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Abstract: Fractional calculus plays an increasingly important role in mechanics research. This review
investigates the progress of an interdisciplinary approach, fractional plasticity (FP), based on fractional
derivative and classic plasticity since FP was proposed as an efficient alternative to modelling state-
dependent nonassociativity without an additional plastic potential function. Firstly, the stress length
scale (SLS) is defined to conduct fractional differential, which influences the direction and intensity
of the nonassociated flow of geomaterials owing to the integral definition of the fractional operator.
Based on the role of SLS, two branches of FP, respectively considering the past stress and future
reference critical state can be developed. Merits and demerits of these approaches are then discussed,
which leads to the definition of the third branch of FP, by considering the influences of both past and
future stress states. In addition, some specific cases and potential applications of the third branch can
be realised when specific SLS are adopted.

Keywords: fractional derivative; fractional plasticity; nonassociated; state dependence

1. Introduction

Geomaterials, such as clay, sand, ballast and rock, are often encountered or used in
practical engineering [1,2]. Before the designing and construction of infrastructure, site
investigation was usually carried out, to have a full understanding of the mechanical
properties of the underlying geomaterial. It was found that the constitutive responses of
geomaterials were state-dependent and non-associated, due to the frictional nature [3–6].
The associated plasticity developed for metals could not be simply employed for modelling
the stress and strain behaviour of geomaterials [7,8]. Instead, the non-associated plasticity
within the framework of critical state soil mechanics was often suggested [9]. However, the
classic non-associated plastic models required the incorporation of an additional plastic
potential function and a state parameter, to capture the state-dependent non-associated
behaviour of geomaterials, which inevitably resulted in the complexity of the developed
model. Recently, nonconventional mechanical approaches using fractional calculus [10–13]
have attracted increasing attention. Inspired by the fractional viscoplasticity (FVP) origi-
nally proposed by Sumelka [14,15], Sun and Sumelka [16], Lu et al. [17,18] and Qu [19,20]
developed a series of fractional plasticity (FP) models, to solve this limitation. Without
using an additional plastic potential function, the developed approach can be used to
characterise the state-dependent non-associated stress-dilatancy behaviour of geomaterials.

In this study, a comprehensive introduction to the development and application of
the FP for geomaterials will be provided, in terms of the role of SLS for carrying out
the fractional differentiation. Three branches of the FP will be proposed and discussed.
This study is intended to provide potential guidance for those who have an interest in this
research branch of stress-fractional mechanics.
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2. Progress in FP

The FP was originally established by incorporating the stress-fractional operator into
the associated plasticity. It was inspired by the pioneering work of Sumelka [14,15] on the
FVP. Nevertheless, these two types of research have differences with regard to the initial
definition of the stress-fractional operator. According to Sumelka et al. [21,22], the FVP was
developed based on the ‘short memory principle’, where the close virtual neighbourhood
of a stress state (σ

′
ij) (at a material point of interest) influences the fractional viscoplastic

strain (dε
vp
ij ) direction of the material, such that:

dε
vp
ij = Λ

RC
a Dα

b f
(

σ
′
ij

)
∥∥∥RC

a Dα
b f
(

σ
′
ij

)∥∥∥ (1)

where i, j = 1, 2, 3; Λ is the intensity of viscoplastic flow (provided as a material function,
as in original Perzyna [23] approach); D indicates partial differential; f is yielding function;
a and b denote the close virtual neighbourhood of a stress state (σ

′
ij); α is the fractional-

order, with α ∈ (n− 1, n] and n the positive integer; ‖ ‖ indicates the norm of a tensor.
The superscript, RC, denotes the Riesz–Caputo fractional derivative, where in FVP it was
defined by using the ‘short memory principle’ as:
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in which the superscript, C, indicates the Caputo fractional derivative; the definition of the
Caputo fractional derivative can be found in the Appendix A. Note that C

a Dα
σ
′
ij

f
(

σ
′
ij

)
is the

left-sided fractional derivative, whereas C
σ
′
ij

Dα
b f
(

σ
′
ij

)
is the right-sided fractional derivative.

Compared with FVP, the FP was developed based on the ‘long memory principle’,
where the initial stress onset (σ′0) or the targeted future stress

(
σ′cij

)
influences the fractional

plastic flow of the material at the current stress state. Thus, it is defined as:

dε
p
ij = dλC,RL
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(4)

where the superscript (C, RL) indicates Caputo fractional derivative or Riemann–Liouville’s
fractional derivatives; dλ is the non-negative plastic multiplier; σ′0 and σ′cij are the integral
limits. Equation (3) indicates the first type of the FP, here denoted as FP-n (n stands for
nonassociated), which was adopted by researchers [17,19,24] for capturing the nonassoci-
ated plastic flow of granular soil, while Equation (4) indicates the second type of FP, here
denoted as FP-sn (sn stands for state-dependent nonassociated), which was defined in [25]
for modelling the state-dependent nonassociated behaviour of granular soil. It is noted
that the FP-n based on Equation (3) assumes that the past loading history

(
σ′0 → σ′ij

)
plays

a role in the nonassociated plastic flow of geomaterial; the FP-sn based on Equation (4)
assumes an effect of the future reference critical state, i.e., the distance

(
σ′ij − σ′cij

)
from

the current stress state σ
′
ij to the corresponding future reference critical state σ

′
cij, on the

current plastic flow direction of geomaterial. Note that the future reference critical state
is a state which can be reached by soils subjected to sufficient shearing. This state was
experimentally and numerically evidenced in many reported researches [3,4,6,7,26–28],
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and characterized by the critical state lines in the mean effective stress v.s. deviator stress
space and the mean effective stress v.s. void ratio space. The current state is moving along
the yield curve until reaching the critical state line. Although the FP was developed based
on using fractional derivatives with power-law kernel, it can be also developed by other
definitions using, for example, the exponential kernel, as long as it has analytical solutions
of the yielding function. However, no matter which definition is used, the basic constitutive
relation for FP-n and FP-sn should be the same.

