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Abstract: The hybrid optimization of modern cementitious materials requires concrete to meet many
competing objectives (e.g., mechanical properties, cost, workability, environmental requirements,
and durability). This paper reviews the current literature on optimizing mixing ratios using machine
learning and metaheuristic optimization algorithms based on past studies on varying methods.
In this review, we first discuss the conventional methods for mixing optimization of cementitious
materials. Then, the problem expression of hybrid optimization is discussed, including decision
variables, constraints, machine learning algorithms for modeling objectives, and metaheuristic
optimization algorithms for searching the best mixture ratio. Finally, we explore the development
prospects of this field, including, expanding the database by combining field data, considering more
influencing variables, and considering more competitive targets in the production of functional
cemented materials. In addition, to overcome the limitation of the swarm intelligence-based multi-
objective optimization (MOO) algorithm in hybrid optimization, this paper proposes a new MOO
algorithm based on individual intelligence (multi-objective beetle antenna search algorithm). The
development of computationally efficient robust MOO models will continue to make progress
in the field of hybrid optimization. This review is adapted for engineers and researchers who
want to optimize the mixture proportions of cementitious materials using machine learning and
metaheuristic algorithms.

Keywords: cementitious materials; mixture optimization; machine learning; metaheuristic algorithms;
MOO; BAS

1. Introduction

To optimize the mixture proportions of cementitious materials, a large number of trial
batches are usually prepared in a laboratory [1]. The laboratory-based method is time,
labor, and resource intensive if multiple objectives of cementitious materials need to be
optimized, considering a large number of influencing variables under highly non-linear
constraints. As the basic mechanical objective, uniaxial compressive strength (UCS) must
be considered to evaluate the stability of structures against loads during the design process
of mixture proportions. Another necessary objective of cementitious materials is the cost
which has enormous economic implications in construction projects requiring large vol-
umes of concrete [2,3]. If many objectives (e.g., slump, CO2 emission, density, durability)
need to be considered, the number of samples that need to be prepared in a laboratory may
increase exponentially. Furthermore, many factors will influence the generalization ability
of the results. These factors include constituent characteristics (e.g., grading, shape and size
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of aggregates, chemistry, and type of cementitious materials) and spatiotemporal environ-
mental variability (humidity and temperature) [4,5]. In addition, the experimental based
methods can yield well-performing proportions of mixtures rather than best-performing
ones, as only a limited number of samples can be prepared in the laboratory.

To overcome the limitations of laboratory-based mixture optimization, an alternative
solution is to use computational optimization methods based on machine learning (ML)
and metaheuristic optimization algorithms [6,7]. This method firstly models the objectives
of cementitious materials using ML approaches and then searches for optimal mixture
proportions using metaheuristic optimization algorithms. ML models can accurately model
the objectives of cementitious materials without knowing the explicit relationships between
the objectives and the input variables [8], which is superior to conventionally used linear
or nonlinear regression models that rely highly on the coefficients of the models [9,10].
Currently, the widely used ML models for modeling objectives include the Artificial Neural
Network (ANN), Support Vector Machine (SVM), and tree-based models, such as Decision
Tree (DT), Random Forest (RF), and Gradient Boosted Regression Tree (GBRT) [11–13].

After modeling objective functions, optimization algorithms are then applied to search
for optimal mixture proportions that satisfy multiple competing objectives. Generally, there
are two main types of optimization algorithms: stochastic and deterministic [14]. For the
same starting point, deterministic algorithms will generate the same set of solutions, while
stochastic algorithms will produce different ones. Therefore, deterministic algorithms may
be trapped in local optima in the process of searching. A solution is to use stochastic algo-
rithms that are comprised of a random component and a deterministic component. Many
forms can be used for the stochastic component such as random walks and randomly sam-
pling the searching space. Using these approaches, stochastic algorithms can then jump out
of the locality. The most widely used stochastic algorithms are swarm-intelligence based
metaheuristic algorithms such as Particle Swarm Optimization (PSO) [15] and Genetic
Algorithm (GA) [16]. These two algorithms have been widely used in the single-objective
mixture optimization of cementitious materials [4]. For multi-objective mixture optimiza-
tion, a single best solution does not exist, and hence these swarm-based metaheuristic
algorithms must be extended into multi-objective optimization (MOO) versions to approxi-
mate the true Pareto front of the MOO problems. Widely used MOO algorithms include
Multi-Objective Particle Swarm Optimization (MOPSO) [17], Multi-Objective Differential
Evolution (MODE) [18], and the Multi-Objective Genetic Algorithm (MOGA) [19]. Besides
swarm-intelligence based algorithms, new individual-intelligence based algorithms, such
as the Beetle Antennae Search (BAS) algorithm with higher searching efficiency have also
been applied to concrete mixture optimization.

