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Abstract: To address flexural fractures and predict fatigue life, an ordinary state-based peridynamic
(PD) fatigue model is proposed for the initiation and propagation of flexural fractures. The key to
this model is to replace the traditional partial differential fracture model with a spatially integral
peridynamic model. Based on the contact and slip theory, the nonlocal peridynamic contact algorithm
is confirmed and the load transfer is through the contact area. With the 3D peridynamic J-integration
and the energy-based bond failure criterion, the peridynamic fatigue model for flexural cracks’
initiation and propagation is constructed. The peridynamic solid consists of a pair of gear contact
surfaces and the formation and growth of flexural fatigue cracks evolved naturally over many loading
cycles. The repeated load is transferred from the drive gear to the follower gear using the nonlocal
peridynamic contact algorithm. The improved adaptive dynamic relaxation approach is used to
determine the static solution for each load cycle. The fatigue bending crack angle errors are within
2.92% and the cycle number errors are within 10%. According to the experimental results, the
proposed peridynamic fatigue model accurately predicts the location of the crack without the need
for additional criteria and the fatigue life predicted by the simulation agrees quite well with the
experimental results.

Keywords: peridynamic fatigue model; flexural fatigue crack; crack initiation and propagation;
fatigue life prediction

1. Introduction

Contact surfaces are common in both natural and constructed systems and they
are frequently linked to structural and material failures, including pitting and flexural
cracking [1,2]. Therefore, material fractures caused by periodic contact stresses need to be
investigated both in terms of flexural crack growth and prediction of fracture behavior. In a
gear transmission, contact between gears occurs when a pair of gears transmits power in
different operating environments. Under the continuous action of the internal mechanism
and the external environment, the Hertzian alternating stress on the tooth surface causes
periodic bending stresses at the tooth root, which leads to the development of fatigue cracks
at the tooth root surface [3,4]. The entire process of tooth fracture formation, including crack
initiation, propagation, and final fracture, must be considered. In recent years, contact stress
has increased, leading to more fatigue cracks on the tooth surface and root, which results
in considerably greater maintenance costs. The gear may eventually fracture and even
break if prompt action is not taken to stop the crack from spreading, seriously endangering
its effectiveness and safety [5,6]. Due to the uncertainty of loads and material properties,
predicting the initiation and propagation of fatigue in a structure is a difficult task. The
fatigue damage law should be derived to ensure safe operation and reduce costs [7,8]. To
ensure the effectiveness of the gear and lower maintenance costs, it is crucial to investigate
the characteristics of fracture propagation at the tooth root.

Many scholars around the world have studied this typical fatigue damage of a gear
under cyclic loading, mainly focusing on the crack initiation, crack propagation and crack
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development patterns of tooth fracture with a series of experimental studies [9,10]. Do-
mestic and foreign scholars have carried out experimental studies on the fatigue of gears
through chemical analysis, metallographic investigation, hardness measurement and other
methods. The basic idea is to divide the fatigue life of gears into the life at crack initiation
and the life at crack propagation and calculate both. The final fatigue life of a gear is
obtained by adding the two values. The contact fatigue life of gears is mainly calculated
by an analytical method and the flexural fatigue life of the tooth root is calculated by a
combination of analytical method and the finite element method [11–13].

Thanks to advances in computer technology, numerical simulation techniques are now
frequently used to reproduce and explain phenomena observed in experiments [14,15].
Numerous experimental studies are increasingly using numerical models based on classical
continuum mechanics, such as the finite element approach [16] and boundary element
method [17]. This method overcomes the shortcomings of conventional gear life calcula-
tions, such as insufficient data on the fatigue properties of gear materials and inaccurate
stress calculations. The continuous 3D body is first discretized into a finite number of small
elements. All displacements and forces are calculated using nodes, where the nodes con-
nect the individual elements [18,19]. In each discretized element, a suitable interpolation
function must be chosen at the inner boundary (subdomain interface) and the outer bound-
ary (subdomain and outer interface) of the subdomain that satisfies certain conditions in
that domain.

Currently, computer techniques for simulating the continuity discontinuity problem
rely on the standard continuum mechanics partial differential equations. However, for
discontinuities, such as crack branching in solid materials and structures, conventional
numerical methods have the problem of singularity and low computational power [20,21].
The use of lattice reconstruction or the method of inserting a cohesive element into the
finite element would lead to lattice-dependent results [22]. The partition algorithm and the
notional crack model used by the boundary element method (BEM) have similar limitations
to the finite element method in the analysis of crack propagation problems [23]. As a
result, academics have suggested the extended finite element approach. It lessens the tight
constraints on the mesh discontinuity when compared to the conventional finite element
approach [24,25]. However, in constructing the extension function, the extended finite
element method needs to know in advance the characteristics of the problem to be solved.
This condition is relatively difficult for complex problems, such as crack branching and
multiple-crack intersections.

Due to the spatial partial differential equations used to model the motion of the particle
under consideration, the stress at the fracture tip is mathematically single [26,27]. As a
result, crack initiation and propagation are individually modelled using different criteria.
Determining the correlations between the damage parameters at the fatigue crack tip that
describe the damage progression under cyclic loading is the main goal of the extended finite
element approach and numerous other modified damage models [28,29]. The fundamental
issue is that fatigue crack tips or crack faces cannot be directly applied to these models. The
body in each calculation method was redefined and extra equations were included so that
the additional assessment criteria for evaluating fracture propagation and crack angle are
obtained [30,31]. Corrective actions were taken for the current techniques.

The use of the stress separation rule for the opening model I, the fracture mechanism
and the mixing model under external loading to solve these problems is a milestone in
computational mechanics [32,33]. The interfaces in the material are modeled using the
provided law and cohesion zone elements are placed on the ill-defined region using con-
ventional methods. The development of fatigue cracks demonstrates the property of mesh
dependence, which requires the use of a special dehumidification technique. However,
the mesh structure and density affect the rate of crack initiation. Even in simple cracking
models, the solid-state dehumidification process is often complex, making convergence of
results difficult [34,35]. The extended finite element approach is proposed as a compromise
to eliminate meshing in fatigue crack propagation to circumvent these difficulties. Its
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typical features include the probability of the crack propagating across the element surface
and a local strengthening effect. The need to construct additional control equations for
factors, such as fatigue crack location, fracture angle and direction, crack extension and
arrest under external loading, does not affect the model FEM, various modified versions or
the XFEM method [36,37]. In other words, the standard framework of continuum theory
is used to treat the onset and extension of fatigue cracks with a one-sided treatment strat-
egy that incorporates various mathematical systems. Dislocations and grain boundaries
directly govern the entire process of fatigue fracture and this is where most microcracks
occur [38,39]. They range in size and duration from microscopic to macroscopically obvious
cracks. Therefore, it is challenging to predict the location of fatigue nucleation using a
numerical solution and to draw this conclusion from a complicated and unpredictable
testing technique [40–42].