Reformulating Equations (3) and (4), one can have a unified description for the FP as:

dε
p
ij = dλ

∂α f
(

σ′ij, h̄ij

)
∂σ′αij

(5)

where h̄ij denotes the hardening variable of the yielding function. Then, one needs to
determine dλ for model application. Through applying the consistency condition at the
yielding surface, one has:

d f =
∂ f
(
σ′kl , h̄kl

)
∂σ′kl

dσ′kl +
∂ f
(
σ′kl ,h̄kl

)
∂h̄kl

dh̄kl = 0 (6)

where the hardening variable dh̄kl =
∂h̄kl
∂ε

p
ab

dε
p
ab. Substituting Equation (5) into Equation (6),

one has:

dλ = −

∂ f
(

σ
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)
∂σ
′
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∂ f
(
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)

∂h̄kl ∂
α f
(

σ
′
ab ,h̄ab

)
∂h̄kl ∂ε

p
ab ∂σ
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α

(7)

Then, substituting Equation (7) into Equation (5), one has the following constitutive
relation for the FP:

dε
p
ij =

1
H

nijmkldσ′kl (8)

where the hardening modulus (H), plastic flow tensor (nij), and plastic loading tensor (mkl)
can be derived as:

H =

−
∂ f
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)
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p
ab ∂σ

′
ab

α∥∥∥∥∥ ∂α f
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′
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α

∥∥∥∥∥
∥∥∥∥∥ ∂ f
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σ
′
ct ,h̄ct

)
∂σ
′
ct

∥∥∥∥∥
(9)

nij =

∂α f
(

σ′ij ,h̄ij

)
∂σ′αij∥∥∥ ∂α f (σ′rs ,h̄rs)
∂σ′αrs

∥∥∥ (10)

mkl =

∂ f (σ′kl ,h̄kl)
∂σ′kl∥∥∥∥ ∂ f (σ′ct ,h̄ct)
∂σ′ct

∥∥∥∥ (11)

Figure 1 modified from [29] schematically shows the plastic flow and loading directions
calculated using Equations (10) and (11), where a deviation of the plastic flow direction
from the plastic loading direction can be observed, indicating a nonassociated plastic flow
rule in the developed FP. Based on Equation (8), a series of FP models were developed
for the constitutive descriptions of different geomaterials. Depending on the definition
of the adopted fractional operator, these FP models can be categorised into two branches,
i.e., the ones considering the role of ‘past’ SLS [18,20,24] and the others considering the role
of ‘future’ critical-state SLS [25]. These two branches will be respectively introduced in the
next two sections.
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Figure 1. Schematic show of the loading and plastic flow directions.

2.1. FP-n: The Role of Past SLS
2.1.1. Modelling of Soils

As indicated by Equation (3), compared with the previous works [30,31], the SLS is
characterized by the length from current stress state to the reference stress state.
Sun et al. [32] pointed out that in geotechnical engineering if one took the consolida-
tion pressure instead of the zero-stress state as the initial stress state (σ′0), the developed
model could predict a higher strain. However, this prediction difference could be reduced
by tuning the values of some model parameters. For the sake of simplicity, σ′0 = 0 kPa
was thus assumed for model derivation in most cases, cf. [18–20,33–35]. Through this
assumption, the developed fractional plastic flow rule can be simple and yet flexible in
constitutive modelling.

Specifically speaking, to capture the stress-dilatancy behaviour of granular soil,
the following fractional-order dilatancy ratio (dg) based on the Modified Cam-clay (MCC)
function was proposed [33]:

dg =
0Dα

p′(p′)

0Dα
q f (q)

=
M2 − (1− α/2)

(
η2 + M2)

η2−α
(12)

where p′ = 1/3σ′ijδij and q =

√
3/2

(
σ′ij − p′δij

)(
σ′ij − p′δij

)
, are the mean effective stress

and deviatoric stress, respectively; δij is the Kronecker delta; M and η denote the critical-
state and current-state stress ratios, respectively. Unlike other critical state parameters, the
critical-state stress ratio (M) can be influenced by many factors, e.g., the particle shape [27],
but it should not be affected by fines content [26,36] or shearing mode [28,37]. The effect of
α on the stress-dilatancy behaviour of granular soil can be observed in Figure 2. It is found
that with the increase of α, the dilatancy ratio at the same level of stress ratio increases,
while with the increase of the stress ratio (η), the dilatancy ratio at the same α decreases.