This paper firstly reviews the traditional mixture design methods in Section 2, and then
elaborates on the three steps of mixture optimization using ML models and metaheuristic
algorithms, i.e., (1) problem formulation, (2) objective modeling, and (3) optimization.
Finally, the prospects for mixture optimization of cementitious materials are discussed in
Section 4.

2. Conventional Methods of Mixture Optimization of Cementitious Materials
2.1. Experimental-Based Design Methods
2.1.1. Prescriptive-Based Approach

The prescriptive-based approach is a step-by-step approach that is widely used to pro-
portion mixtures of cementitious materials [20]. This method has evolved from the arbitrary
volumetric method (cement: fine aggregate: coarse aggregate = 1:2:3) of the early 1990s [21]
to the presently used absolute volume method (ACM) and weight method developed by
the Portland Cement Association [22] and the American Concrete Institute [23]. The weight
method uses the known weight of the cementitious materials per unit volume to proportion
the mixtures. Although simple, it is not as accurate as ACM which calculates the absolute
volume of each ingredient in a unit volume of the cementitious materials. The prescriptive
specifications usually incorporate requirements for the mixture composition such as type
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of cement and aggregate, limits on the content of cement and admixtures, minimum or
maximum water-to-binder ratio, etc. The prescriptive-based approach is demonstrated in
Figure 1.
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Figure 1. Prescriptive-based approach.

The main advantage of the prescriptive-based approach is that the mixture proportions
are directed by the approach itself. The producer is not liable for the durability, strength,
or cost of the cementing material as long as it meets the strict prescribed requirements.
Therefore, this method can be applied in rural areas where concrete producers are not
veterans in designing mixture proportions [24]. However, this method is limited by the
lack of flexibility for the contractor or producer for tailoring mixture proportions, which
may lead to unsatisfactory performance and higher costs for cementitious materials [24].

2.1.2. Performance-Based Approach

Compared with the prescriptive-based concrete mixture design methods, the perfor
mance-based methods proportion mixtures of cementitious materials from trail batches
in the laboratory to satisfy design specifications without strict requirements for amounts
and ratios of constituents of concrete [25,26]. To this end, the producer can choose an
arbitrary amount of water, cement, supplementary material, and fine and coarse aggregates
by trial-and-error methods to achieve the desired compressive strength, durability, or cost.
The prescriptive-based approach is demonstrated in Figure 2.

However, the number of samples that need to be prepared may increase exponentially
when multiple objectives for the cementitious materials (e.g., cost, strength, durability, etc.)
are required to be optimized, or several influential parameters (ingredients) are considered
in proportioning mixtures of cementitious materials [27]. Furthermore, this method can
yield only one feasible design solution with an iterative design process rather than optimal
(best-performing) solutions [27].
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2.2. Taguchi Method

To reduce the number of samples to be prepared using traditional experimental design
methods, the Taguchi method was proposed [28]. This optimization method can not only
minimize the cost of concrete but also minimize the variability of the targets by minimizing
the effects of uncontrollable factors. This laboratory-based optimization method can also
derive optimal work-flow conditions [29].

The Taguchi method optimizes one or multiple performance properties using the
Quantity Design Method. A systematic Taguchi method is illustrated in Figure 3. The steps
can be iterated as follows [30]:

1. Ascertain the performance characteristic and choose factors to be assessed;
2. Decide on the likely relationship between factors and the number of quantity levels;
3. Choose the suitable orthogonal array for the factors;
4. Perform experiments on the basis of the arrangement of the orthogonal array;
5. Compute the statistics of performances;
6. Obtain the results of experiments by using analysis of variance (ANOVA);
7. Choose optimum levels of factors;
8. Validate the optimum factors by conducting confirmation experiments.

