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Abstract: In this research, the authors have developed an algorithm for predicting the compressive
strength and compressive stress–strain curve of Basalt Fiber High-Performance Concrete (BFHPC),
which is enhanced by a classical programming algorithm and Logistic Map. For this purpose,
different percentages of basalt fiber from 0.6 to 1.8 are mixed with High-Performance Concrete with
high-volume contact of cement, fine and coarse aggregate. Compressive strengths and compressive
stress–strain curves are applied after 7-, 14-, and 28-day curing periods. To find the compressive
strength and predict the compressive stress–strain curve, the Logistic Map algorithm was prepared
through classical programming. The results of this study prove that the logistic map is able to
predict the compressive strength and compressive stress–strain of BFHPC with high accuracy. In
addition, various types of methods, such as Coefficient of Determination (R2), are applied to ensure
the accuracy of the algorithm. For this purpose, the value of R2 was equal to 0.96, which showed
that the algorithm is reliable for predicting compressive strength. Finally, it was concluded that The
Logistic Map algorithm developed through classical programming could be used as an easy and
reliable method to predict the compressive strength and compressive stress–strain of BFHPC.

Keywords: basalt fiber high-performance concrete; compressive strength prediction; compressive
stress–strain curve; logistic function and map; classical programming

1. Introduction

High-Performance Concrete (HPC) is a type of concrete with minimal penetration
of aggressive agents. It has become very popular in recent years because it surpasses
conventional concrete in terms of its physical and chemical properties. HPC can be en-
hanced in terms of durability and mechanical properties. Therefore, it is mostly used in
important structures such as tall buildings, bridges, runways, and highway pavements.
High-performance concrete (HPC) is a type of concrete with minimal penetration of ag-
gressive agents, and it has become very popular in recent years because it surpasses
conventional concrete in terms of its mechanical and chemical properties [1–3]. The effect of
basalt fiber (BF) on HPC was investigated in many previous types of research [4–11]. In fact,
BF was added to HPC to increase the durability, tensile, and flexural strengths [12–14]. For
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example, Kharun et al. [5] added basalt fiber to High-Strength Concrete (HSC) to enhance
tensile and flexural strength. Their results illustrated that the BF-reinforced HSC (BFHSC)
was more durable than conventional HSC. Furthermore, their results show that the addition
of 1.2% BF to HSC can improve the compressive strength by more than 37% and the tensile
strength by more than 70%. In fact, the results of adding BF to HSC and HPC are shown by
the significant increase in flexural and tensile strength and the improvement of concrete
durability [5,7,15]. Moreover, including mechanical aspects, BF has economic aspects as
an alternative material to increase the mechanical properties of HPC [16]. For example,
Hematibahar [17] investigated adding BF to HPC. The researchers examined the effect of
adding different fractions of BF content between 0.6 and 1.8 to the HPC. Finally, he found
that adding 1.2% of BF had a maximum effect on the compressive and flexural strengths.
According to his results, the compressive strength improved to 102.3 MPa from 101.43 MPa
when 1.2% BF was added. In addition, by adding 1.2% BF to HPC, the flexural strength
increased by more than 35 percent. According to the results of Ayub et al. [7], 2% of BF
had a maximum effect on the mechanical behavior of HPC, such as compressive, tensile,
and flexural strength. Ayub et al. [7] showed that the compressive strength of BFHPC with
2% BF increased by more than 2%, and by adding 3% BF to High-Performance Concrete,
the tensile strength improved by more than 17%. Another study by Mohaghegh et al. [18]
analyzed the mixing of different percentages of BF into HPC for testing the shear capacity of
concrete beams. They believed that the mechanical properties of HPC are related to the BF
dosage. They represented that 1.33% of BF had the best effect on the mechanical properties.
Additionally, they proved that a high dosage of BF was effective in the shear capacity of
HPC. Overall, BF was an effective variable for improving the mechanical properties of
HPC. Another method that engineers use to improve the mechanical properties of HPC is
to add chemical powders. For example, the silica fume can fill the voids between the BF
and cement matrix [19]. Their results show that the silica fume was effective in enhancing
the compressive, flexural, and tensile strength of HPC.