Although many laws and equations have been derived to describe the two phases of
the evolution of cracks and fissures, the key to the cracking problem in the field of classical
local continuum theory is still unsolved and complicated. The crucial and contradictory
step in this framework is the application of the continuum equation to discontinuities in the
body, which leads to the contradictory results [43,44]. The material structure control equa-
tion cannot handle processes that lead to fractures or other discontinuities and numerous
solutions are proposed to remove the discontinuity from the original framework. This pro-
cess promotes fuzziness and ambiguity, especially when cracks develop and propagate [45].
The size of the element and the way the edges are treated have a significant impact on
traditional numerical techniques, such as FEM and XFEM. A mesh-free method based on
continuum mechanics was developed to reduce this dependence and obtain accurate results.
Two rules [46] are satisfied by the new mesh damage model. First, at the crack tip without
unique stress and strain values, where the transition from the continuous phase to the
discontinuous phase is smooth, accurate numerical solutions are normal. Secondly, there is
excellent agreement between the fracture model and crack progression and empirical data
collected at the research facility.

To resolve the contradiction between the continuity assumption and the discontinuity
phenomenon of the failure problem, Silling [47] proposed a nonlocal method called peridy-
namics (PD) to describe the motion process of material particles. In contrast, a peridynamic
theory (PD) calculates the internal force acting on a material particle using spatial integral
equations rather than derivatives of the displacement field [48–50]. One component in
the constitutive model is material damage. Peridynamics allows for crack propagation
at numerous locations with natural paths, not just along the element boundary in a co-
herent framework, without requiring specific criteria for crack growth. To represent the
progression of damage in a peridynamic solid, this nonlocal theory reconstructs the particle
control equations using a novel model. The integral representation solves the discontinuity
problem more effectively than partial differential forms when the given particle is in contact
with other neighbors in a finite region, the peridynamic radius. Peridynamics has the
advantage of predicting the type of cracks that can occur in fatigue damage under cyclic
loading. Material damage begins and propagates naturally; therefore, additional criteria
are unnecessary. Moreover, due to the novel particle interactions between the peridynamic
solid, the path of the crack is arbitrary, unlike the classical frame that propagates only along
the finite element boundary. The PD theory can connect the micro-length scale with the
macro-length scale [51–53]. The results show that peridynamics has no singularity problem
in the analysis of the failure problem and can simulate the whole process of the material,
including macroscopic crack initiation, propagation and final failure. The above simulation
of failure is based on bond-based peridynamics theory (BBPD). However, the bond-based
peridynamic theory has some problems, such as Poisson’s ratio restriction and lack of
connection with traditional continuum theory. Silling et al. [54] proposed an ordinary
state-based peridynamic theory (OSBPD) and a non-ordinary state-based peridynamic
theory (NOSBPD). Both of them adopt the advantages of BBPD for solving discontinuous
problems and have a similar definition of state variables as traditional physical variables.
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In recent years, many researchers have started to study the contact model based on the PD
method. Madenci et al. [55] developed a NOSBPD model for brittle fracture to simulate
edge impact and drop ball test and discussed the contact algorithm between projectile and
target. Littlewood et al. [56] summarized the simulation results of the finite element method
and peridynamics. A combined approach of finite element method and peridynamics via
a contact algorithm is used. Kamensky et al. [57] summarized several existing peridy-
namic contact friction models and introduced a state-based nonlocal friction formulation to
demonstrate the properties of different peridynamic contact models using some impact
and penetration problems. In the case of small deformations, this model agrees with the
classical Hertzian contact analysis. Silling et al. [58] proposed a new PD model to simulate
elastoplastic behavior, creep and fracture.

Lengths in different sizes, from micro to macro, are included in the damage model PD
during fatigue loading. Without making any special assumptions, we can use this formu-
lation to model fracture initiation, propagation, branching and coalescence. Oterkus and
Madenci [59] first introduced the peridynamic fatigue damage law, while Nguyen et al. [60]
then proposed a modified version based on a fundamental physical theory. A continuous
model was used to represent the whole process of fatigue damage due to cyclic loading
and the results of conventional fatigue tests were used to validate the characteristic fatigue
parameters. The damage model in [61,62] deals with the onset and propagation of fatigue
cracks under cyclic loading. A suitable damage law is derived from the S–N curve and
Paris law, which causes crack initiation and propagation. The test results show that the peri-
dynamic simulation results agree very well with the decrease in stiffness and strength. The
results show that the usual fatigue damage peridynamic model is capable of handling the
specifics of fracture initiation and propagation without the need for additional rules [63,64].

In this study, a nonlocal peridynamic contact technique and 3D J peridynamic inte-
gration are introduced to propose a new bending-fatigue damage model based on OSPD
theory for a gear pair. The arrangement of the remaining sections is given below. The
nonlocal peridynamic contact algorithm between two contact surfaces based on OSPD
theory and contact and slip theory is briefly described in Section 2. In Section 3, the peridy-
namic fatigue model for gear pairs is established and the bending stress at the tooth root is
determined by the interfacial loading transformation. The peridynamic criteria for crack
initiation and propagation are established. The failure process of a tooth fracture under
periodic bending loading is simulated in Section 4 along with an explanation of the overall
numerical calculation methodology. The static solution for each loading cycle is derived
using the improved adaptive dynamic relaxation approach. The convergence analysis for
two pairs of gears operating under different loading conditions is described in Section 5.
The experimental results show that the proposed method effectively captures the crack-
sensitive region without the need for additional criteria. The fatigue life obtained in the
simulation agrees quite well with the experimental results, which proves the effectiveness
of the proposed approach.