The optimization criteria are represented by the performance characteristics which
can be classified into three types: the nominal-the-better, the smaller-the-better, and the
larger-the-better, as follows.

The nominal-the-better:

S
N

= −10log10(
1
n

n

∑
i=1

(Yi −Y0)
2) (1)

where S/N is the performance statistics; n is the number of repetitions for an experimental
combination; Yi is the performance value of the ith experimental and Y0 is the nominal
value desired.

The smaller-the-better:
S
N

= −10log10(
1
n

n

∑
i=1

Y2
i ) (2)
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The larger-the-better:
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= −10log10(
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∑
i=1

1
Y2

i
) (3)
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Although the Taguchi approach is very easy and straightforward to apply to mixture
optimization cementitious materials without a high amount of experimentation, the influ-
ence of factors on the performance characteristic value cannot be indicated by the relative
results obtained [32]. In addition, this method cannot test all the relationships between the
constituents and the performances of cementitious materials since the orthogonal arrays do
not include all the combinations of variables, and therefore such an experimental design
may not achieve the most cost-effective solution [32].

2.3. Response Surface Methodology

Response surface methodology (RSM) is a statistical technique to model and analyze a
process where a variety of variables influence the response of interest, and the objective
of this approach is to optimize the response (the performance measure) [33]. This method
can develop a generalized model using provided data samples with decreased cost and
labor, is able to optimize the response based on various priorities, and can evaluate the
interactions of factors.

This method has been used in mixture design since the beginning of the 21st century.
In 2000, this methodology was used to optimize mixture proportions of self-consolidating
concrete (SCC) considering the influence of water-to-cement ratio, contents of binder, and
coarse aggregates [34]. In 2004, Bayramov et al. optimized the fracture parameters of steel
fiber-reinforced concrete under the effect of two variables: the volume fraction of steel fiber
and their aspect ratios, using a three-level full factorial experimental design and RSM [35].
Subsequently, this methodology has been used to optimize mixture proportions of many
types of concrete such as foam concrete [36], self-compacting concrete [37], rubberized
concrete [38], and high-performance concrete [39].
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Generally, RSM applies a second-order model to maximize the response of the output
by finding the optimal set of inputs:

Y = β0 + ∑k
i=1 βixi + ∑k−1

i=1 ∑k
j=i+1 βijxixj + ∑k

i=1 βiix2
i (4)

where the xi denote the code values of the input factors (independent variables) determining
the response (the output) Y and β0, βi, βij, and βii are unknown parameters that can be
derived using least squares regression.

Although RSM is an efficient method with the ability to solve optimization problems
with a large number of design variables, two main disadvantages limit its application.
The first is that RSM uses a second-order polynomial equation to model the objective
function, although it is difficult to accurately obtain the regression coefficients. The second
problem is that RSM only provides a locally optimal solution [40]. The first problem can be
overcome by introducing ML techniques, while the second issue can be addressed using
metaheuristic algorithms.

3. Problem Formulation of Concrete Mixture Optimization

Generally, to solve mixture optimization problems of cementitious materials, it is
necessary to determine the decision variables, constraints, and objective functions of
the problem.

3.1. Decision Variables

A decision variable is a quantity that decision-makers would like to determine. The
values of decision variables will be altered to achieve optimization of the objectives [41].
In mixture optimization problems, decision variables are components whose values can
be discrete or continuous. Continuous decision variables may incorporate the content of
water; cement; aggregates; supplementary cementitious materials (SCMs) (e.g., fly ash,
silica fume, and slag) and superplasticizer; curing age; and curing conditions (humidity
and temperature), while discrete decision variables might include types of the cement;
superplasticizer and SCMs; and size of aggregates. The common decision variables for
mixture optimization are tabulated in Table 1.

Table 1. Examples of decision variables for mixture optimization of cementitious materials.