Currently, researchers tend to practice computer programming such as machine learn-
ing, deep learning, and other types to predict the mechanical characteristics of concrete.
Mechanical computer prediction can reduce the budget of experiments and waste materials
and decrease time wastage. However, there are many examples of using Artificial Neural
Networks (ANN), Fuzzy Logic (FL), Linear Regression (LR), Multiple Linear Regression
(MLR), etc., but a simple and comprehensive programming code to predict mechanical
properties is a problem. For example, Shahmansouri et al. [20] developed an Algorithm
programming method for predicting natural zeolitic concrete compressive strength in dif-
ferent curing period ages. They used more than 56 mixture designs as statistic samples to
find the best result. They used Root Mean Square Errors (MSE) to find the accuracy of the
developing program. Their results show that the MSE value for compressive strength was
1.6, while the current study had a better MSE result. They concluded that the prediction of
compressive strength helps to save time in the testing process. ANN is used as a mechanical
properties forecast method in various studies considering mixing design properties [21–23].
For example, Chopra et al. [24] estimated the mechanical properties of concrete using
ANNs. They collected compressive strength results for 21-, 56-, and 91-days curing periods.
They applied the ANNs using the Leveberg–Marquardt (LM) training function. Their
results show that the prediction of compressive strength was reliable so the Coefficient of
Determination (R2) was more than 0.8. However, the complicated programming method
and the use of the LM method cannot be justified for general engineers, and it is another
gap in simplifying the calculation method. In another example, Topcu and Saridemir [25]
studied a concrete mixture with fly ash using the ANNs and FL methods separately. They
focused on aggregate size to predict compressive strength. They concluded that the pre-
diction of the mechanical properties of concrete was successful, so that R2 calculated for
all samples was greater than 0.9. According to their prediction results, the FL and ANNs
methods are acceptable for comparing the experimental results. Reza Kashyzadeh et al. [26]
also used the Data Mining method to determine the compressive strength of concrete, con-
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sidering the shape and size of the dry aggregate. They developed an algorithm to find the
compressive strength of ordinary concrete through the Data Mining of the dry temperature
and aggregate shapes. They found that the input parameters, such as aggregate size and
shape, affect compressive strength. In addition, they found that the cold wind process
in the drying of aggregates has the greatest effect on increasing the compressive strength
so that the compressive strength in the cold wind process is improved by more than 8%.
Moreover, Kashizadeh et al. [18] investigation was related to the aggregate type. They used
more than 108 cubic specimens to predict the compressive strength. They found that the
compressive strength increased by more than 30% when the cubic samples were cured
at 15–5 ◦C. In fact, most research is aimed at finding compressive strength as mechanical
properties through ML and ANN algorithms.

Not only is the existence of a simple prediction of the concrete mechanical properties
a fundamental issue, but also the lack of simulating the compressive stress–strain curve
through simple equations and formulations is another gap. Nevertheless, some researchers
are trying to simulate the compressive stress–strain curves [27]. For example, Carreira and
Chu [28] proposed a model for simulating the compressive stress–strain curve. Although
their results performed well, predicting the plastic phase of concrete had a problem. More-
over, Ezeldin and Balaguru [29] provided another method to simulate the compressive
stress–strain curve. Their results were more accurate than other previous methods. The
lack of simple prediction formulas and the difficulty of these algorithms became the reason
for studying this research and presenting a new simple method.

This research investigates a new approach for predicting the mechanical properties of
concrete. The main idea was the link between Logistic Function to predict the compressive
strength, Logistic Map for simulating the compressive stress–strain curves, and classical
programming. The method can predict the compressive strength and compressive stress–
strain curves through the Classical Programming Logistic Map Algorithm (CPL). BFHPC
was chosen for this study. This Algorithm can be checked with real test results and
a comparison of the experimental data with the simulation and estimated results. In
general, the equations and Algorithms are capable of predicting the compressive strength
and the compressive stress–strain curve with high accuracy and using a simple classical
programming method.

2. Materials and Methods

Based on the purpose of the study, Classical Programming was employed to predict
the compressive strength and the compressive stress–strain curve. Classical Programming
(CP) was applied to the data and rules as inputs to find answers (Figure 1a).

Moreover, the data and answers are defined as the inputs in Artificial Intelligence (AI)
(Figure 1b). The inputs and results are the main differences between Classical Programming
and AI.

