the beam width is significantly larger than the beam
height. The beam could be regarded as a thin plate. Because of the lateral load, there is a
lateral moment. In-plane stress analysis of the web and flange is discussed in detail below.

The laminations in the web are parallel to the z-axis (Figure 2). The direction of the
applied external force is not perpendicular to the laminations in the web; therefore, it is
unrelated to the D matrix. From the stress–strain relations in Equation (1), the relationship
between the normal stress and strain at the neutral axis is given by Equation (2):

ε0
x

ε0
y

γ0
xy

 =
[

A−1
]

Nx
0
0

 (1)

ε0
x = A−1

11(web)Nx (2)

The axial strain of the web on the neutral axis is then:

ε0
x = zκx (3)

From Equations (2) and (3), the normal stress on the web is:

Nx(web) =

 1
A−1

11(web)

zκx (4)

The relation between the moment and stress on the web can be obtained from the
neutral axis of the I-beam as the origin and integral of the moment arm. The moment on
the web can be written as:

Mweb =
∫ h

2

−h
2

Nxzdz =
∫ h

2

−h
2

 1
A−1

11(web)

z2κxdz =
h3κx

12A−1
11(web)

(5)
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• Narrow flange

Under a transverse load, the transverse resultant force, Ny = 0, and bending moments,
My = 0 and Mxy = 0, the relation between the strain, resultant force, curvature, and the
resultant moment of the narrow-flange I-beam are as follows:

ε0
x

ε0
y

γ0
xy

 =
[

A−1
]

Nx
0
0

,


κx
κy
κxy

 =
[

D−1
]

Mx
0
0

 (6)

Equation (6) may be simplified to Equation (7):

Nx =
1

A−1
11, f lange

ε0
x =

Z1

A−1
11, f lange

κx, and Mx =
1

D−1
11, f lange

κx (7)
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Figure 1. Laminated composite I-beam. (a) Cross section of laminated composite I-beam, and (b)
I-beam theory assumptions [22].
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The moment of the flange is calculated from Equation (7) as follows:

M f lange = b f (NxZ1 + Mx) = b f

(
Z2

1

A−1
11, f lange

+
1

D−1
11, f lange

)
κx (8)

The moment of the beam is the sum of the flange and web moments:

Mbeam = Mweb + 2M f lange = EIe f f κx (9)

Expanding Equation (9), the effective stiffness of the beam can be obtained:

EIe f f =
h3

12A−1
11,web

+ 2b f

(
Z2

1

A−1
11, f lange

+
1

D−1
11, f lange

)
(10)

The beam strain in the x direction is:

εx = zκx (11)
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The relations between strain and curvature give:
εx
εy

γxy

 =


ε0

x
ε0

y
γ0

xy

+ ξ


κx
κy
κxy

 (12)

From Equations (6) and (12), the strain in each ply of the flange is expressed as:


εx
εy

γxy

 =


Z1 + ξ

A−1
21, f

A−1
11, f

Z1 + ξ
D−1

21, f

D−1
11, f

A−1
31, f

A−1
11, f

Z1 + ξ
D−1

31, f

D−1
11, f

κx (13)
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The stress of each ply of the flange can be obtained from the stress–strain relationship
shown in Equation (14): 

σx
σy
τxy

 =

Q11 Q12 Q16
Q21 Q22 Q26
Q61 Q62 Q66


εx
εy

γxy

 (14)

• Wide flange

Under the assumption of a wide flange, the transverse resultant force and transverse
curvature are zero, and the relationship between the strain, resultant force and curvature,
and resultant moment of the I-beam with a wide flange becomes:

ε0
x

ε0
y

ε0
xy

 =
[

A−1
]

Nx
0
0

,


Mx
My
Mxy

 = [D]


κx
0
0

 (15)

Simplifying Equation (15), the resultant force and moment can be written as:

Nx =
1

A−1
11, f lange

ε0
x =

Z1

A−1
11, f lange

κx, and Mx = D11, f langeκx (16)