It is worthwhile to mention that Equation (12) does not consider the dependence of
stress-dilatancy on the material state in its current form unless a state-dependent parameter
is introduced. However, state-dependent stress-dilatancy is a common phenomenon in
granular soils, e.g., sand and rockfill, where the stress-dilatancy behaviour is determined by
not only the current stress state but also the material state (i.e., void ratio, e, and pressure,
p′). To consider this, an empirical correlation of the fractional-order with the state parameter
ψ(= e− ec) can be suggested, such that

α = exp(−〈−∆ψ〉) (13)
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where ∆ is a material parameter; ec is the void ratio at the critical state; 〈 〉 is Macauley
brackets. Based on Equation (13), the state-dependent stress-dilatancy or plastic flow
direction can be captured. There are two chances for Equation (12) to be equal to zero: one
is at the phase transformation state where dg = 0, the other is at the critical state where
η = M, ψ = 0 and α = 1, which ensures that Equation (12) conforms to the basic restrictions
of the Critical State Soil Mechanics (CSSM) [38].
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Figure 2. Effect of α on the stress-dilatancy relation.

Note that if a constant α was used, Equation (12) would either overestimate or un-
derestimate the critical-state strength of the material, because, at the critical state, dg = 0,
such that Equation (12) can be solved as:

ηc =

√
α

2− α
M (14)

where ηc indicates the calculated critical-state stress ratio. In critical state soil mechanics,
ηc = M should always exist at the critical state. However, this can only be true if α = 1 at the
critical state or one uses a different constant instead of M in Equation (12). The latter option
was introduced by Liang, et al. [39] and Lu, et al. [17] to consider the effect of multiaxial
loading on soft soils, e.g., clay, where they developed the multiaxial stress-dilatancy relation
by using a well-established characteristic stress concept, such that Equation (12) can be
reformulated as [40]:

dg =
0Dα

p̃′ f ( p̃′)

0Dα
q̃ f (q̃)

=
N2 − (1− α/2)

(
η̃2 + N2)

η̃2−α
(15)

where p̃′, q̃ and η̃ are the characteristic stress components of p′, q and η; N is a material pa-
rameter, different from M in the original FP model. Then, ηc = M at the critical state can be
guaranteed via a constant fractional-order shown in Equation (14), i.e., ηc =

√
α/(2− α)N.

To consider the dependence of dilatancy on material state, a dependence of dg on the state
parameter, for example, the relation in Equation (13) may be further introduced. However,
there is one other option: that is to use the stress ratio at the phase transformation state, i.e.,
Mpt, to determine the fractional order as suggested by Liang, et al. [40]. As suggested by
Nguyen and his coworkers [26–28,36,37], the phase-transformation-state parameter (Mpt)
and strain hardening parameter (Mp) are also a function of M and the state parameter.

Despite the above successful applications, the FP-n models based on MCC function
usually predicted much higher dilatancy for sand at the same stress level when compared
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to the corresponding test data [41]. This can be attributed to the larger elastic region of the
MCC yielding surface at the ‘dry’ side (Figure 3 modified from [42]) of the critical state
line in the p′ − q plane [43]. For modelling sand, the original Cam-clay (CC) function [38]
with reduced elastic region seems to work better. A new fractional stress-dilatancy relation
based on the original CC function can be proposed by using the RL definition:

dg = {[ fd(2)− fd(2− α)]M− η}|η|α−1 1
α
+

(
1
α
− 1
)
|η|α (16)

where fd denotes the digamma function, which can be defined as fd = D1(ln Γ), with Γ
the gamma function. It is easily found that dg = 0 at the critical state. However, at the
phase transformation state, dg = 0 will result in a much complex condition for determining
the fractional order from laboratory test data. For example, iteration should be required
for parameter identification. Therefore, from the perspective of practical application,
one may ask if a simplified version of the CC-based fractional dialtancy equation can be
suggested, which can lead to a much easier way, i.e., directly measuring from test data,
to determine the fractional order. In fact, during model development, the RL derivatives of
constants can be omitted due to its limited influence on the dilatancy equation [44]. Because
such influence can be compensated through further calibration of model parameters, e.g.,
the fractional order. Thus, a modified fractional stress-dilatancy relation for granular soil
and soil-structure interface can be derived as:

dg = {[ fd(2)− fd(2− α)]M− η}|η|α−1 (17)

In addition, one can also derive Equation (17) by using the Caputo definition, as shown
in [45]. Through such simplification, the RL definition and Caputo definition can lead to
the same expression of dg. To consider the state dependence, the fractional order can be
also correlated to the state parameter via Equation (13). Equations (16) and (17) conform to
the CSSM, as dg = 0 at both the phase transformation state and critical state.

Figure 3. Relative position between current state and critical state in the (a) e− p′ plane and (b) p′ − q
plane (data cited from Verdugo and Ishihara (1996)).