Generally, the Classical Programming method is a simple way to predict the mechani-
cal properties of concrete as the answers. At the same time, AI needs a more complicated
Algorithm for prediction. In this study, Classical Programming is chosen to predict the
compressive strength and the compressive stress–strain curves.
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Figure 1. The Algorithm of different programming types: (a) the CP method; (b) the AI program-
ming method.

2.1. Materials
Experimental Materials and Mixing Method

In order to prepare the BFHPC samples, the following material was used: Portland
cement (OPC), quartz sand, crushed granite, quartz flour, micro silica, superplasticizer, tap
water, and BF [4,17]. The specific gravity of Cement M500 was 1756 Kg/m3. The initial
setting time of the cement was 60 min, and the final setting time was 600 min. Table 1
shows the chemical compounds of Cement M500 manufactured by Novoroscement factory,
Novorossiysk, Russia. The crushed granite with a particle size range of 20 mm to 5 mm
with specific gravity (2853 Kg/m3), and the granulometric curves of the coarse aggregates is
shown in Figure 2. Quartz sands with a particle size range of 0.8 mm to 2.0 mm were mixed
with concrete, and they were collected from the Ryazan region. The specific gravity of the
fine aggregates was 2384 Kg/m3, and the granulometric curves are illustrated in Figure 3.
Two kinds of aggregates were produced by the SUKHOGRUZ Company. SILVERBOND
50 quartz flour manufactured by SIBELCO in the Antwerp, Belgiumwas used. Micro-silica-
type MK85 from the Novolipetsk steel company (NLMK) in Lipetsk, Russia was added to
the concrete type to cover the holes between the aggregate and cement paste (Table 2, the
properties of micro silica). The addition of silica to concrete can provide concrete properties
with a high density. Moreover, the smaller silica grain size causes the higher density of the
concrete, which is beneficial for the preparation of BFHPC [17]. Kamenny Vek’s chopped
BF was used as the additional fibers (Figure 4 and Table 3).

Table 1. Properties of Cement M500.

Oxide (%) Fineness
(m2/kg)

Relative
DensitySiO2 Fe2O3 MgO SO3 Al2O3 CaO K2O LOI

19.52 4.04 4.36 2.89 4.81 62.18 0.6 1.62 387 3.14

Table 2. Properties and Chemical Composition of Micro silica MK-85.

Index Value (%)
Appearance Approximate Value

Mass fraction of micro silica in the cross.dryprod.,% not less than 99.6

Mass fraction of water,% no more than 0.36
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Table 2. Cont.

Index Value (%)

Mass fraction of losses on ignition (pp),% no more than 0.80

Bulk density, kg/m3 152.2
Chemical Composition Percentage

Mass fraction of silicon dioxide (SiO2) 90–92

Mass fraction of alumina (Al2O3) 0.68

Mass fraction of iron oxide (Fe2O3) 0.69

Mass fraction of calcium oxide (CaO) 1.58

Mass fraction of Magnesium oxide (MgO) 1.01

Mass fraction of Sodium oxide (Na2O) 0.61

Mass fraction of potassium oxide (K2O) 1.23

Mass fraction of Carbon (C) 0.98

Mass fraction of Sulfur (S) 0.26

Table 3. Chopped Basalt Fiber Properties.

Length
(mm)

Diameter
(µm)

Tensile
Strength

(MPa)

Young’s
Modulus

(GPa)

Elongation
(%)

Specific
Gravity

18 17.9 4100–4840 93.1–110 3.1 2.63–2.8
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The composition of the BFHPC design mixture is shown in Table 4. In the previous
study, the percentage of BF 0.6, 0.9, 1.2, 1.5, and 1.8 percentages were investigated. BFs
were the only additional variable material. The purpose of this study was to determine
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the effective percentage of additional BF to improve HPC while other materials were
kept constant.

Table 4. Concrete mix properties.