2. Nonlocal State-Based Peridynamic Contact Algorithm

In this part, we construct a new nonlocal version of the state-based peridynamic
contact model, describe peridynamic contact connections for nonlocal contact modeling
and develop contact forces to treat rolling and sliding contact conditions.

2.1. State-Based Peridynamic Theory

State-based peridynamic theory uses displacements instead of displacement deriva-
tives in its spatial governing equations. A material particle enters into connections with
other particles via the prescribed reaction function in a nonlocal region. Based on the
principle of virtual work, the equation for the motion control of a material particle x(k) can
be expressed as follows: {

d
dt [

∂L
∂

.
u(k)

]− ∂L
∂u(k)

= 0

L = T −U
(1)
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where L is the Lagrangian function and T and U denote the total kinetic and potential
energy of the body. If you add the kinetic and potential energy of all material particles, you
can calculate the total kinetic and potential energy of the body.

T =
∞
∑

i=1

1
2 ρ(i)

.
u(i) ·

.
u(i)V(i)

U =
∞
∑

i=1
W(i)V(i) −

∞
∑

i=1

(
b(i) · u(i)

)
V(i)

(2)

The following expression can be used to replace the strain energy density W(i) of the
material point x(i).

W(k) =
1
2

∞
∑

j=1

1
2 (w(k)(j)

(
y(1k) − y(k), y(2k) − y(k), · · ·

)
+w(j)(k)

(
y(1j) − y(j), y(2j) − y(j), · · ·

))
V(j)

(3)

where w(k)(j) = 0 f or k = j, then the potential energy can be expressed as:

U =
∞

∑
i=1

1
2

∞

∑
j=1

1
2

 w(i)(j)

(
y(1i) − y(i), y(2i) − y(i), · · ·

)
+w(j)(i)

(
y(1j) − y(j), y(2j) − y(j), · · ·

)V(j) −
(

b(i) · u(i)

)V(i) (4)

Using Equation (1), the Lagrangian can be stated in expanded form by defining only
the terms related to the material point, x(k).

L = . . . + 1
2 ρ(k)

.
u(k) ·

.
u(k)V(k) + · · ·

· · · − 1
2

∞
∑

j=1

{
1
2

[
w(k)(j)

(
y(1k) − y(k), y(2k) − y(k), · · ·

)
+w(j)(k)

(
y(1j) − y(j), y(2j) − y(j), · · ·

)]
V(j)

}
V(k) · · ·

· · · − 1
2

∞
∑

i=1

{
1
2

[
w(i)(k)

(
y(1i) − y(i), y(2i) − y(i), · · ·

)
+w(k)(i)

(
y(1k) − y(k), y(2k) − y(k), · · ·

)]
V(i)

}
V(k) · · ·

. . . +
(

b(k) · u(k)

)
V(k) · · ·

(5)

As can be seen in Figure 1a, the material point x(k) interacts directly and nonlocally
with all points that lie within a distance δ of x(k). We call δ the horizon and refer to the
spherical region with radius δ centered at x(k) as Hx(k) , the family of x(k). As can be seen
in Figure 1b, the deformation at x(k) depends collectively on the deformations of Hx(k) .
The motion equation of the material particle x(k) in the deformed configuration is revised.
Equation (5) is substituted into Equation (1) to obtain the following Lagrangian equation
for the material point x(k):

ρ(x(k))
..
u(x(k), t) =

∫
Hx(k)

{
T[x(k), t]

〈
x(j) − x(k)

〉
− T[x(j), t]

〈
x(k) − x(j)

〉}
dH(x(k))

+b(x(k), t)
(6)

where ρ represents the mass density, T is the force state described below, the angle brackets
to indicate the vector x(j) − x(k) on which the state T acts and b is an external body force
density. The corresponding peristatic equation can be expressed as follows:

−
∫

Hx(k)

(
T[x(k), t]

〈
x(j) − x(k)

〉
− T[x(j), t]

〈
x(k) − x(j)

〉)
dH(x(k)) = b(x(k), t) (7)
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Figure 1. Kinematics of state-based PD material particles. (a) Peridynamic body and particle horizon;
(b) motion of material particle within its horizon.

Each point x(k) of the peridynamic body interacts directly with each point of the
radius sphere Hx(k) , as shown in Figure 2a (the family of x(k)). In its deformed state Y, the
deformation state eventually forms a bond ξ. The relative displacement between a material
particle and the other material particles within its horizon determines the force state for
that material point. Therefore, the force state can be expressed as follows:

T[x(k), t] = T(Y[x(k), t]) (8)
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(b) deformation state Y〈ξ〉 acting on bond ξ.

All relative position vectors in the particle’s horizon x(k), y(j) − y(k)
(

j = 1, 2, · · · , ∞
)
,

as depicted in Figure 2b, are described as follows:

Y
(

x(k), t
)
=


y(1) − y(k)

...
y(∞) − y(k)

 (9)

where Y
(

x(k), t
)

is the deformation vector’s current state. According to Equation (5), a
material point’s x(k) overall reaction is dependent on the deformation of all bonds that are
connected to the particle.
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2.2. Contact Criteria for Sliding and Rolling between Two Surfaces

As shown in Figure 3a, the contact between two physical surfaces is nonlinear and
discontinuous. Based on Hertz’s contact theory, the contact area between the two surfaces
is expressed as follows:

Ra =

√√√√√3P
4

1−µ2
1

E1
+

1−µ2
2

E2
1
a1
+ 1

a2

(10)

where a1 and a2 are radius of curvature, µ1 and µ2 are the Poisson ratios, E1 and E2 are
elastic modulus of elasticity and Ra is the radius of the contact area.
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and target surface.

As can be seen in Figure 3b, the peridynamic numerical methods artificially plot the
interfaces of the gate and contactor surfaces by extending to 0.5d1 and 0.5d2 from the nodes
of the interfaces along their outer ordinary unit vectors n1 and n2, where d1 and d2 are
the lattice sizes of the peridynamic gate and contactor bodies. In peridynamic modes,
since there must be no overlap of substances for contact to occur, contact occurs when the
following conditions are satisfied:{

dx = (yi − yk) · n ≤ 1
2 (d1 + d2)

|yi − yk| ≤
√

2
2 (d1 + d2)

(11)

where n is the unit normal vector of the contact surface, yi and yk are the deformed vectors
of the boundary particles xi and xk, xi and xk being the outermost nodes belonging to
contactor body and target body, respectively, and dx is the distance between two dashed
parallel lines.