Decision Variable Type

Cement content Continuous
Water content Continuous
SCMs content Continuous

Aggregate content Continuous
Superplasticizer content Continuous
Curing age/temperature Continuous

Cement type Discrete
SCMs type Discrete

Aggregate size Discrete

3.2. Constraints

To ensure that the mixtures found by the MOO model have physical meaning, four
categories of constraints should be applied as follows [42]:

(1) Range constraints

The range constraint requires that the content of decision variables should vary within
a reasonable range which can be specified as per the standards or experts’ experience. The
range constraint is given by:

Dimin ≤ Di ≤ Dimax (5)



Materials 2022, 15, 7830 7 of 30

where Dimin and Dimax are the minimum and maximum value of the i-th decision variable
Di, respectively.

(2) Ratio constraints

Generally, when proportioning mixtures of cementitious materials, several ratios
should be constrained, such as water-to-cement ratio, superplasticizer-to-cement ratio,
sand ratio, etc.

(3) Concrete volume constraint

The total volume of the components in cementitious materials are normalized to 1 m3.
Assuming that the cementitious materials are made up of cement, water, coarse and fine
aggregates, and superplasticizer, the volume constraint is given by

Vm =
Qc

Uc
+

Qw

Uw
+

Q f a

U f a
+

Qca

Uca
+

Qsp

Usp
(6)

where Qc, Qw, Q f a, Qca, and Qsp denote the weight of cement, water, fine aggregate, coarse
aggregate, and superplasticizer respectively. Uc, Uw, Ufa, Uca, and Usp are the unit weight
of cement, water, fine aggregate, coarse aggregate, and superplasticizer, respectively.

3.3. Objective Functions

Statistical and ML models are widely used to model objective functions for mixture
optimization of cementitious materials.

3.3.1. Statistical Model

The linear regression model that establishes the relationship between water-to-cement
(w/c) ratio and the UCS of concrete is widely used [43]:

fc = b0 + b1·w/c (7)

where fc is the property of concrete; b0 and b1 are coefficients. Since many other vari-
ables also influence concrete properties, a multivariable linear regression model was
developed [44]:

fc = b0 + b1·x1 + b2x2 + · · · bnxn (8)

where x1, x2, . . . xn are influencing variables such as w/c, the content of cementitious
materials, the content of aggregates, curing age, etc.

It is known that the relationship between the influencing variables and the properties
of cementitious materials is highly nonlinear, and hence the prediction accuracy of the
above linear models is not high [45]. To address this issue, a multivariable power equation
has been introduced as follows [46]:

fc = b0xa1
1 xa2

2 xa3
3 . . . xan

n (9)

where the values of a1 . . . an are determined from regression analysis of the statistical data.
The statistical models are able to establish the complex nonlinear relationships between

the influencing variables and the properties of cementitious materials; however, they cannot
model the random noise in the data. In addition, it is difficult to accurately obtain the
regression coefficients in these models. These limitations can be overcome by ML models.

3.3.2. Machine Learning Models

Machine learning (ML) is a computational method that can identify complicated and
meaningful patterns from data. ML can facilitate decision-making intelligently without
knowing the equations between inputs and outputs in advance [47]. The development
of an ML model includes defining a representation of the target function and developing
a model to learn the target function by training the given data samples. ML is classified
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into unsupervised, semi-supervised, supervised, and reinforced learning [48]. In concrete
mixture optimization, supervised learning is widely used [4]. In supervised learning, the
data are labeled (i.e., the outputs of the data are known). In the training process, the
parameters of an algorithm are adjusted by comparing the actual output values with the
predicted ones. The training process stops when the error between the actual and output
values reaches the threshold. The supervised learning task can be further classified into
regression if the target variable is continuous and classification if the variables are discrete.
To find patterns in data, several ML models can be used. However, based on the “no free
lunch” theorem of ML, we cannot find a single ML model that universally behaves best
for every dataset [49]. Therefore, a comparative study should be conducted to select the
winning ML model for modeling objectives of cementitious materials for the optimization
procedure. Below, we will introduce several ML models that are widely used for modeling
concrete mechanical properties and durability.

Despite the extensive research on the modeling objectives of cementitious materials
using ML models, there still exist two main gaps in this field [12]. First, the previous
research does not indicate a grounding in the best-performed approaches of the ML models.
A pipeline of approaches is generated by the standard procedure in ML which increases
the complexity of the procedure. Second, consensus on the best model architectures for
modeling objectives of concrete in large datasets with various noisy parameters has not yet
been reached.