2.1.2. Modelling of Rocks

In addition to the application of FP-n in modelling granular or soft soils, several
attempts have been also made to capture the stress-strain behaviours of rocks [19,20,46,47]
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and rock-like materials [18]. In these applications, different constitutive models with
a fractional plastic flow rule were proposed based on the diverse problems that were
focused on. For the purpose of describing the volumetric compression/dilation transition
phenomenon of soft and hard rocks, Qu et al. [19] developed an elastoplastic model with
fractional-order plastic flow where a unified hardening/sofening function κp was proposed
as follows:

κp = κ0
p + (1− κ0

p)
Πξ

Π + ξΠ − 1
, ξ = γp/γ

p
c (18)

with

γp =
∫ √2

3
dep

ijdep
ij, ep

ij = ε
p
ij −

1
3

tr(εp)δij (19)

in which ε
p
ij denotes the plastic part of total strain εij; γp is equivalent plastic shear strain;

γ
p
c indicates the generalized plastic shear strain at peak stress; Π > 1 represents the model

parameter; κ0
p means the initial value corresponding to γp = 0. Moreover, the maximum

value κp = 1 is obtained at the critical state γp = γ
p
c . To calibrate the fractional order α,

Qu et al. [19] derived the formulation:

− ∂ f
∂σij

Dijkldεkl Aκp p1−α = (
∂ f
∂σij

Dijmn
∂α f

∂σα
mn
− ∂ f

∂κp

∂κp

∂γp

∂α f
∂qα

)δrsD−1
rskldεklΓ(2− α) (20)

where A defines the friction coefficient; Dijkl is the fourth-order elasticity tensor; p and
q are the mean stress and deviatoric stress, respectively. In the process of determining α,
compressibility/dilation boundary dεv = 0 of claystone subjected to conventional triaxial
compression tests was employed and plotted in Figure 4.

0 10 20 30 40 50
0

10

20

30

40

50

Figure 4. Compressibility/dilation (C/D) boundary of claystone subjected to conventional
triaxial compression.

Note that the influence of micro-crack growth on plastic volume was not considered
in [19]. Aiming to provide a new insight for investigating the complicated effect of plastic
flow direction on damage evolution, Qu and Zhu [48] take the following damage evolution
function Gd:

Gd(ε
p, d) = d− dc

[
1− exp

(
υε

p
v

)]
= 0 (21)

with dc being the asymptotic damage value in the residual stage, and υ indicates the
material parameter controlling the velocity of the damage growth. Note that the variation
of plastic volumetric strain ε

p
v is related to the fractional order α as demonstrated in the

following relation:

dε
p
v = Λ

∂α f
∂pα

(22)
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with p denoting the mean stress. As such, the numerical simulation of Beishan granite
subjected to the confining pressure of 10 MPa is displayed in Figure 5. It can be observed
from Figure 5 that the developed fractional plastic damage model has the potential to
reproduce the damage evolution under the loading process. Moreover, it can be found
from [48] that the fractional order α plays a critical role in the damage growth. To further
account for the influence of the fractional plastic flow on the micromechanics for quasi-
brittle rocks, a friction criterion regarding local stresses was adopted as follows [20]:

f (σc) = ‖sc‖ − Ãpc ≤ 0 (23)

with

sc = s− 1
γ2ω

2µmΓ, pc = p +
1

γ1ω
kmβ (24)

where pc and sc denote the hydrostatic part and the deviatoric part of the local stress
σc, respectively; Ã is the generalized friction coefficient; s and p means the macroscopic
deviatoric stress; km and µm represent the bulk and shear moduli of the matrix, respectively;
ω indicates microscopic damage internal variable; Γ and β = εp : δ describe the relative slip
degree between microcrack surfaces and the degree of microcrack’s opening, respectively.
γ1 and γ2 associated with the Poisson’s ratio of the solid matrix νm and can be written as:

γ1 =
16
9

1− (νm)2

1− 2νm , γ2 =
32
45

(1− νm)(5− νm)

2− νm (25)

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 5. Numerical simulation of damage evolution versus axial strain under triaxial compression
of (σ3 = 10 MPa).

Based on Equation (23), the yield surface in the local stress space can be given in
Figure 6, which is a conical surface with the diagonal of the space as the axis.

Figure 7 shows the influence of the fractional order α on plasctic flow with the case
of η = 1 where dotted arrows represent the orthogonal direction and the solid arrows
denote fractional plastic flow direction. It can be observed from Figure 7 that the fractional
order brings a significant influence on the plasctic flow direction, especially under the high
hydrostatic pressure. In Figure 7, the decrease of α results in a larger deviation from the
orthogonal direction in the case of α < 1. In Figure 7, the deviation from the loading
direction is larger with an increase of α in the case of α > 1. Note that when α = 1,
the fractional plastic flow direction degenerates to the classical associated plastic flow as
shown in Figure 7. Hence, it is found that the change of the fractional order can capture
plastic flow direction more flexibly without the additional plastic potentical.
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p

(a)

p

(b)

Figure 6. Yield surface in the local stress space: (a) front view, (b) lateral view.
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50

100

150

200

250

300

Figure 7. Influence of the fractional order on the plastic flow direction in pc − ‖sc‖ plane with η = 1.

In [20], comparisons between test data and simulation results on Beishan granite under
the confining pressure of σ3 = 0, 5, 10 and 20 MPa are displayed in Figure 8. Numerical
results of the fractional model are in good agreement with test data. By comparing the
traditional associated model and the fractional model, it can be found that the fractional
model have better performance on reproducing the main features of mechanical behaviors
of Beishan granite, especially in the softening phase.