If inequalities (11) are satisfied, the particle xi of the interface is in its contact region
Hic. As for the boundary node xi itself, δc is the radius of the peridynamic horizon for the
calculation of the contact force and xk is the particle on the boundary target body. The
contact region Hic is defined as follows: h = a2 −

√
(a2)

2 −
(

1.5Ra
2

)2

SHic = 2πa2h
(12)
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where Ra is calculated in Equation (6) and SHic is the surface area of the contact region Hic.
The particle xk that belongs to the virtual target surface in the region Hic and the contact
horizon δc is defined. Once the surface of the contact region Hic is confirmed, the number
of all boundary contact nodes of the virtual target surface can be confirmed.

2.3. State Forces in Contact Region

The peridynamic contact bond ξc
ik, which is illustrated in Figure 4a, describes the

connection between the boundary contact node and its contact nodes and is defined as
a thick dashed line to distinguish it from the true peridynamic bond. The peridynamic
contact bond ξc

ik can be defined as follows:

ξc
ik = xk − xi (13)

where x
〈
ξc

ik
〉

and Y
〈
ξc

ik
〉

are reference vectors and deformed vectors in the contact re-
gion. The bond ξc

ik deforms when contact occurs and two forms of deformed states are
described as: 

Tt
〈
ξc

ik
〉
=
|Y〈ξc

ik〉|−|X〈ξc
ik〉|

|X〈ξc
ik〉|

Tn
〈
ξc

ik
〉
=
|Y〈ξc

ik〉·n|−|X〈ξc
ik〉·n|

|X〈ξc
ik〉·n|

(14)

where Tt
〈
ξc

ik
〉

is the bond stretch along the deformed bond directions and Tn
〈
ξc

ik
〉

is the
bond normal stretch along the bond normal direction, which is also the tangential directions
of the contact surface.
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In this nonlocal contact calculation method, two forms of peridynamic contact bond
forces are defined for two exclusive contact cases. As for sticking cases, the contact bond
force is described as follows:

FTt〈ξc
ik〉 = cTt Tt〈ξc

ik〉ω〈ξ
c
ik〉

Y
〈
ξc

ik
〉∣∣Y〈ξc

ik
〉∣∣ (15)

As shown in Figure 4b, sliding friction forces are divided into peridynamic regular and
tangential adhesion forces. These two types of adhesion forces can be expressed as follows:{

Fn
〈
ξc

ik
〉
= −cTn Tn

〈
ξc

ik
〉
ω
〈
ξc

ik
〉
n

F f
〈
ξc

ik
〉
= µ

∣∣Fn
〈
ξc

ik
〉∣∣e (16)

where Tt and Tn are the deformed bond and the bond normal strain of the bond from
Equation (14), µ is the function coefficient, ω is the influence function, n and e are the
unit normal and tangent vectors of the contact floor, respectively, and e is equal to the slip
distance. For the peridynamic contact bond, the sticking and sliding micromodulus are
cTt and cTn , respectively. The detailed derivation of the two parameters is shown in the
Appendix A.
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In general, the manifestations of the peridynamic bond force are exceptional for
the sticking and sliding contact. The sticking contact bond can be considered as a true
peridynamic compressive force, because the strain Tt is used to calculate the bond pressure
computation. Along the deformed vector, the force is applied. Just like the sliding friction
contact, the tangential component of the bond deformation does not contribute to the bond
forces and does not affect the contact bond forces when calculating the normal strain Tn. In
addition, the contact bond forces for each sticking and sliding case are limited by Newton’s
Third rule.

F〈ξc
ik〉 = −F〈ξc

ki〉 (17)

where this guarantees the requirement of linear admissibility and provides the bond force
structures of the contact area nodes.

2.4. Contact Algorithm between Two Discrete Peridynamic Bodies

The groups of nodes near the boundary are confirmed for the practice of contact
evaluation practice. If the contact condition is satisfied during each iteration step, the
sticking force and the sliding normal force are calculated and the normal vectors of the
contact region are then checked. The sticking contact forces for static and dynamic frictional
contact are calculated. The whole process of the nonlocal state-based peridynamic contact
algorithm can be illustrated, as shown in Figure 5.
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3. Peridynamic Fatigue Model

In this phase, a model for peridynamic fatigue is developed that is state based and
focuses primarily on the mechanism of fatigue. When a joint first fails during the cracking
phase, subsequent joints experience progressive deterioration due to repeated bending
loads greater than the local fatigue strength in the peridynamic solid. Under different
fatigue loads, each bond in the peridynamic solid is characterized as an ideal fatigue
specimen. In a peridynamic solid, the bond points are connected by physical interactions.
The physical interactions are permanently extinguished when the bonds break within the
confined region, the irrevocable breaking of the spring-like bond between the two particles,
m and j. As a result, the fatigue load is redistributed within the peridynamic solid at each
loading cycle, causing progressive fatigue damage that propagates independently.

3.1. Damage Models for Peridynamic Bond and Material Particle

The particles xj and xm sustain progressive damage as a result of the failure of bond
ξ jm in the peridynamic solid body, as shown in Figure 6a.

djm(ξ, t) =
{

1 i f ξ jm is broken
djm
(
ξ jm, s, t

)
otherwise

(18)
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Figure 6. The progressive failure leading to crack surface. (a) The force on peridynamic bond.
(b) Progressive failure of peridynamic bond.

As shown in Figure 6b, the failure of a bond ξ jm in the peridynamic solid leads to
incremental damage to the particles xj and xm. As a result, the stress on the material
particles could be redistributed by the force density at each loading cycle, leading to self-
repeating damage to the neighboring bonds. The progressive failure of the damaged bonds
leads to a crack surface P crack in the peridynamic material body. As with the original
particles not in the contact region, the particle damage is described as a weighted ratio
between the range of eliminated bond interactions and the general variety of provisional
interactions within its horizon family. The fatigue damage of a point at an arbitrary bending
stress is defined as in Figure 6b: when a bond fails in a peridynamic solid, the particles xj
and xm are progressively damaged. As a result, the force density can transfer the stress to
the material particles at each loading cycle, repeatedly damaging the nearby bonds. The
peridynamic material body develops a fracture surface P crack as a result of the gradual
collapse of the broken bonds. The damage to the particles is defined as the weighted ratio
between the region of eliminated bond interactions and the overall diversity of provisional
interactions within their horizon family, similar to the original particles that were not in
the contact region. The fatigue damage of a point under any bending load is described
as follows:



Materials 2022, 15, 7762 11 of 27

Dx(j) =

∫
Hx(j)

djm
(
ξ jm, s, t

)
dVm∫

Hx(j)
dVm

(19)

Hence, between the horizon areaHx(j) and the center point xj, dVm is an incremental
volume for the material particle xm.