Specimens Cement
(Kg/m3)

Water
(Kg/m3)

Granit
(Gravel/Couse

Aggregate)
(Kg/m3)

Quartz
Sand (Fine
Aggregate)

(Kg/m3)

Micro
Silica

(Kg/m3)

Quartz
Flour

(Kg/m3)

Plasticizing
(Kg/m3)

Basalt
Fiber
(%)

BFHPC 500 187.5 1005 585 125 100 12.5 _

BFHPC-6 500 187.5 1005 585 125 100 12.5 0.6

BFHPC-9 500 187.5 1005 585 125 100 12.5 0.9

BFHPC-1.2 500 187.5 1005 585 125 100 12.5 1.2

BFHPC-1.5 500 187.5 1005 585 125 100 12.5 1.5

BFHPC-1.8 500 187.5 1005 585 125 100 12.5 1.8

To prepare BHPC, concrete pan mixers with a constant speed of 48 rpm have been
used for mixing materials (Figure 5a). In this case, first, the two types of aggregates
were mixed by a 133-L mixer for about 2 min, then water was added to the cement.
Additionally, the concrete was mixed for about 2 min after adding the chemical powders.
Thus, the concrete was installed in the formwork. The compression testing formwork was
(100 × 100× 100) (mm3) cubic concrete, and flexural three-point flexural formwork was
(100 × 100× 600) (mm3) prisms (Figure 5b). The formwork was then molded underwater
at a temperature of more than 50 ◦F for 7, 14, and 28 days during the curing period
(Figure 5c). In the end, the cubes are cleaned before the compression test. Cleaning the
cubes helped to achieve the best and most accurate compressive strength results (Figure 5d).

The compression test and flexural strength samples were tested according to GOST
(GOST 10180-2012 Concretes. Methods for strength), which was applied for the test of the
cube compressive strength in Russia and ASTM C293/C293, ASTM C1202 (American Soci-
ety for Testing and Materials) standards. The compressive strength tests were performed
for 7, 14, and 28 days with three different samples for each day [30–32].

Materials 2022, 15, x FOR PEER REVIEW 7 of 22 
 

 

Table 4. Concrete mix properties. 

Specimens 
Cement 

(Kg/m3) 

Water 

(Kg/m3) 

Granit 

(Gravel/Cous

e Aggregate)  

(Kg/m3) 

Quartz Sand 

(Fine Aggre-

gate) 

(Kg/m3) 

Micro Silica 

(Kg/m3) 

Quartz Flour 

(Kg/m3) 

Plasticizing 

(Kg/m3) 

Basalt Fiber 

(%) 

BFHPC 500 187.5 1005 585 125 100 12.5 _ 

BFHPC-6 500 187.5 1005 585 125 100 12.5 0.6 

BFHPC-9 500 187.5 1005 585 125 100 12.5 0.9 

BFHPC-1.2 500 187.5 1005 585 125 100 12.5 1.2 

BFHPC-1.5 500 187.5 1005 585 125 100 12.5 1.5 

BFHPC-1.8 500 187.5 1005 585 125 100 12.5 1.8 

To prepare BHPC, concrete pan mixers with a constant speed of 48 rpm have been 

used for mixing materials (Figure 5a). In this case, first, the two types of aggregates were 

mixed by a 133-L mixer for about 2 min, then water was added to the cement. Addition-

ally, the concrete was mixed for about 2 min after adding the chemical powders. Thus, the 

concrete was installed in the formwork. The compression testing formwork was 
3(100 100 100) (mm )   cubic concrete, and flexural three-point flexural formwork was 
3(100 100 600) (mm )   prisms (Figure 5b). The formwork was then molded underwater 

at a temperature of more than 50 °F for 7, 14, and 28 days during the curing period (Figure 

5c). In the end, the cubes are cleaned before the compression test. Cleaning the cubes 

helped to achieve the best and most accurate compressive strength results (Figure 5d). 

The compression test and flexural strength samples were tested according to GOST 

(GOST 10180-2012 Concretes. Methods for strength), which was applied for the test of the 

cube compressive strength in Russia and ASTM C293/C293, ASTM C1202 (American So-

ciety for Testing and Materials) standards. The compressive strength tests were performed 

for 7, 14, and 28 days with three different samples for each day [30–32]. 

  
(a) (b) 

Figure 5. Cont.



Materials 2022, 15, 6975 8 of 21Materials 2022, 15, x FOR PEER REVIEW 8 of 22 
 

 

  
(c) (d) 

Figure 5. Mixing design devices: (a) Pan Mixer; (b) Concrete formwork; (c) Moist Cabinet; (d) clean-

ing method. 