In addition, Li et al. [46] established a fractional constitutive model of soft rock consid-
ering temperature effect where model parameter m related to dilatancy characteristics was
introduced. In this model, the relation between the fractional order α and similarity factor
R is given by:

α =
2R2m

1 + R2m (26)

Based on the microstructure of porous matrix-inclusion, Shen et al. [47] developed
an elastoplastic damage constitutive model with a fractional plastic flow where the yield
criterion can be applied as follows:
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f =

1+2`/3
Ã2 + 2

3 ρ
(

3`
2Ã2 − 1

)
4Ã2−12`−9
6Ã2−13`−6

ρ + 1
q2 +

(
3`

2Ã2
− 1
)

p2 + 2(1− `)hp

− 3 + 2`+ 3`ρ

3 + 2`
(1− `)2h2 = 0

(27)

where ` and ρ represent the volume fraction of pores and the volume fraction of inclusions,
respectively; h is the hydrostatic tensile strength. This study [47] shows that when consid-
ering the material microstructure information including the porosity, the inclusion and the
solid phase, the introduction of the fractional plasticity is still effective.

-0.5 0 0.5 1
0

50

100

150

200

250

300

Lateral Axial

(a)

-1 -0.5 0 0.5 1 1.5
0

100

200

300

400

Lateral Axial

(b)

Figure 8. Comparisons between test data and the model predictions of Beishan granite under triaxial
compression tests with different confining pressures: (a) σ3 = 0 and 5 MPa, (b) σ3 = 10 and 20 MPa.

To better simulate the direction and magnitude of dε
p
ij for rock-like material, i.e.,

concrete, Lu et al. [18] proposed a three-dimensional fractional elastoplastic constitutive
model in which the expression of fractional plastic flow direction is as follows:

n =

[
(ñα)T :

(
∂ p̃
∂σ̃

,
∂q̃
∂σ̃

,
∂θ̃

∂σ̃

)T

:
∂σ̃

∂σ

]T

(28)

where σ̃ is the transformed stress tensor; p̃, q̃ and θ̃ are the hydrostatic pressure,
the deviatoric stress and the Lode angle in the transformed stress space, respectively.
The fractional gradient of yield function ñα in the transformed stress space can be
expressed as:

ñα =

(
∂α1 f
∂ p̃α1

,
∂α2 f
∂q̃α2

,
∂α3 f
∂θ̃α3

)T
=

(
∂α f
∂ p̃α

,
∂α f
∂q̃α

,
∂α f
∂θ̃α

)T
(29)

in which α1 = α2 = α3 = α for the simplification of the developed model. Finally,
the corresponding stress-dilatancy relationship can be obtained, such that:

dg = −

(
∂α f
∂ p̃α , ∂α f

∂q̃α , ∂α f
∂θ̃α

)(
∂ p̃
∂q , ∂q̃

∂q , ∂θ̃
∂q

)T

(
∂α f
∂ p̃α , ∂α f̃

∂q̃α , ∂α f
∂θ̃α

)(
∂ p̃
∂p , ∂q̃

∂p , ∂θ̃
∂p

)T (30)

Together with damage feature of concrete materical, a 3D non-orthogonal plastic
damage model is developed in [49] where α can be obtained based on the following
equation of phase transformation:
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dε
p
v = dλ p̃−α

[
a0

Γ(1− α)
+

a1Γ(2) p̃
Γ(2− α)

+
a2Γ(3) p̃2

Γ(3− α)
+

a3Γ(4) p̃3

Γ(4− α)
+

a4Γ(5) p̃4

Γ(5− α)

]
= 0 (31)

where ak(k = 0, 1, 2, 3, 4) are coefficients of power functions for p̃. Subsequently,
Lu et al. [50] developed a cohesion-friction combined hardening plastic model of con-
crete based on the fractional flow rule. Moreover, this model is implemented with the help
of an open-source user defined material subroutine UMAT in the framework of the implicit
return mapping algorithm.

2.1.3. Numerical Schemes

Integration algorithms significantly influence computation accuracy and efficiency in
the process of the implementation of constitutive equations. For the fractional model as
presented in [49], the Next Increment Corrects Error [51] approach were adopted where the
workflow of the NICE algorithm can be summarized in Algorithm 1. In this Algorithm,
n and n+ 1 are the current step and the previous step; σ is the effective stress; σtrial denotes
the trial stress; D0 indicates the undamaged elastic stiffness matrix; r refers to the direction
of plastic strain increment.