3.2. Fatigue Flexural Crack under Cyclic Bending Stress

As shown in Figure 7, during gear meshing, the driving gear transmits the load to the
driven gear via the contact tooth surface. The driven gear experiences a bending moment
and forms a bending stress concentration at the tooth root position (in the red circle). As
the driving gear rotates continuously, the driven gear is subjected to cyclic bending stress.
Over time, cracks form at the tooth root, which grow into long cracks and eventually
lead to fracture. Therefore, the key to accurate tooth root stress calculation lies in the
quality of the tooth contact surface transfer algorithm. In Section 2, a nonlocal peridynamic
contact algorithm is proposed. Based on this contact algorithm, the transmitted load can be
calculated and transferred to the driven gear.
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Figure 7. Contact surface between driven and driving gear.

In real peridynamic models, failure of one bond increases the stress on neighboring
bonds, increasing the probability that these bonds will also break down. This leads to a
progressive crack. Fractures are often arranged in two-dimensional surfaces that represent
cracks. Figure 8a shows that not only bonds perpendicular to the crack surface, but also
bonds with different orientations play a role in crack propagation. Crack formation and
propagation occur spontaneously and autonomously, i.e., without reference to any of the
flexible equations that govern these phenomena.
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The direction of the crucial bonds in fracture model I is vertical, as seen in Figure 8a.
Under the cyclic bending stress within the horizon, the bonds gradually fracture as the
crack spreads in the x-direction. When compared to surrounding and other bonds, the
strain on a certain essential bond is the greatest. The amount of critical bond strain s∗critical
can be determined using the elastoplastic theory as follows:

s∗critical(δ) = ŝcritical
K

E
√

δ
(20)

where K is a dimensionless quantity that reflects the EPFM’s elastic–plastic stress intensity
factor, ŝcritical is the so-called coefficient of strain, δ is the horizon radius and E is the elastic
modulus for elastic–plastic deformation.

Figure 8b illustrates how the crucial bond and neighboring fracture produce a plastic
zone r∗p close to the fatigue crack tip. The coordinate system’s value z is smaller than
the radius of the elastic–plastic zone, which is measured in millimeters (mm). When the
relationship z � δ is satisfied, the strain distribution of the peridynamic bonds in this
elastic–plastic zone approaches the strain distribution of the finite elements. According
to the elastoplastic theory, the zone’s peridynamic linkages are subjected to the follow-
ing strain:

s(z) =
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E
√

2πz
(0 6 z 6 r∗p) (21)

Equations (20) and (21) are combined to form the following expression for a function
f̂
( z

δ

)
that is not dependent on external cyclic loading:

f̂
( z

δ

)
=

1
ŝcritical

√
2πz/δ

(22)

Damage is often modeled in peridynamics by irreversible bond breaks. In a sense, after
a bond is broken, it no longer maintains a force density. There are many types of criteria for
bond base fragmentation. The simplest criterion is that the bond has uniform elongation:

s =
e〈ξ〉
|ξ| (23)

A certain critical threshold s∗ is exceeded. This critical bond strain can vary depending
on position, bond length, bond orientation, time, temperature or other conditions. The
fatigue model described in this paper consists of a special failure criterion that does not
explicitly consider the critical bond strain. Instead, each key has a history variable that
characterizes the cumulative damage through multiple loading cycles.

On the basis of a one-dimensional argument, a stronger statement can be made with
respect score to K. The only length scale in the near-field model is the horizon δ. The
dimensions of K, E, δ and score can be expressed as follows:

[k] =
F

l3/2
, [E] =

F
l2 , [δ] = l, [score] = 1, (24)

Since there is only one way to obtain a dimensionless combination of the first three
methods and since the material response is linear, it follows this approach:

score(δ) = ŝcore
K

E
√

δ
(25)

where ŝcore is a dimensionless parameter independent of E, K and δ. Similarly, for type I
crack tips, there must be a coordinate system and a function f̂ that is independent of the
load, which can be expressed as follows:
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s(z′1, z′2, z1, z2) = score(δ) f̂ (
z′1
δ

,
z′2
δ

,
z1

δ
,

z2

δ
) (26)

For any two points close enough to the origin, (z1, z2) and (z′1, z′2), it has f̂ (0, 0, 0, 0).
If we restrict the above equation to the bonds along the axis of the type I crack, which

are perpendicular and symmetrical to the crack and set, we can simplify the notation
and writing:

s(z) = score(δ) f̂
( z

δ

)
, f̂ (0) = 1 (27)

The load, material properties and length scale δ are contained in the monomial score(δ),
so K and E, which are not used directly in the peridynamic model, do not appear explicitly.
If the distance to the crack is far enough, when z >> δ, the peridynamic bond strain field
must be close to the LEFM strain field.

s(z) ∼ K
E
√

2πz
, as z→ ∞ (28)

3.3. Peridynamic Criteria for Crack Initiation and Propagation

The mechanisms of fatigue bending cracking can be represented as two continuous
phases, nucleation and propagation, as shown in Figure 9a. The strain of a bond in the
nucleation phase is unrelated to the active cycle number. When a bond enters a fatigue
fracture development state, its strain changes over time. When a compound goes through
the fatigue fracture development phase, its strain changes. For the given material particle
x(i), the bond ξik (as sky blue color) in the horizon of particle x(k) reaches the propagation
phase when the damage to the particle Di(xi) meets the following conditions:

Di(xi) ≥ 0.5 (29)
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Figure 9. Transition from tooth root fatigue crack nucleation to propagation. (a) Nucleation of fatigue
crack. (b) Propagation of fatigue crack.

This transition method is the same with the particle x(j), within the range of parti-
cle x(m).