The moment of the flange is then calculated from Equation (16) as follows:

M f lange = b f (NxZ1 + Mx) = b f

(
Z2

1

A−1
11, f lange

+ D11, f lange

)
κx (17)

The effective stiffness of wide flange beams is derived from Equation (9):

EIe f f =
h3

12A−1
11,web

+ 2b f

(
Z2

1

A−1
11, f lange

+ D11, f lange

)
(18)

The strain of the beam in the x direction is shown in Equation (11).
From Equations (12) and (15), the strain of each ply of the flange is deduced as follows:


εx
εy

γxy

 =


Z1 + ξ
A−1

21
A−1

11
Z1

A−1
31

A−1
11

Z1

κx (19)

The stress derivation is as shown in Equation (14).

2.2. Nonsymmetrical Laminated Composite I-Beam

• Narrow flange

There is a B matrix in the nonsymmetric matrix; therefore, the F matrix is used to
represent the inverse matrix of the ABD matrix:

[F] ≡
[

A B
B D

]−1

(20)
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Assuming that only the axial resultant force Nx and the resultant bending moment Mx
exist, the relations among the strain, curvature, resultant force, and resultant moment of
the nonsymmetric narrow flange I-beam are as follows:

ε0
x

ε0
y

γ0
xy

κx
κy
κxy


=



F11 F12 F12 F14 F15 F16
F21 F22 F23 F24 F25 F26
F31 F32 F33 F34 F35 F36
F41 F42 F43 F44 F45 F46
F51 F52 F53 F54 F55 F56
F61 F62 F63 F64 F65 F66





Nx
0
0

Mx
0
0


(21)

Thus, Nx and Mx can be obtained as follows:

Nx =
F44

∆
ε0

x −
F14

∆
κx, Mx =

−F41

∆
ε0

x +
F11

∆
κx (22)

where ∆ ≡ F11F44 − F14F41
From Equation (9), the effective stiffness of the beam can be derived as follows:

EIe f f =
h3

12A−1
11,web

+ 2b f

[(
F44Z1

∆
− F14

∆

)
Z1 +

(
−F41Z1

∆
+

F11

∆

)]
(23)

From Equations (12), (21) and (22), the strain of each ply of the flange is derived
as follows: 

εx
εy

γxy

 =

F11 F14
F21 F24
F31 F34

[Nx
Mx

]
+ ξ


κx

F51Nx + F54Mx
F61Nx + F64Mx

 (24)

The stress can then be obtained from Equation (14).

• Wide flange

The assumption of the nonsymmetric wide flange is that the transverse resultant force,
Ny = 0, and transverse curvature, κy = 0, and the relation between the strain, curvature,
resultant force, and resultant moment of the I-beam is as follows:

Nx
0
0

Mx
My
Mxy


=



A11 A12 A13 B11 B12 B13
A21 A22 A23 B21 B22 B23
A31 A32 A33 B31 B32 B33
B11 B12 B13 D11 D12 D13
B21 B22 B23 D21 D22 D23
B31 B32 B33 D31 D32 D33





ε0
x

ε0
y

γxy
κx
0
0


(25)

The inverse of the ABD matrix represented by the F matrix is given by Equation (26):

ε0
x

ε0
y

γ0
xy

κx
0
0


=



F11 F12 F12 F14 F15 F16
F21 F22 F23 F24 F25 F26
F31 F32 F33 F34 F35 F36
F41 F42 F43 F44 F45 F46
F51 F52 F53 F54 F55 F56
F61 F62 F63 F64 F65 F66





Nx
0
0

Mx
My
Mxy


(26)