Algorithm 1: Flowchart of the NICE algorithm for the fractional model

Input: εn, ε
p
n, γ

p
n, ∆ε, σn

Output: εn+1, ε
p
n+1, γ

p
n+1, σn+1

1 Elastic prediction:

dn = d
(

γ
p
n

)
, σn = σn

(1−dn)
, ∆σtrial = D0 : ∆ε, σtrial

n+1 = σn + ∆σtrial , and

f trial
n+1 = f

(
σtrial

n+1 , γ
p
n

)
2 if f trial

n+1 > 0 then

3 fn = f
(

σn, γ
p
n

)
, Ξ = fn

fσ̄,n :D0 :∆ε

4 ∆λNICE
n = (1+Ξ) fσ̄,n :D0 :∆ε

fσ̄,n :D0 :rn− fγp : f α
q̃,n

5 Dep
0 = D0 − (1+Ξ)(D0 :rn)⊗( fœ̄,n :D0)

fœ̄,n :D0 :rn− fγp : f α
q̃,n

6 εn+1 = εn + ∆ε, ε
p
n+1 = ε

p
n + ∆λNICE

n rn

7 γ
p
n+1 = γ

p
n + ∆λNICE

n f α
q̃,n, σn+1 = σn + Dep : ∆ε

8 dn+1 = d
(

γ
p
n+1

)
, σn+1 = (1− dn+1)σn+1

9 else
10 εn+1 = εn + ∆ε, ε

p
n+1 = ε

p
n, γ

p
n+1 = γ

p
n

11 σn+1 = σtrial
n+1 , σn+1 = (1− dn)σn+1

In addition, Qu and Zhu [48] proposed a semi-implicit return mapping (SRM) algo-
rithm for the implementation of a novel fractional plastic damage model as illustrated in
Figure 9. Aiming to more efficiently conduct a micromechanics-based fractional frictional
damage model, an explicit return mapping algorithm was put forward in [20] and is given
in Figure 10. Furthermore, it can be found that the numerical solutions are consistent
with the analytical ones when increment step is enough large. Compared to the plasticity-
damage decoupling correction (PDDC) algorithm proposed by [52], the explicit return
mapping algorithm has a better performance in computational efficiency.
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Figure 9. Flowchart of SRM algorithm.

 

Figure 10. Flowchart of the explicit return mapping algorithm.

2.2. FP-sn: The Role of Future Reference Critical State

In this section, an introduction of the FP-sn models based on Equation (4) is made.
It was observed in experimental tests that the volumetric dilatancy of soils, e.g., sand and
over-consolidated clay, depends on not only the current state (e, p′) but also the distance
(e− ec or p′ − p′c) from current state to future reference critical state (ec, p′c).

After revisiting the CSSM, one can find that soils under shearing would finally reach
the critical state represented by the critical-state void ratio (ec), mean effective stress (p′c)

and deviator stress (qc). Here, p′c = 1/3σ′cijδij and qc =

√
3/2

(
σ′cij − p′cδij

)(
σ′cij − p′cδij

)
.

Then, it can be assumed that the future critical-state stresses (p′c, qc) can serve as the integral
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limit (σ′cij) in Equation (4). Substituting the MCC function into Equation (4) with RL and
Caputo derivatives, one can obtain the following state-dependent stress-dilatancy relations
for soil:

d
′
g =

RL
p′c

Dα
p′

f
(

p
′
)

RL
q Dα

qc f (q)
=

RL
p′

Dα
p′c

f
(

p
′
)

RL
qc Dα

q f (q)
= |M|1+α

(
p
′ − p

′
c

)
+ (2− α)

(
p
′
c − p

′
0/2
)
+ δp

(q− qc) + (2− α)qc + δq
(32)

d
′′
g =

C
p′c

Dα
p′

f
(

p
′
)

C
q Dα

qc f (q)
=

C
p′

Dα
p′c

f
(

p
′
)

C
qc Dα

q f (q)
= |M|1+α (p′ − p′c) + (2− α)(p′c − p′0/2)

(q− qc) + (2− α)qc
(33)

where p′0 =
[
(η/M)2 + 1

]
p′, is the size of the MCC yielding surface; δp =

[
p
′
0 −

(
p
′
+ p

′
c

)]
(2 − α)(1 − α)/2 and δq = (q + qc)(2 − α)(α − 1)/2. Comparison between
Equations (32) and (33) shows that there appears two additional items, i.e., δp and δq,
when using the RL definition. However, further analysis shown in Figure 11a can show
that the influence of such two items on soil dialtancy can be compensated by tuning the
value of fractional order. A very small difference between d

′
g with δp and δq and d

′′
g without

δp and δq can be observed in Figure 11b, if a proper fractional order is used. Therefore,
for practical application, the contributions from δp and δq were not considered through
the omission of RL derivatives of constants. For the sake of simplicity, a unified dg is thus
suggested, such that:

dg = |M|1+α (p′ − p′c) + (2− α)(p′c − p′0/2)
(q− qc) + (2− α)qc

(34)

which also facilitates the calibration of model parameters directly from laboratory test data.

(a) (b)

Figure 11. Predicted dilatancy ratios with and without δp and δq : (a) dilatancy line, (b) mean
difference between predicted d′g with and without δp and δq.

Moreover, the critical-state deviator stress (qc) in Equations (32) and (33) can be calcu-
lated by checking the geometric position of the current stress and critical-state stress shown
in Figure 3, such that:

qc = q + M
(

p′ − p′c
)

(35)

while the critical-state mean effective pressure can be calculated using the critical state line
shown in Figure 3a, such that:

p′c = g(e) (36)

where g(e) is a function describing the critical state line of soil in the e− p′ plane. g(e) is
determined by fitting the critical-state data points. There are different available formulae
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for g(e), but no matter which formula is used, a unique relation with p
′
c can be provided.

For example, the g(e) for Toyoura sand [41] shown in Figure 3a can be expressed as:

p′c = pr exp
(

eΓ − e
λ

)
− ps (37)

where pr = 1 kPa, is the unit pressure for normalisation; eΓ and λ are material parameters;
ps is the shift stress, describing the effect of particle breakage on the downward bending of
the critical state line shown in Figure 3a.