4. Simulation Process of Tooth Root Fatigue Crack Initiation and Propagation
4.1. Fquivalent J-Integration between OSPD and EPFM

The load point is subjected to cyclic, uninterrupted shocks that accumulate damage in
peridynamic solids. The cyclic damage of a loading cycle is simulated by the quasi-static or
static solution. Therefore, the static problems of each loading cycle are defined to calculate
the accumulated damage. The integral differential under bending force is the control
equation for fatigue cracks.
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As shown in Figure 10a, the deformation rate of three-dimensional crack J integral is
defined according to the physical meaning of J integral as:

J = lim
∆θ→0

− dU
dA0

+
x

∑ Ω

(
Tx

du
dA0

+ Ty
dv

dA0
+ Tz

dw
dA0

)
dA

 (30)

where ∑ Ω is a closed surface consisting of two crack front normals with angle ∆θ and
an arbitrary surface containing a crack tip plane, U is the deformation energy in the
enclosed region surrounded by ∑ Ω, U =

t

V
WdV, dA0 is the microsurface of the normal

propagation of the crack front and dA0 = R∆θdR.
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Based on the cylindrical coordinates, as shown in Figure 10a, Equation (30) can be
expressed as follows:

J = lim
∆θ→0

1
R∆θ

[
− d

dR
t

V
Wrdrdθdz+

s

Ωrz

((
Tr

du
dR + Tθ

dv
dR + Tz

dw
dR

))
rdθds

+
s

Ω±θ

((
Tr

du
dR + Tθ

dv
dR + Tz

dw
dR

))
drdz

] (31)

It can be observed that on the basis of the calculus mean value theorem, the Ω−θ

surface, Tr = −τθr, Tθ = −σθ , Tz = −τθz and on the Ω+θ surface, Tr = τθr +
∂τθr
∂θ dθ,

Tθ = σθ +
∂σθ
∂θ dθ, Tz = τθz +

∂τθz
∂θ dθ. Then, Equation (31) can be simplified as follows:

J = 1
R

[
− d

dR
s

Ωθ

Wrdr +
∮
Cθ

(
Tr

du
dR + Tθ

dv
dR + Tz

dw
dR

)
rds

+
s

Ωθ

∂
∂θ

(
τθr

du
dR + σθ

dv
dR + τθr

dw
dR

)
drdz

] (32)

According to Figure 10b, an analogous stress intensity factor along the crack front is
defined as follows to establish a correlation between the flexural fatigue crack tip in OSPD
and EPFM:

Kequiv = 1
R

[∫
Γθ

Wrdz−
(

Tr
∂u
∂r + Tθ

∂v
∂r + Tz

∂w
∂r

)
rds

−
s

Ωθ

∂u
∂θ

(
τθr

∂u
∂r + σθ

∂v
∂r + τθz

∂w
∂r

)
drdz

] (33)
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where Tθ is an integral path around the crack tip in a counterclockwise orientation on the
normal plane of the crack front from any location on the lower surface of crack to any
position on the upper surface, Ωθ is a region surrounded by the crack tip boundary and Γθ

on the normal plane of the crack front, W is the deformation energy density at any particle
on the path Γθ and this deformation energy density can be calculated as follows:

W =
∫

σrdεr + σθdεθ + σzdεz + τrθdγrθ + τθzdγθz + τzrdγzr (34)

4.2. Numerical Method for Static Solution

When certain bonds expire for the duration of a charge cycle, a new static solution is
derived for the current cycle. For a given particle, the equation for the motion manipulation
is a governing differential equation with notional inertia terms. As for all particles in a
structure, a set of equations is expressed as follows:

D
..
U(X, t) + ζD

.
U(X, t) = F(U,U’,X,X’) (35)

where X is the initial position vector, U is the first motion vector, ζ is the damping coefficient
and D is the virtual diagonal density matrix. X and U are applied as follows to material
particles in the peridynamic solid:{

XT = {x1, x2, · · · , xN}
UT = {u(x1, t), u(x2, t), · · · , u(xN , t)} (36)

where the configuration body’s total number of material points is given by the integer
N. Last but not least, the vector F is made up of body forces and PD contact and its kth

component can be expressed as follows:{
Vn+1/2 =

((2−ζn∆t)Vn−1/2+2∆tD−1Fn)
2+ζn∆t

Un+1 = Un + Vn+1/2∆t
(37)

where n represents the total number of iterations. The density matrix’s diagonal, D,
elements are implemented as follows:

γkk >
1
4

∆t2∑
j

∣∣∣Jkj

∣∣∣ (38)

If the stiffness matrix Jkj of the peridynamic material is solid under the additional
tiny placement hypothesis, it is then written as follows:

∑
j

∣∣∣Jkj

∣∣∣ = M

∑
j=1

∣∣∣ξ(k)(j) · e
∣∣∣∣∣∣ξ(k)(j)

∣∣∣ 4δ∣∣∣ξ(k)(j)

∣∣∣
 ad2δ∣∣∣ξ(k)(j)

∣∣∣ (vckVk + vcjVj) + b

 (39)

where the governing constants a, b and d are present and e is a unit vector pointing in
the direction of the nondiagonal. Summarizing the results will yield the stiffness matrix’s
constituent parts. Equations (37) and (35) can be used to express the damping coefficient as:

ζn = 2
√(

(Un)T1KnUn
)

/
(
(Un)TUn

)
(40)

where 1Kn is the diagonal “local” stiffness matrix, which is denoted as follows:

1Kn
ii = −

(
Fn

i /λii − Fn−1
i /λii

)
/
(

∆t
.
un−1/2

i

)
(41)
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4.3. Mesh Sensitivity in Peridynamic Static Solution

To study δ convergence, the horizon must contract while the distance between particles
remains constant. A particle cannot be connected to other particles in a discretized body if
δ is smaller than the distance between them. For this study, the largest particle distances
were considered up to the five largest particle distances; larger sizes were not considered
because of the increasing computational cost. The authors expanded all horizons by one
percent because it is advisable to do so to avoid omitting particles from a family due to a
floating-point error.

Cases are denoted as lmn for simplicity, where l is the number of samples, m is the
number of particles in the sample’s thickness (1 to 5) and n is the size of the horizon in
grids (1 to 5). Table 1 provides information on the particle and horizon sizes.

Table 1. Particle (h) and horizon (δ) sizes for all instances taken into consideration. Each specimen’s
mesh density and five various horizon diameters are taken into account.