Simplifying Equation (26) to Equation (27), the new matrix is the G matrix:
ε0

x
κx
0
0

 =


F11 F14 F15 F16
F41 F44 F45 F46
F51 F54 F55 F56
F61 F64 F65 F66




Nx
Mx
My
Mxy

 =


G11 G12 G13 G14
G21 G22 G23 G24
G31 G32 G33 G34
G41 G42 G43 G44




Nx
Mx
My
Mxy

 (27)
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Then, 
Nx
Mx
My
Mxy

 =


G11 G12 G13 G14
G21 G22 G23 G24
G31 G32 G33 G34
G41 G42 G43 G44


−1

ε0
x

κx
0
0

 (28)

Expanding Equation (28), the relationship between the stress, moment, and curvature
of the flange is given by Equations (29)–(32):

Nx = G−1
11 ε0

x + G−1
12 κx =

(
Z1G−1

11 + G−1
12

)
κx (29)

Mx = G−1
21 ε0

x + G−1
22 κx =

(
Z1G−1

21 + G−1
22

)
κx (30)

My = G−1
31 ε0

x + G−1
32 κx =

(
Z1G−1

31 + G−1
32

)
κx (31)

Mxy = G−1
41 ε0

x + G−1
42 κx =

(
Z1G−1

41 + G−1
42

)
κx (32)

From Equations (9) and (28), the effective stiffness of the beam can be derived as
follows:

EIe f f =
h3

12A−1
11,web

+ 2b f

[
G−1

11 Z2
1 +

(
G−1

12 + G−1
21

)
Z1 + G−1

22

]
(33)

The strains for each ply of the flanges were obtained using Equations (12), (26) and (28).
The formula is as follows:


εx
εy

γxy

 =


F11 F14 F15 F16
F21 F24 F25 F26
F31 F34 F35 F36




Z1G−1
11 + G−1

12
Z1G−1

21 + G−1
22

Z1G−1
31 + G−1

32
Z1G−1

41 + G−1
42

κx + ξ


κx
0
0

 (34)

The nonsymmetrical wide flange I-beam stress can be obtained from Equation (14).

3. Finite Element Analysis Model

This study employed MSC NASTRAN numerical analysis software. The I-beam
was divided into two parts, the web and flange, to construct its geometric model. The
material used was AS4/3501-6 carbon/epoxy, and its properties were E11 = 18.4Msi,
E22 = 1.6Msi, υ12 = 0.28, and G12 = 0.95Msi. Laminates with material properties
were set to 2D orthotropic. The beam length, flange width, and web height was 5, 0.5,
and 0.75 in, respectively, and the web lamination was [90/45/ − 45]s. The symmetric
flange lamination was [90/45/ − 45/0/0]s, and the nonsymmetric flange lamination was
[04/90/45/ − 45/ − 45/45/90]. In terms of the boundary conditions, it was assumed that
a simple support beam was applied to the upper flange with a uniformly distributed force
(Figure 3). The element was set as a four-node quadrilateral element. In the element
convergence analysis, when the element distribution density was >1200 elements/in, the
stress and deflection of the beam tend to converge (Figure 4a,b). Therefore, the element
density in the future will be maintained for at least 1200 elements/in to ensure the stability
of the analyzed data.
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4. Results and Discussion

The following section discusses a simple supported laminated I-beam made of AS4/3501-6
carbon/epoxy. The beam length, width, and height were 20, 0.50, and 0.75 in, respec-
tively. The symmetric flange lamination was [90/45/ − 45/0/0]s, the nonsymmetric flange
lamination was [04/90/45/ − 45/ − 45/45/90], the web lamination was [90/45/ − 45]s,
subject to a distributed load of 5 lb/in, and the flange and web lamination thicknesses were
both 0.0052 in (Figure 5). In the FEM analysis, the beam was divided into 24,640 elements
and 25,245 nodes.
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Figure 5. Laminated I-beam cross section.