Artificial Neural Network

An artificial neural network (ANN) is inspired by the function and structure of bio-
logical neural networks. ANN is extensively used to capture highly nonlinear patterns of
large-scale data in many fields [50]. In the architecture of ANN (Figure 4), artificial neurons
constitute the input, hidden, and output layers. The signal or information propagates
from the input layer, through the hidden layer to the output layer in the form of weights
as follows:

ym = ϕ
(
∑n

i=0 wmixi

)
+ bm (10)

where xi is the input signal of a neuron; wmi is the weight assigned to the corresponding
input neuron; ym is the output signal; bm is the bias value of the mth output neuron; ϕ is the
activation function that is applied to transform the output value into the design range. For
instance, the Sigmoid activation function can map the output values between 0 to 1 or −1
to 1. Other commonly used activation functions include rectified linear unit and hyperbolic
activation functions.

ANN can be classified into different types according to different learning methods
and architecture types, such as single-layer or multilayer networks as per the number of
hidden layers, feedforward or recurrent networks based on the connection pattern, and
adaptive or fixed neural networks according to the adjustment nature of weights. In the
training process of ANN, the weight and bias values are adjusted to minimize the error
between predicted and actual output values. Commonly used training methods include the
self-organizing map, the popular back-propagation algorithm, and the real-coded genetic
algorithm [51].

Among ML models for predicting the objectives of concrete, ANN dominates the
literature. Many types of neural networks have been applied. ANN was firstly used to
model the strength of high-performance cementitious materials by Yeh [52]. Then several
other types of ANN were developed to model the properties of cementitious materials. Dias
and Pooliyadda used a Backpropagation Neural Network (BPNN) to predict the strength
and slump of ready-mixed cementitious materials and high-strength concrete [53]. BPNN
achieved higher prediction accuracy than multiple regression because BPNN has a higher
generalizing ability to tolerate errors. In addition, BPNN can apply gradient methods to
train multilayer networks, and update weights to minimize loss. However, BPNN requires
more computational time to train the networks. Moreover, BPNN obtains deterministic
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rather than probabilistic results. To overcome this issue, the Probabilistic Neural Network
(PNN) was developed by Lee et al. to predict concrete strength [54]. The dynamic decay
adjustment algorithm was used to automatically calculate the smoothing parameter of
PNN without external engineering judgment.
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Another promising method is the fuzzy neural network conjunction model. Zarandi
et al. predicted the compressive strength of cementitious materials by developing the Fuzzy
Polynomial Neural Network (FPNN) [55]. The proposed FPNN was a combination of the
PNN and the Fuzzy Neural Network and provided strong predictions of concrete strength.
To reduce the noise of training data, ensemble models based on bagging and boosting
were investigated by Erdal et al. [56]. The prediction accuracy of ANN ensembles was
then enhanced by coupling with discrete wavelet transform. Despite the wide application
of ANN in the prediction of properties of cementitious materials, ANN has inherent
shortcomings, such as slow convergence and trapping in local optima. This is caused by
randomly initializing the bias and weight values of the network before training. To address
this issue, swarm intelligence based metaheuristic optimization algorithms such as the
Genetic Algorithm (GA) [57,58] and the Particle Swarm Optimization (PSO) [59,60] have
been used to search for the optimal parameters of ANN.

Support Vector Machine

The support vector machine (SVM) is one of the popular types of supervised ML
algorithms. It learns the complex relationships between inputs and outputs by using kernel
tricks to map the training data into a higher dimensional characteristic space [61]. SVM
maximizes the separation between the training data and the hyperplane to minimize the
upper bound of errors. SVM can be used to solve classification and regression problems.
For modelling concrete objectives, support vector regression (SVR) is usually applied. The
formulation of SVR is introduced as follows.