It can be found from Equation (34) that dg also has two chances to reach zero:
one is at the phase transformation state with a typical value of the fractional, the other
is at the critical state with p

′
= p

′
c and q = qc. However, unlike the FP-n based on past

stress history and other classic state-dependent models [8,53,54], Equation (34) does not
require an additional empirical state parameter, e.g., ψ, to capture the state dependence
stress-dilatancy of soil, which is the main advantage of the FP-sn approach.

By considering the effect of the future reference critical state, a series of FP-sn models
for modelling the state-dependent strength and deformation behaviour of granular soil
and over-consolidated soft soil. Despite the positive model performance, there is still one
problem with the FP-sn based on Equation (32): comparatively higher volumetric dilatancy
of granular soil could be predicted due to the utilisation of the MCC function. As discussed
before, the elastic region of the MCC surface at the ‘dry’ side of the critical state line is
relatively large. A better model prediction can be obtained if using CC-based fractional
dilatancy relation. However, it is difficult to analytically solve the fractional differentiations
of the CC function, by incorporating the effect of future reference critical state. Further
analytical work needs to be conducted.

3. FP-m: The Role of Past and Future Stress States
Development of FP-m

In the previous section, two branches of the FP, i.e., FP-n: the one based on past SLS,
and FP-sn: the other based on future reference critical state, were introduced. Even though
each branch of the FP can be applied to describe various phenomenological behaviours
of geomaterials, a question regarding the further comprehensive development of FP still
rises: can one account for the roles of both past and future stress states, since they both
can influence the plastic flow of geomaterials? Along with this consideration, we now
modify the plastic flow rule by analogy with the FVP [15] to have a third definition of the
FP, denoted as FP-m:

dε
p
ij = dλ RC

σ′ij−lij
Dα

σ′ij+l̃ij
f
(

σ′ij

)
(38)

where lij and l̃ij are the SLSs along the σ′ij–direction; the Riesz–Caputo fractional operator is
adopted, such that

RC
σ′ij−lij

Dα
σ′ij+l̃ij

f
(

σ′ij

)
=

1
2

[
C

σ′ij−lij
Dα

σ′ij
f
(

σ′ij

)
+ (−1)n C

σ
′
ij

Dα
σ′ij+l̃ij

f
(

σ′ij

)]
(39)

Substituting Equation (39) together with the MCC function into Equation (38), one can
obtain the following generalised stress-dilatancy relation:

dg = M2

[
lp + (2− α)

(
p′ − lp − p′0/2

)]
l1−α
p + (−1)n[l̃p − (2− α)

(
p′ + l̃p − p′0/2

)]
l̃1−α
p[

lq + (2− α)
(
q− lq

)]
l1−α
q + (−1)n

[
l̃q − (2− α)

(
q + l̃q

)]
l̃1−α
q

(40)

where lp and l̃p denote the long SLSs of the past and future stress states, respectively,
along the p

′
–axis, while lq and l̃q denote the long SLSs of the past and future stress states,

respectively, along with the q–axis. Through parameter analysis, one can find the following
specific cases for Equation (40).
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• Case A
It can be found that if α = 1 in Equation (40), then n = 1 and the stress-dilatancy relation
reduces to the classic MCC-based one shown below, irrespective of lp, l̃p, lq and l̃q.

dg =
M2 − η2

2η
(41)

• Case B
If one assumes that the SLSs of past and future stress states are equivalent, i.e., lp = l̃p
and lq = l̃q, then, the stress-dilatancy relation in Equation (40) can have two possible
forms for α 6= 1. The first form can be obtained when α ∈ (0, 1), which also indicates
that n = 1. Thus, Equation (40) can be derived as:

dg =

(
lp

lq

)1−α M2 − η2

2η
(42)

where it can be found that the future and past stress states contributes to the dilatancy
of geomaterial by multiplying the original MCC-based dilatancy ratio with a factor of(
lp/lq

)1−α. Equation (42) can be further simplified by assuming that the SLSs, lp = xp′

and lq = yηp′, such that:

dg = d0
M2 − η2

η2−α
(43)

where d0 = 1/2(x/y)1−α, is a model parameter, indicating the upward or down-
ward shifting of the dilatancy curve, as shown in Figure 12. With the increase of d0,
the dilatancy ratio at the same stress level increases. As α increases, the dilatancy ratio
varies. Note that a similar empirical stress-dilatancy relation was also suggested for
modelling crushable soil [55], which can be derived from Equation (42) by assuming a
constant value of

(
lp/lq

)1−α, e.g.,
(
lp/lq

)1−α
= Mα−1.

Figure 12. Effects of d0 and α on the stress-dilatancy response.

4. Conclusions

The FP was developed for modelling the state-dependent nonassociated constitutive
behaviour of geomaterials. This study provided a comprehensive introduction and dis-
cussion on the development and application of the FP, from the perspective of the role of
stress length scale. It can be found that three branches of the FP, i.e., FP-n, FP-sn and FP-m,
can be defined, respectively, by considering the effects of past stress state and future refer-
ence critical state, or the impact of both past and future stress states. The advantages and dis-
advantages of each FP approach were discussed. Some main conclusions are summarized
as follows:
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• Based on the simulation results for geomaterials, the FP-n approach was found to be
more effective than the associated flow rule. However, it is difficult for the original
FP-n approach to consider state dependence unless an empirical state parameter was
introduced. Hence, the FP-sn approach was developed to consider both state depen-
dence and nonassociated plastic flow without using state parameter or additional plastic
potential. Moreover, the FP-sn approach can predict a higher volumetric dilatancy of
granular soil, due to its large elastic region at the ‘dry’ side of the critical state line.