The maximum deflection distribution of the symmetrical laminated I-beam was in the
middle of the beam, with a value of 0.125198 in. The maximum stress is 21,985.48 psi at



Materials 2022, 15, 6941 12 of 17

the 7th layer of the lower flange, which is under tensile stress (Figure 6). The maximum
stress of the lower flange of the nonsymmetrical laminated I-beam shown in Figure 7 is
21,850.61 psi at the 10th layer of the lower flange. The maximum deflection position is in
the middle of the beam, with a value of 0.119757 in.
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Figure 6. Symmetrical laminated I-beam. (a) Displacement distribution, and (b) maximum bending
stress distribution at the 7th ply of the lower flange.
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Figure 7. Nonsymmetrical laminated I-beam. (a) Displacement distribution, and (b) maximum
bending stress distribution at the 10th layer of the lower flange.

Beam lengths of 25, 20, 15, 10, 7.5 and 5 in were used for the FEM analysis. The results
are listed in Tables 1 and 2. The deflection analysis results indicate that the symmetry is
greater than the asymmetry. The nonsymmetrical maximum bending stress was greater
than the symmetrical maximum bending stress. This is because the nonsymmetric laminate
moved by 0◦ layers to the outermost flange layer. The 0◦ fiber layer was far from the
centroid. Therefore, the overall rigidity can be increased by approximately 4–5% without
changing the material. In addition, beams are discussed as beam or flatbed structures
during the formulation derivation. The data indicate that the maximum normal stresses on
the wide and narrow flanges are nearly identical. It can be deduced that the flange size
does not affect the stress calculation data of the analytical solution.



Materials 2022, 15, 6941 14 of 17

Table 1. Comparison between theoretical and FEM solutions of symmetrical laminated I-beam.

Max. Normal Stress (psi) Max. Deflection (in)

Length (in)
Theoretical Analysis Solution

FEM Solution
Theoretical Analysis Solution

FEM Solution
Narrow Flange Wide Flange Narrow Flange Wide Flange

25 34,506.087 34,514.798 34,310.910 0.308363 0.308342 0.302105
20 22,083.896 22,089.471 21,978.570 0.126306 0.126297 0.125149
15 12,422.191 12,425.327 12,384.600 0.039964 0.039961 0.040620
10 5,520.974 5,522.368 5,531.170 0.007894 0.007894 0.008671
7.5 3,105.548 3,106.332 3,133.002 0.002500 0.002498 0.003072
5 1,380.243 1,380.592 1,419.221 0.000493 0.000493 0.000827

Table 2. Comparison between theoretical and FEM solutions of nonsymmetrical laminated I-beam.

Max. Normal Stress (psi) Max. Deflection (in)

Length (in)
Theoretical Analysis Solution

FEM Solution
Theoretical Analysis Solution

FEM Solution
Narrow Flange Wide Flange Narrow Flange Wide Flange

25 35,044.783 35,070.324 34,096.23 0.301742 0.30172 0.289010
20 22,428.661 22,445.007 21,843.75 0.123593 0.12359 0.119714
15 12,616.122 12,625.317 12,311.94 0.039106 0.03910 0.0388464
10 5,607.165 5,611.252 5,502.920 0.007725 0.00772 0.0082852
7.5 3,154.031 3,156.329 3,120.298 0.002444 0.00244 0.0029312
5 1,401.791 1,402.813 1,417.687 0.000483 0.00048 0.0008585

As shown in Figures 8 and 9, the analytical solutions for normal stresses on the
symmetric and asymmetric beam flanges have excellent accuracy within 5% of the FEM
solution. When the aspect ratio was >15, the analysis error of the deflection was within
5%. When the aspect ratio was <15, the error of the theoretical value increased because
the theoretical analysis ignored the shear force. Beams with shorter lengths no longer
possessed the properties of a beam structure, and the assumptions of the beam theory are
not applicable to the analysis of short beams. The error was significant, particularly the
deflection error. When the aspect ratio of the beam was <15, the error was >40%.
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5. Conclusions 
This study discusses the maximum deflection and bending stress of a simple support 

laminated composite I-beam under a distributed force, and compares the error between 
the theoretical and finite element solutions. The finite element analysis model constructed 
in this study can obtain better convergence data using element convergence analysis. 
From these discussions, the following conclusions were drawn. 
(1) Analytical solutions provide a broad and rough assessment of composite beam struc-

tures. The scope of applicability of the formula was defined in detail by evaluating it 
in this study. Thus, the structural analysis of the composite beams can accurately 
obtain analysis data. 