The Matest C025N manufactured by Mates cimoany, Bergamo, Italy device was used 

to set the compressive and flexural strength tests. The Matest C025N machine has a com-

pression capacity of 1300 KN. In addition, the Matest C025N model uses a motorized sys-

tem to apply the load, and the pressure rate was 400,000 MPa/sec. Moreover, the compu-

tational compressive strain method was based on the energy absorption measurements 

(Figure 6). 

 

Figure 6. The compression test machine (C025N Matest Machine). 

Figure 5. Mixing design devices: (a) Pan Mixer; (b) Concrete formwork; (c) Moist Cabinet; (d) clean-
ing method.

The Matest C025N manufactured by Mates cimoany, Bergamo, Italy device was used to
set the compressive and flexural strength tests. The Matest C025N machine has a compres-
sion capacity of 1300 KN. In addition, the Matest C025N model uses a motorized system to
apply the load, and the pressure rate was 400,000 MPa/s. Moreover, the computational
compressive strain method was based on the energy absorption measurements (Figure 6).
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2.2. Mathematical Modeling

Due to the prediction compressive strength of BFHPC, new Classical Programming
is represented in this study. For this purpose, the Logistic Function predicted compres-



Materials 2022, 15, 6975 9 of 21

sive strength, and the Logistic Map was defined by simulating the compressive stress–
strain curves.

Due to the absolute similarity between the compressive stress–strain curve and the
Logistic Map, the Logistic Function and the Map were chosen to predict the compressive
strength and simulate the compressive stress–strain curves. This similarity can be seen
in the concept of the Logistic Map (Figure 7a) and the conception of the compressive
stress–strain curve and the ideological stress–strain curve (Figure 7b).

The Logistic Function and Map ( Lµ : R→ R ) is explained in Equation (1), where u
(Real Parameter) is defined as the Real Parameter with a range between 1 and 4. Moreover,
if the µ > 4, then the range of the dynamic systems of Lµ (Logistic Function) is not a subset
between 0 and 1 [33].
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Equation (1) is defined as the Logistic Function. Goodson [33] defined the Logistic
Function as the following:

Lµ(x) = µx(1− x), (1)

Equation (2) follows Equation (1), where a is the assumption of the maximum domain.
Continuing from this, Equation (2) Lµ defines the domain of (0, a). Equation (3) explains
the a as the εt imaginary total strain parameter, where εm is defined as the strain of the
compressive strength. The compressive strength ( f c) is redefined as σm in Equation (4).
Equations (2)–(4) are explained as follows:

Lµ(x) = µx(a− x), (2)

a = εt = 2εm, (3)

f ′c = σm, (4)

Finally, Equations (4) and (5) are explained as the Real Parameter u of the Logistic
Function in Equation (6). Equations (5)–(7) are defined as follows:

Lµ(εm) = µεm(εt − εm), (5)

σm = µεm(εt − εm), (6)

µ =
σm

εm(εt − εm)
, (7)

By including the strain values into Equations (5)–(7) and calculating the required
values, the compressive strength of each point was also obtained. The final compressive
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stress–strain curve was plotted by connecting all of the predicted points. The generated
compressive stress–strain curve was similar to the Logistic Map (Figure 7b).

To clarify the issue, Figure 8 illustrates all of the prediction steps. First, the εt (Imag-
inary total strain) is calculated by Equation (3). The εt is just obtained to divide the
compressive stress–strain curve into smaller pieces to predict more compressive stress
points. For example, this study used 20 division points to predict better the compressive
stress points. The next step is to find the Real Parameter u via Equation (7); this number is
constant for each concrete type. It should be noted that, σm as the compressive strength or
compressive stress, and εm are calculated through the relationship between the compressive
strength and the percentage of BF. Finally, σm as the stress of each point and compressive
stress were obtained, and the connection of the compressive stress was made into the
compressive stress–strain curve.

The logistic function is able to simulate the BFHPC compressive stress–strain curve
through the logistic map. It should be noted that the prediction of the compressive stress–
strain curve and the compressive strength of BFHPC was independent of the basalt fibers
percentage as a variable and dependent on the relationship between the compressive
strength graphs. After simulating the logistic map, the maximum value of the compressive
stress–strain curve is equal to the compressive strength. The compressive strength is
evaluated with the coefficient of determination (R2), and the mean absolute errors (MAE)
and root mean square error (RMSE) as reliability methods.