• Further analytical work should be needed to propose a modified FP-sn approach by
using a yielding surface with a reduced elastic region. Due to the dependence of
both past and future stress states on material flow, the FP-m approach was also sug-
gested, where several specific cases of the FP-m based dilatancy relation were discussed,
with regard to the role of SLS.

• In future work, the fractional anisotropic damage model can be further studied based
on the fractional plastic damage model mentioned in this paper. Moreover, combining
with peridynamics and phase field methods, numerical implementation of fractional
constitutive model will be an important research direction. By means of a physics-based
deep neural network, fractional models can provide a novel sight for challenges faced
in multiscale plasticity.
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Appendix A

Caputo’s definition of fractional derivatives is [56]:

C
σ′c

Dα
σ′ f
(
σ′
)
=

1
Γ(n− α)

∫ σ′

σ′c

f (n)(χ)dχ

(σ′ − χ)α+1−n , σ′ > σ′c (A1)

C
σ′ D

α
σ′c

f
(
σ′
)
=

(−1)n

Γ(n− α)

∫ σ′c

σ′

f (n)(χ)dχ

(χ− σ′)α+1−n , σ′c > σ′ (A2)

where Equation (A1) is the left-sided derivative while Equation (A2) is right-sided deriva-
tive; D (= ∂α/∂σ′α) denotes the partial derivation of function f ; Γ(x) is the gamma function
and α ∈ (n− 1, n), is the fractional order. σ

′
and σ

′
c are the integral limits; χ is the indepen-

dent variable.
The Riemann–Liouville’s fractional derivatives are [56]:

RL
0+ Dα

x f (x) =
1

Γ(n− α)

dn

dxn

∫ x

0+

f (τ)dτ

(x− τ)α+1−n , x > 0 (A3)

RL
x Dα

0− f (x) =
(−1)n

Γ(n− α)

dn

dxn

∫ 0−

x

f (τ)dτ

(τ − x)α+1−n , x < 0 (A4)

The MCC loading criterion are adopted for modelling. Accordingly, the FP-m stress-
dilatancy relation in Equation (40) can be revised as:

dg = M2

[
lp + (2− α)

(
p′ − lp − p′0/2

)]
l1−α
p −

[
l̃p − (2− α)

(
p′ + l̃p − p′0/2

)]
l̃1−α
p[

lq + (2− α)
(
q− lq

)]
l1−α
q −

[
l̃q − (2− α)

(
q + l̃q

)]
l̃−α
q

(A5)
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in which the assumptions in Case B are recalled to simplify Equation (A5).

References
1. Gao, Y.; Wu, Y.; Li, D.; Liu, H.; Zhang, N. An improved approximation for the spectral representation method in the simulation of

spatially varying ground motions. Probabilistic Eng. Mech. 2012, 29, 7–15. [CrossRef]
2. Zhang, F.; Gao, Y.; Wu, Y.; Zhang, N. Upper-bound solutions for face stability of circular tunnels in undrained clays.

Géotechnique 2018, 68, 76–85. [CrossRef]
3. Been, K.; Jefferies, M. Stress dilatancy in very loose sand. Can. Geotech. J. 2004, 41, 972–989. [CrossRef]
4. Been, K.; Jefferies, M.G. A state parameter for sands. Géotechnique 1985, 35, 99–112. [CrossRef]
5. Van Der Veen, H.; Vuik, C.; De Borst, R. An eigenvalue analysis of nonassociated plasticity. Comput. Math. Appl. 1999, 38, 107–115.

[CrossRef]
6. Lade, P.V.; Nelson, R.B.; Ito, Y.M. Nonassociated flow and stability of granular materials. J. Eng. Mech. 1987, 113, 1302–1318.

[CrossRef]
7. Yu, H.; Khong, C.; Wang, J.; Zhang, G. Experimental evaluation and extension of a simple critical state model for sand.

Granul. Matter 2005, 7, 213–225. [CrossRef]
8. Shi, X.; Zhao, J.; Gao, Y. A homogenization-based state-dependent model for gap-graded granular materials with fine-dominated

structure. Int. J. Numer. Anal. Methods Geomech. 2021, 45, 1007–1028. [CrossRef]
9. Wood, D.M. Soil Behaviour and Critical State Soil Mechanics; Cambridge University Press: Cambridge, UK, 1990.
10. Ezzat, M.; El-Bary, A. Unified fractional derivative models of magneto-thermo-viscoelasticity theory. Arch. Mech. 2016, 68,

285–308.
11. Zenkour, A.; Abouelregal, A. The fractional effects of a two-temperature generalized thermoelastic semi-infinite solid induced by

pulsed laser heating. Arch. Mech. 2015, 67, 53–73.
12. Raslan, W. Application of fractional order theory of thermoelasticity to a 1D problem for a cylindrical cavity. Arch. Mech. 2014,

66, 257–267.
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