A regression equation can be defined as

f (x) = w·ϕ(x) + b (11)
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where each x is an l-dimensional input variable; w is the weight vector; ϕ(x) denotes a
nonlinear mapping function; b represents the bias value. The degree of deviation between
the actual output yi and the predicted output f (xi) can be measured by the following
loss function

L(x, y, f ) = |yi − f (xi)|E =
{

0, |yi − f (xi)| < ε

|yi − f (xi)| − ε, |yi − f (xi)| ≥ ε
(12)

If the deviation is smaller than the largest tolerance error ε for each xi, f (x) will be
obtained. It can be seen from the above function that the data within the ε-tube will not be
penalized. The support vectors for building f (x) are the data that are located outside or on
the ε-tube.

The problem aims to minimize w and b by introducing the structural risk minimization [62]:

R(w) =
1
2
‖w‖2 +

n

∑
i=1
L(x, y, f ) (13)

Slack variables ξi and ξ∗i are applied to allow some errors. The above function can
then be rewritten as

minw,b, ξ,ξ∗R(w) =
1
2
‖w‖2 + C

n

∑
i=1

(ξi + ξ∗i )


yi −w·ϕ(x)− b ≤ ε + ξi

w·ϕ(x) + b− yi ≤ ε + ξ∗i
ξi ≥ 0

ξ∗i ≥ 0

(14)

where C is a penalty parameter that determines the trade-off between the penalizing term
‖w‖ and the training error. An example of nonlinear SVR with an ε-tube is shown in
Figure 5.

Lagrange multipliers can be used to solve the problem:

L(w, b, ξ, α, , µ) =
1
2
‖w‖2 + C

n

∑
i=1

(ξi + ξ∗i )

−
n

∑
i=1

αi(ε + ξi − yi + w·ϕ(xi) + b)

−
n

∑
i=1

α∗i (ε + ξ∗i + yi −w·ϕ(xi)− b)

−
n

∑
i=1

(µiξi + µ∗i ξ∗i ) (15)

where αi ≥ 0, α∗i ≥ 0, µi ≥ 0, and µ∗i ≥ 0 are Lagrange multipliers. KKT functions
should be satisfied to solve the constraint functions with strong duality (the primal optimal
objective and the dual optimal objective are equal) as follows [63]

∂L
∂w = w−∑n

i=1
(
αi − α∗i

)
ϕ(xi) = 0

∂L
∂b = ∑n

i=1
(
αi − α∗i

)
= 0

C− αi − µi = 0

C− α∗i − µ∗i = 0

(16)
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To find the optimal solution, the product of dual variables and constraints is 0:
αi(ε + ξi − yi + w·ϕ(xi) + b) = 0

α∗i
(
ε + ξ∗i + yi −w·ϕ(xi)− b

)
= 0

(C− αi)ξi = 0(
C− α∗i

)
ξ∗i = 0

(17)

The Lagrange dual problem can be obtained after solving the above equations:

max
i

(
−1

2

n

∑
i=1

∑n
j=1(αi − α∗i )

(
αj − α∗j

)
xT

i xj − ε ∑n
i=1(αi + α∗i ) + ∑n

i=1 yi(αi − α∗i )

)

s.t.

{
∑n

i=1
(
αi − α∗i

)
= 0

αi, α∗i ε[0, C]
(18)

By replacing w with ∑n
i=1
(
αi − α∗i

)
ϕ(xi), the regression function is given by

f (x) = ∑n
i=1(αi − α∗i )ϕ(xi)x + b (19)