Cases hx (m) hy (m) hz (m)

l1n(1 . . . 5) × 1.01 × hy 0.002068 0.002400 0.001958
l2n(1 . . . 5) × 1.01 × hy 0.001048 0.00105 0.001020
l3n(1 . . . 5) × 1.01 × hy 0.000669 0.000700 0.000684
l4n(1 . . . 5) × 1.01 × hy 0.000494 0.000516 0.000534
l5n(1 . . . 5) × 1.01 × hy 0.000389 0.00042 0.000434

As shown in Figure 11, according to the δ convergence study, results are most accurate
when the horizon size is three-times the grid size and accuracy declines as the horizon size
is increased more. The findings of five compression cases with horizon sizes of

√
2h were

comparable to or superior to those of cases with larger horizon sizes. This would suggest
that using horizon sizes other than those equal to the grid size times an integer can produce
results that are more accurate, but additional research is required.
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Despite varying grid sizes, the horizon to grid size ratio of three produces the best
accurate findings in the samples, according to the (δh) convergence study. At greater particle
spacings, horizon size

√
2h for compression is most accurate, but as particle spacings

become smaller, a horizon size of three grids produces more accurate results.

4.4. The Process to Simulate Tooth Root Fatigue Crack Initiation and Propagation

The OSPD model associates material particles with precise volumes in a region that
is uniformly discretized. Solving the PD equations of motion provides confirmation of
the structure’s response under static severe loading. The beginning and spread of fatigue
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cracks can be depicted in the common state-based theoretical framework PD, as illustrated
in Figure 12, in a manner similar to the classical process in the EPFM framework.
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5. Model Verification Based on Experimental Results
5.1. Fatigue Test Equipment

As seen in Figure 13, the wind turbine transforms wind energy through the impeller
into rotational kinetic energy, which is subsequently transferred to the generator through
the transmission system to produce electricity. Due to the low speed of the wind-driven
runner (typically 5 to 22 rpm), the speed of the gearbox must be increased to a high speed
suitable for operating the generator. The gearbox system, the heart of the wind turbine,
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essentially consists of the runner, the spindle, the speed-increasing gearbox, the generator
and the control system.
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Figure 13. Gear fatigue test platform schematic diagram.

To confirm the damage of the wind turbine gearbox under wind action, a full-scale
prototype test system was built in the laboratory, as shown in Figure 14. The test system
mainly consists of three parts: (a) Fan simulation part. The power consumption with
time-varying low speed and high torque is achieved by driving the reduction gearbox with
a frequency conversion motor. (b) Speed-increasing gearbox. The gearbox used in the
experimental platform has the same structural characteristics as the research object of the
project, a scale model with a power of 15 kW. The load motor of the simulated generator
uses the torque control method, so the frequency converter can be used to simulate the
actual operation process of the wind power gearbox under operating conditions. The scaled
prototype test system uses a typical “back-to-back” structure, which is also widely used in
various industrial gearbox test benches.

5.2. Sample Dimension and Input Parameters

The relative percentage contents of elements in the special alloy steel material are
shown in Table 2. The main mechanical property parameters of the special alloy steel
material at room temperature are shown in Table 3.
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Table 2. Related parameters of standard spur gear.

Gear Tooth Number Module/mm Pressue Angle Face Width/mm

Driving gear 19 5 20 40
Driven gear 48 5 20 40

Table 3. Main mechanical property parameters of special alloy steel material at room temperature.

Name E/GPa σ0.2/MPa σb/MPa Fatigue
Strength/MPa

Density
g/cm3

Poisson’
Ratio

Brinell
Hardness/HB

Shear
Modulus/GPa

Shear
Strength/MPa

18CrNiMo7–6 210 580 795 320 3.0 0.3 229 80 330

5.3. Results Comparison and Analysis

As shown in Figure 15, the use of the macroscopic crack remark method and informa-
tion recording generation, it can be seen that the driven gear has a tooth root crack. The
cycle numbers of the tooth root crack are recorded in Table 4.
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Figure 15. Marco tooth root fatigue crack of the test specimen. (a) driven gear sample; (b) crack
propagates under cyclic index Nc = N1; (c) crack propagates under cyclic index Nc = N2; (d) crack
propagates under cyclic index Nc = N3; (e) crack propagates under cyclic index Nc = N4; (f) crack
propagates along the red lines.
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Table 4. Cycle numbers and angles recorded for tooth root fatigue cracks.

Samples Initiation Propagation Angle

18CrNiMo7-6-1 298,910 286,410 62.5
18CrNiMo7-6-2 285,334 300,234 65.5
18CrNiMo7-6-3 300,368 265,036 59.3
18CrNiMo7-6-4 290,658 29,058 61.8
18CrNiMo7-6-5 300,648 200,489 58.8
18CrNiMo7-6-6 241,006 268,586 62.6

The average fatigue cycle number for the occurrence of the tooth root fracture is 276,154,
as indicated in Table 4 for cycle numbers throughout commencement. Thus, 268,136 is the
average number of fatigue cycles for all propagation. The total lifespan of the equipment
fatigue tooth crack comes to 544,290 when these lifestyle periods are added together.

We can observe that the angle between the fatigue crack and the base plane is approxi-
mately 60.5◦ when comparing Figure 15’s illustration of the fatigue crack’s path to Figure 16.
The average test result and this simulation result have a good correlation, as seen in Table 4.
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iterative step = 35; (d) crack propagates under iterative step = 50; (e) crack propagates under iterative
step = 60; (f) crack propagates under iterative step = 82; The red circles in the figures indicate the
crack length is gradually increasing.

As shown in Figure 17, the value of the equivalent stress intensity factor Kequiv becomes
larger as the number of iterations increases. The results show that as the initial crack length
increases, the stress intensity factor also increases and the stress intensity factor increases
proportionally to the load. Under the same initial crack length and load, the stress intensity
factor KI is much larger than KII and KIII; that is, the open crack is the main reason for the
fracture failure of wind power gear teeth under bending stress. According to Figure 17,
when the number of iterations rises, the value of the equivalent stress intensity factor Kequiv

increases. The findings demonstrate that the stress intensity factor increases proportionally
to the load and increases along with the first fracture length. The open crack is the main
cause of the fracture failure of wind power gear teeth under bending stress because, for
the same starting crack length and load, the stress intensity factor KI is significantly bigger
than KII and KIII.
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Figure 17. In each specified iteration, the equivalent intensity factors along crack front. (a) Cycle
number vs. crack growth step; (b) Kequiv along crack propagation front with iterative step = 5;
(c) Kequiv along crack propagation front with iterative step = 20; (d) Kequiv along crack propagation
front with iterative step = 35; (e) Kequiv along crack propagation front with iterative step = 50; (f) Kequiv

along crack propagation front with iterative step = 60; (g) Kequiv along crack propagation front with
iterative step = 82.