(2) The composite beam theory only considers plane strain, and there is a significant er-
ror in the strain and stress analyses of the short beam structure. When the aspect ratio 
of the beam was >15, the error in the analytical solution was <5%. Analytical solutions 
exhibited the best reliability for the normal force assessment of symmetric or non-
symmetric laminated beams. Therefore, the derived formula is suitable for thin and 
long beams. 

(3) The change in the fiber angle of the laminate will improve the rigidity of the structure 
without changing the material. When the lamination sequence was changed and 0° 
ply was placed on the outermost layer of the flange, the effective stiffness of the non-
symmetric beam increased by 4–5% compared with that of the symmetric beam. 
This study first discussed the accuracy of the analytical solution of the composite I-

beam to understand the scope of the application of the basic theory. In future, planning 
will focus on basic structural beams, such as T-, L-, U-, and X-shaped composite beams. 
These structural beams are nonsymmetric geometric structures, and there is currently no 
relevant theoretical solution. Furthermore, for fatigue failure analysis of the laminated 
beam structures, the stress distribution of the holes on the beam and the failure behavior 
of the material after heating are all important topics to be discussed. 

Author Contributions: Conceptualization: Y.-C.C.; Data curation: Y.-T.L.; Methodology: T.-P.H.; 
Software: Y.-T.L.; Validation: T.-P.H.and Y.-C.C.; Experimental work: H.-A.T.; Writing—review and 
editing, T.-P.H. and H.-C.A.; Supervision: H.-C.A.; Funding acquisition: H.-A.T. All authors have 
read and agreed to the published version of the manuscript. 

Funding: This research was funded by Metal Industries Research and Development Centre (MIRDC) 
grant number 111B508024. 

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40

Er
ro

rs
 (%

)

Aspect ratio (L/h)

narrow flange stress

narrow flange
deflection

wide flange stress

wide flange deflection

Figure 9. Analysis error comparison of nonsymmetric laminated I-beams under different aspect ratios.

5. Conclusions

This study discusses the maximum deflection and bending stress of a simple support
laminated composite I-beam under a distributed force, and compares the error between the
theoretical and finite element solutions. The finite element analysis model constructed in
this study can obtain better convergence data using element convergence analysis. From
these discussions, the following conclusions were drawn.

(1) Analytical solutions provide a broad and rough assessment of composite beam struc-
tures. The scope of applicability of the formula was defined in detail by evaluating
it in this study. Thus, the structural analysis of the composite beams can accurately
obtain analysis data.

(2) The composite beam theory only considers plane strain, and there is a significant
error in the strain and stress analyses of the short beam structure. When the aspect
ratio of the beam was >15, the error in the analytical solution was <5%. Analytical
solutions exhibited the best reliability for the normal force assessment of symmetric
or nonsymmetric laminated beams. Therefore, the derived formula is suitable for thin
and long beams.

(3) The change in the fiber angle of the laminate will improve the rigidity of the structure
without changing the material. When the lamination sequence was changed and
0◦ ply was placed on the outermost layer of the flange, the effective stiffness of the
nonsymmetric beam increased by 4–5% compared with that of the symmetric beam.

This study first discussed the accuracy of the analytical solution of the composite
I-beam to understand the scope of the application of the basic theory. In future, planning
will focus on basic structural beams, such as T-, L-, U-, and X-shaped composite beams.
These structural beams are nonsymmetric geometric structures, and there is currently no
relevant theoretical solution. Furthermore, for fatigue failure analysis of the laminated
beam structures, the stress distribution of the holes on the beam and the failure behavior of
the material after heating are all important topics to be discussed.
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