The Logistic Map is able to predict the elastic phase of the compressive stress–strain
curves and the normality of the elasto-plastic phase, while the plastic phase cannot be accu-
rately simulated. Nevertheless, the logistic and performance map is a suitable method for
predicting compressive strength, compressive stress–strain, and compressive stress points.
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Figure 8. The conception of ideological compressive strength of the stress–strain curve is considered
by the Logic Map.

2.3. Research Methodology

Classical Programming runs with Python code programming and uses Anaconda
programming to insert the packages known as Conda packages.as an open source software.
Additionally, the Spyder open source software environment (lessened by Massachusetts
Institute of Technology) was used for simpler Python implementation. The mechanical
properties of the Basalt-Fibred The High-Performance Concrete were derived from previous
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experiment results [4,17]. In the current study, BF was the only variable percentage that
was able to improve the flexural and compressive strengths.

The Algorithm was defined to predict the compressive strength and compressive
stress–strain (Figure 9). First, the relationship between the BF percentages and compressive
strength was obtained through a Polynomial Function (Equation (8)), (Figure 10).
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Figure 10. The relationship between BF percentages and compressive strength through Polyno-
mial Function.
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To obtain the relationship between the compressive strength and the BF content
percentages, a Polynomial Function was used. The equation of Polynomial Function is
mentioned in Equation (8), as follows [34]:

y(x) = anxn + an−1xn−1 + an−2xn−3 + . . . + a1x1 + a0, (8)

The an coefficient of a Polynomial Function has a different value under various condi-
tions. a0 is the Y-intercept of the Polynomial Function or the Constant value.

The compressive strength prediction was based on real test methods. This means that
each piece of concrete is predicted more than 30 times by a random error via
Equations (6) and (7). The average of the thirty times prediction results is known as the
basic compressive strength. In fact, due to the increase in the statistical population and the
increase in the reliability of the prediction, the prediction is performed more than 30 times.

In order to create the prediction algorithm, the compressive stress–strain curve was
the basis for the prediction of the compressive strength and the basis for the parameters
of the compressive stress–strain prediction algorithm. The Logistic Function parameters
were another factor that was effective in predicting the compressive stress–strain curve.
Although Logistic Function and Map were only able to predict compressive strength, they
were not able to predict other mechanical properties such as flexural and tensile strength.

The compressive stress–strain curves were simulated through the Logistics Map. The
absolute similarity between the compressive stress–strain curve and the Logistic Map
showed that the compressive stress–strain curve could be found by the Logistic Function.
Because of the compressive stress–strain curve simulation, the parameters of the Logistic
Function must be found and replaced as the main data in the Python program. The
prediction algorithm was attached to a specific sample of concrete. For this study, HPC06
was chosen as the specific specimen. As a result, the compressive stress–strain curves and
compressive strength of concrete are possible to predict with this algorithm. Moreover, the
prediction of other mechanical properties, such as flexural and compressive strengths, are
the limitations of the current algorithm.

The Coefficient of Determination (R2) was applied to find the Algorithm validation
and accuracy in this study. Furthermore, the Mean Absolute Errors (MAE) and the Root-
Mean-Square Deviation Error (RMSE) are two common types of validation methods to find
the reliability of the Algorithm prediction [26]. The MAE equation is equal to the sum of
the numerical differences of the values of the community set divided by whole numbers
(Equation (9)).

The x, x̂, and
−
x are the actual, predicted, and mean values of the each community set,

respectively, and n is the number of whole sets. The Mean Absolute Errors (MAE)equation
is defined as (Equation (9)) [26]:

MAE =
1
n

n

∑|x− x̂|, (9)

The Root-Mean-Square Deviation Error (RMSE) equation is equal to the sum of the
numerical differences equal to the power of the two values of the population set di-
vided by the whole set of numbers (Equation (10)). The RMSE equation is explained
as (Equation (10)) [26]:

RMSE =

√
1
n

n

∑ (x− x̂)2, (10)

Coefficient of Determination (R2) is a measure used in analytics to ensure the correction
of the prediction algorithm results, using Equation (11), it is obtained as follows [26]:
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R2 = 1−

n

∑(x− x̂)2

n

∑(x− −x)
2

, (11)

Generally, Coefficient of Determination (R2), Mean Absolute Errors (MAE), and Root-
Mean-Square Deviation Error (RMSE are calculated to obtain the accuracy and reliability of
the current algorithm.