6. Conclusions

(1) A novel OSPD fatigue model for the initiation and propagation of fatigue cracks
at the tooth root was derived to evaluate the service life of the driven gear under
bending fatigue loading. The fatigue crack at the tooth root germinates and propagates
independently with this constitutive fatigue model.

(2) The application of the entire fatigue crack propagation in the tooth root to the sug-
gested damage model of ordinary state-based peridynamics is possible because the
model has no size limitations. In light of this, the OSPD fatigue model has effectively
taken into account cross-scale issues that may arise during the lifetime of fatigue
fractures in tooth roots.

(3) According to the time record, the tooth root crack germinates and grows into larger
fissures. The proposed version’s numerical calculation results and the outcomes of the
experiment show good agreement. According to our comparison, it is more effective
and accurate than standard fatigue models at reproducing the tooth root fracture
features as well as the spatial displacement of individual positions.

(4) Without extra guidelines for manual crack propagation, the natural production and
propagation of fatigue cracks in the tooth root is confirmed. A quantitative analysis
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of fatigue damage is performed. The evaluation of three-dimensional nucleation
of fatigue cracks in the tooth root to predict fatigue life is confirmed based on the
OSPD version.
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Nomenclature

Acronyms and abbreviations
FCG Fatigue crack growth SIF Stress intensity factor
BEM Boundary element method EPFM Elastic–plastic fracture mechanics
NOSPD Non-ordinary state-based peridynamics PD Peridynamic
Notations
Hx(j) he horizon region of pariticle x(j).
r∗p Elastic-plastic zone.
s∗critical The critical bond strain.
sc Bond critical stretch.
T, U The total kinetc and potential energy of the periydnmaic body.
P crack The crack surface.
Tt, Tn Deformed bond and bond normal strain.
cTt , cTn Sticking and sliding micromodulus.
ζ Bulk drag coefficient.
ρ The mass density.
ω Affect function.
n, e Unit normal and tangent vectors of the contatct floor.
n The number of iteration steps.
N The total material points in the configuration body.
δ The horizon of material particle.
δc The contact horizon.
Kequiv Equivalent stress intensity factor.

Appendix A

Mocromodules for Peridynamic Contact Bond

The contact force along its normal vector can be described as follows, as illustrated in
Figure 3, for the unit area of the contact surface.

fTn = pds = 2
∫

Hi c

f
_
〈ξc

ik〉 · ndVidVk (A1)

where f
_
〈ξc〉 represents the bond’s peridynamic contact force density for bond ξc

ik and p

represents the pressure on the contact surface, dVi and dVk are volumes of nodes i and k.
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Therefore, an equal normal compressive strain εTn = −ε0 is confirmed and the normal force
in the unit area is expressed as follows

fTn = p0ds = Ecε0 ds (A2)

where Ec is the stiffness of the contact. The total normal force can also be calculated using
the sticking bond force and the uniform strain ε0 in the sticking contact peridynamic model
as follows:

fTn = 2
∫

Hi c

f
_
〈ξc

ik〉 · ndVidVk = 2
∫

Hi c
cTt ε0 cos2 ϕω sin ϕdVidVk (A3)

The integration solution of Equation (A1) in three dimensions, where the impact
function ω = δc/

∣∣ξc
ik

∣∣ is employed, can be written as:

fTn =
4
3

cTt ε0δ3
c B dVx =

4
3

cTt ε0δ3
c B dsh2 (A4)

Considering Equations (41) and (A2), the peridynamic sticking contact micromodulus
can be obtained as

cTt =
3Ec

4δ3
c Bh2

(A5)

when Equations (21) and (23) are taken into account, the peridynamic sticking contact
micromodulus can be calculated as follows:

cTn =
3Ec

4δ3
c Bh2

(A6)

where δc denotes the contact horizon, B denotes the depth of the three-dimensional model,
h2 denotes the grid size of the contactor peridynamic model and Ec denotes the contact
stiffness, which is expressed as:

1
Ec

=
1− v2

1
E1

+
1− v2

2
E2

(A7)

where v1 and v2 are the contactor’s and target’s respective Poisson ratios, E1 and E2 are the
elastic modulus.

When the normal contact bond force is taken into account in the sliding contact
peridynamic model, the total force is:

fTt = 2
∫

Hi c

f
_
〈ξc

ik〉 · ndVidVk = 2
∫

Hi c

cTt ε0ωdVidVk (A8)

when the affect function ω = δc sin ϕ/
∣∣ξc

ik

∣∣ is utilized, the Equation (A6) can be rewritten as:

fTt = 4cTt
εφδ2

c B dVx = 4cTt
ε0δ3

c B dsh2 (A9)

Considering Equations (41) and (A7), the peridynamic sliding contact micromodulus
takes the form of:

cTt =
Ec

4δ3
c Bh2

(A10)

Equations (A3) and (A4) are typical expressions for the sticking and sliding bond
micromoduli for the peridynamic contact (A8). The contact region in Figure 2 is, however,
smaller in the discrete peridynamic models than the assumed half circle. The explicit
time integration approach in the dynamic contact problem would cause the numerical
disturbance to occur, much like the penalty contact model in the FEM. The sticking and
sliding contact micromodulus can be stated as follows for the more reliable solution:
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cTn = βTn

3Ec

4δ3
c Bh2

; cTt = βTt

Ec

4δ3
c Bh2

(A11)

where the changed coefficients are βTn and βTt . The final stable solution is not significantly
affected by the specified values of the modified coefficient for quasi-static contact issues, as
would be predicted. However, in dynamic issues, a relatively large value of the modified
coefficient would cause the contact force to oscillate and a modest contact micromodulus
would lead to an incorrect solution. However, sequential numerical testing can be used to
find the suitable adjusted coefficient, greatly reducing the numerical contact oscillation.
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