2.4. OtherPrediction Compressive Stress-Strength Models

To evaluate the validation of the suggested compressive stress–strain curve simulation,
some studies were compared with the presented model. The models presented by, Ezeldin
and Balaguru [29] and Nataraja et al. [35] were investigated in this study to validate the
presented method [27].

Ezeldin and Balaguru [29] studied the prediction of compressive strength and the
simulation of stress–strain curves. Equations (12) and (13) are provided to obtain the stress
and strain in the stress–strain curve:

σ c,u(MPa) = σ + 3.51(RI) (12)

ε c,u = ε0 46× 10−6(RI) (13)

Ezeldin and Balaguru also provide a new method to fit stress–strain: Equations (14) and (15)
is shown in the formula:

β = 1.093 + 713(RI)−962 (14)

RI = Vf
I
d

(15)

where σ is equal to stress, σc,u, peak stress, εc strain, εc,u peak strain, En initial tangent
modulus of normal concrete, and β defines the material parameter. In this regard, Vf , d,
and I are the volume fraction, length, and diameter of BF.

The Nataraja et al. models provided another model to find the stress–strain curve.
Equations (16)–(19) are explained as:

σc,u(MPa) = σ + 2.16404(RI) (16)

εc,u(MPa) = ε0 + 0.0006(RI) (17)

β = 0.5811 + 1.93(RI)−0.74 (18)

Ein f = 1930(RI)−0.74 (19)

In this regard, Ein f are defined as the slopes at an inflection point.
In general, the two models were used to compare the presented model’s accuracy.

3. Results
3.1. Experimental Material Results

Figure 11 shows the compressive strength results of BFHPC with different BF percent-
ages. The optimal percentage of BF for compressive strength was 1.2. The compressive
strength was significantly improved by adding 1.2% of BF. In fact, the improvement in
compressive strength of High-Performance Concrete was due to the incorporation of BF
and cement matrix at the microscopic scale. Another parameter was the influence of BF
volume on compressive strength. Figure 12 shows the effectiveness of concrete at different
ages. In fact, all the HPC compressive strength samples increased up to date except for the
HPC09 curing period. The HPC09 conditions show that 0.9% BF was not effective at the
microscopic scale of the bond between the cement matrix and the fibers.
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For the failure modes of High-Performance Concrete, the compression cube concrete is
crushed after loading due to the cyclo–hoop effect, and the shape of the concrete cube block
is transferred to a pyramidal mode. (Figure 13a) [3]. High-Performance Concrete with BF
had a different failure shape. The BFHPC block is destroyed but not broken completely.
The degradation of the BFHPC cube was conducted slowly and crushed very smoothly
(Figure 13b).
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Figure 11. Compressive Strength of BFHPC, With Different BF Percentages.
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Figure 13. Compression Strength Failure Shapes: (a) Basalt Fiber reinforced High-Performance
Concrete PC; (b) High-Performance Concrete.

The flexural strength results are shown in Figure 14. The optimal percentage of flexural
strength was 1.2%. These conditions show that 1.2% of BF had the greatest effect on the
mechanical properties of high-performance concrete. However, the increase in flexural
strength was greater than the compressive strength with additional BF, and the main reason
for the improvement in flexural strength was the effect of micro-scale bridging phenomena
in the cement matrix [4]. The efficiency of flexural strength (Figure 15) shows that the curing
period was effective in improving the strength. All samples’ flexural strength improved
between 14 and 28 day curing periods.

The failure of the flexural prisms of the specimens for HPC was sudden, while the
failure of BFHPC took more time, and the failure model developed after micro-cracks in
the prisms (Figure 16).
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Figure 16. Flexural Strength Failure Shapes: (a) Basalt Fiber reinforced High-Performance Concrete;
(b) High-Performance Concrete.

3.2. Compressive Strength Prediction

The prediction and experimental compressive strength results are illustrated in Figure 17.
According to Figure 17, compressive strengths for more than 30 times prediction were
demonstrated. In addition, the prediction errors are shown in Figure 18.

To find the accuracy and reliability, the R2, MAE, and RMSE were calculated between
the experimental data and the average of the prediction compressive strengths more than
30 times. The results are shown R2 = 0.96, MAE = 0.59, MSE = 0.47. Considering the
results, the R2 was close to one, and this means that the current algorithm is reliable and
accurate. Another cause of algorithm accuracy is the error value. The maximum error
was 1.4 (MPa), and the minimum error was less than 0.103 (MPa) (Figure 18). Thus, the
prediction algorithm was able to predict the compressive strength with high accuracy.
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3.3. The Stress–Strain Curve Prediction

The comparison with Logistic Map simulation is illustrated. The prediction elastic
and Elasto-Plastic phases are fitted and varied with high accuracy. The variation between
the Logistic Map simulation and the experimental results in the plastic phase is consistent
with the nature of the Logistic Function. The plastic phase of the compressive stress–strain
curve is an essential property of concrete, reflecting the brittleness and ductility of concrete
under compression test. The plastic phase of concrete is not stable, and the durability
of concrete is under compression tests. The plastic phase of concrete is not stable and
predictable. Nevertheless, the Logistic Map simulates the plastic phase as far as close
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to the experimental results. Moreover, other compressive stress–strain curve simulation
methods are evident that evaluate the Logistic Map curve predictions. The Ezeldin and
Balaguru [29] and Nataraja et al. [35] models were employed to evaluate the Logistic
Map simulation results. The results presented that not only the behavior of Logistic Map
prediction was reasonable, but also, the models were more accurate than Nataraja et al. [35]
models (Figure 19).
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Figure 19. Simulation compressive stress–strain according to Logistic Map, Ezeldin and Balaguru [29],
and Nataraja et al. [25]: (a) HPC; (b) BFHPC0.6; (c) BFHPC0.9; (d) BFHPC1.2; (e) BFHPC1.5;
(f) BFHPC1.8.
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Thus, it can be inferred from comparing simulations of the stress–strain curve results
that the Logistic Map stress–strain results are optimized similar to the two other represented
models. The Logistic Map simulation results are following real experiments, which demon-
strated the attenuation plastic phase of demonstrating the stress–strain simulation curves
through the Logistic Map. Overall, the compressive stress–strain curves were possible to
predict via Logistic Map and Function with high accuracy.

4. Conclusions

This paper presents a new algorithm for the prediction of compressive strength and
compressive stress–strain curve. The current algorithm is used the Logistic Map and
Function to find accurate prediction results. In this study, more than 30 times predictions
are applied for each mixture design which increased the statistical population to increase
the accuracy of prediction. Overall, more than 180 compressive strengths were predicted
for all specimens.

The results show that the current algorithm has been successful in predicting compres-
sive strength and compressive stress–strain curve. The results show that the prediction R2,
RMSE, and MAE were 0.96, 0.47, and 0.59, respectively. The results prove that the current
algorithm was able to present a new, accurate, and easy algorithm to predict compressive
strength, and simulate the compressive stress–strain curve. Overall, a general overview is
given in the following cases:

Logistic Function was possible to predict with the compressive strength and compres-
sive stress–strain curve for all types of design mixture. However, predicting tensile and
flexural strength was not impossible through Logistic Function and Map.

To find the accuracy, the Coefficient of determination (R2), Mean Absolute Errors
(MAE), and the Root Mean Squared Errors (RMSE) were applied. R2 was found equal to
0.96, which indicates that the algorithm is reliable. In addition, the RMSE and MAE were
0.47 and 0.57, respectively, which indicated the accuracy of the prediction Algorithm.

The Logistic Map simulated the compressive stress–strain curve with high accu-
racy so that the presented model was more accurate than Ezeldin and Balaguru [29] and
Nataraja et al. [35] models.

The compressive strength and compressive stress–strain curves have been estimated
regarding the compressive strength relationship graph. However, the concrete mechanical
properties of multi-variable material can predict as well. In fact, the mechanical properties
prediction was independent of the number of variables.

The Logistic Map can simulate the Elastic and Elasto-Plastic phases of the compressive
stress–strain curve, while the Plastic phase simulation had many errors in this model.

The current Algorithm can be developed considering the Deep Learning programming
for the prediction of each type of concrete mechanical behavior.
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