SVM has been used to predict the compressive strength of lightweight aggregate
concrete [64] and the elastic modulus of high and normal strength cementitious mate-
rials [65]. In addition, the performance of SVM in the prediction of the properties of
cementitious materials has been compared with ANN. Akande et al. modelled the UCS of
cementitious materials using ANN and SVM, and found that the presence of local minima
has more influence on ANN [66]. Sonebiet al. [47] predicted fresh properties (e.g., v-funnel
time, L-box, and slump flow) of self-compacting concrete using SVM. The results indicated
that SVM achieved higher prediction accuracy than ANN when predicting complex fresh
properties (such as slump) of cementitious materials [67].
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While SVM is popular in the prediction of the properties of cementitious materials, it
faces several inherent drawbacks. Firstly, the performance of SVM is significantly affected by
the selection of the penalty parameter and the kernel parameter. Second, the decision surface
is determined by considering the training points equally. These limitations can be overcome
by proposing some other types of SVM. Cheng et al. used a weighted Support Vector
Machine (WSVM) to predict the compressive strength of high-performance concrete [68].
WSVM obtains the decision surface by considering the weights of different training data, and
hence achieves higher prediction accuracy compared with traditional SVM. Pham et al. used
a Least Squared Support Vector Machine (LSSVM) to predict the compressive strength of
high-performance concrete. The method achieved the most desirable performance with low
prediction errors in comparison with other ML models [69]. Generally, multiple properties
need to be considered for a specific concrete (e.g., the permeability and UCS of pervious
concrete). Zhang et al. first introduced the multi-output least squares support vector
machine (MOLSSVM) to predict the permeability and UCS of pervious concrete. The
proposed MOLSSVM was able to utilize the relationship between UCS and permeability
and thus achieved higher prediction accuracy than single-output models [70].

Tree-Based Models

(1) Decision tree

The Decision Tree (DT) is a widely employed algorithm for both classification and regres-
sion problems due to its rule induction, representation simplicity, and better accuracy [71]. DT
was initially developed for solving classification problems, e.g., C4.5 [72] and Dichotomiser
3 [73]. Then, regression problems can be solved by extending DT to create the Classification
and Regression Tree (CART) [74]. A DT is able to decompose/transform a complex problem
into smaller ones by using a series of “if-then” statements. Therefore, after the efficient
learning process of DT, the answers are provided in a simple symbolic representation. The
structure of a DT is like a flow chart. A “test” on an attribute is represented by an inter-node.
The outcome of the test is represented by a branch, and a class label is represented by a
leaf node.

In the process of growing a DT, the samples are split by selecting one of the input
variables. The internal node (a “test” on an attribute) is split into subsequent nodes by
selecting the best split point. The input space is divided such that smaller errors between
the actual and predicted outputs are achieved. The predicted outputs ŷi for a regression
tree at the ith leaf node are determined as follows

ŷi =
∑j∈ti

yj

|ti|
(20)

where ti represents the i-th leaf node; |ti| is the number of instances at the i-th leaf node; yj
denotes the j-th actual output. The least squares deviation (LSD) impurity measure is used
as the splitting criterion [75]:

I(ti) = ∑j∈ti
(yj − ŷi)

2 (21)

where I(ti) denotes the impurity measure (a measure of the homogeneity of the labels at
the node) at the i-th node. The splitting criterion is calculated based on LSD:

∆I = I
(
tp
)
− Pl I(tl)− Pr I(tr) (22)

where tp, tl , and tr represent the parent model, left-child node and right-child node, re-
spectively. Pr and Pl denote the proportions of instances given to the right and left nodes,
respectively. By maximizing ∆I, the split point is obtained.

DT has higher prediction accuracy when dealing with categorical variables in compar-
ison with other regression models, as DT predicts an output value as per the induced rules
without defining the distance measures for categorical variables or requiring the conversion
of categorical variables.
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(2) Random Forest

The Random Forest (RF) algorithm is a popular ensemble algorithm which employs
random split selection and the bagging method to build an uncorrelated forest of trees [76].
To train RF, the training set Sn is randomly split into a number of subsets and in each subset
a de-correlated DT is grown. The DTs are then combined into RF with the use of bagging.
A subset containing n samples with the selective probability of 1/n is called a bootstrap
sample SΘ

n , where Θ denotes an independently distributed vector. Assuming that m DTs
are generated from m bootstrap samples (SΘ1

n , SΘ2
n , . . . , SΘm

n ), m outputs are then obtained:
Ŷ1 = ĥ(X, SΘ1

n ), Ŷ2 = ĥ(X, SΘ2
n ), . . . , Ŷm = ĥ(X, SΘm

n ). The final output of RF is the mean
value of the m DT outputs, i.e., Ŷ = ∑m

i=1 ĥ(X, SΘi
n ). A flowchart of the construction of RF is

shown in Figure 6.
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(3) Gradient Boosted Regression Tree

A Gradient Boosted Regression Tree (GBRT) trains the model using least-squares
regression. For each iteration m, the response ŷ is predicted by a weak model Fm. Then, an
estimator h is introduced to improve the prediction of the model:

Fm+1(x) = Fm(x) + h(x) (23)

where Fm represents the GBRT model with m DTs. For each boosting iteration m, a new DT
is introduced to the GBRT. Term h is given by [77–79]:

Fm+1(x) = Fm(x) + h(x) = y (24)
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hm(x) = y− Fm(x) (25)

Therefore, gradient boosting will fit h to the residual y− Fm(x). The pseudocode of
the gradient boosting method is shown in Figure 7.
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(4) Modelling properties of cementitious materials using tree-based models

The M5 model tree algorithm is a popular DT algorithm for predicting the properties
of cementitious materials. Some researchers indicate that the M5 tree algorithm is more un-
derstandable than ANN and more accurate in comparison with statistical methods [81,82].
Behnood et al. used the M5 model tree algorithm to predict the elastic modulus of ce-
mentitious materials containing recycled aggregate. Simple mathematical formula were
derived using the model and this model achieved an accuracy over 80 percent above that
of the other models. The M5 tree model cannot perform well in complex data-domains
(e.g., dampening, logistic, or sinusoidal functions) due to its reliance on linear functions.
This shortcoming can be addressed by tree-based ensemble models such as RF thanks
to its capability of handling continuous as well as discrete variables while reducing vari-
ance over non-monotonic and monotonic data domains [76]. Zhang et al. employed RF
regression to model the UCS of lightweight self-compacting concrete (LWSCC) [83]. The
complex relationship between the UCS of LWSCC and its influencing variables was suc-
cessfully modelled, and the variable importance was obtained. Another study used a
metaheuristic-optimized RF model to predict the UCS of oil palm shell concrete [84]. A
recently proposed Beetle Antennae Search (BAS) algorithm was modified by incorporat-
ing Levy flight and self-adaptive inertia weight to search for the hyperparameters of RF.
The results show that the modified RF model achieved high prediction accuracy with a
correlation coefficient of 0.9588 for predicting the UCS of oil palm shell concrete. GBRT is
another tree-based ensemble model. Zhang et al. predicted the UCS and splitting tensile
strength (STS) of manufactured sand concrete using three tree-based models: DT, RF, and
GBRT. The results showed that GBRT achieved the highest prediction accuracy for UCS
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and STS with correlation coefficients of 0.99 and 0.97, respectively. The extreme boosting
(XGBoost) was also used by Li et al. to predict concrete strength [85]. The hyperparameters
of XGBoost were tuned by comprehension of the learning particle swarm optimizer. The
results showed that the hybrid model outperformed other popular ML models in terms of
accuracy and robustness.

It is difficult to say which of the tree-based models performs best in a particular dataset.
Thus, a comparison is needed when using these tree-based models for prediction of the
properties of cementitious materials. In addition, as the performance of tree-based models
relies on the values of their hyperparameters, it is suggested that the hyperparameters are
tuned using optimization algorithms such as metaheuristic optimization algorithms.

3.4. Optimization Algorithms

Optimization algorithms are applied to search for optimal mixture proportions of
cementitious materials with ML models as objective functions. In this regard, metaheuristic
optimization algorithms are widely used due to their simple implementation and high
computational efficiency [86,87]. The following section will introduce the widely used meta-
heuristic algorithms for mixture optimization of cementitious materials, including Particle
Swarm Optimization (PSO), Genetic Algorithm (GA), and Beetle Antennae Search (BAS).

3.4.1. Metaheuristic Optimization Algorithms
Particle Swarm Optimization

The development of Particle Swarm Optimization (PSO) was inspired by the behavior
of fish schooling or birds flocking [88,89]. A particle in the swarm represents a potential
candidate solution to the problem. The particles move as per the best known position of
themselves and the entire swarm in the search-space. The position update equation is
given by

vt+1
id = w× vt

id + c1 × r1i ×
(

pbestid − xt
id
)

+ c2 × r2i ×
(

gbestid − xt
id
) (26)

xt+1
id = xt

id + vt+1
id (27)

where vt
id and vt+1

id represent the velocities of particle i at the t-th and (t + 1)-th iterations,
respectively; d denotes the dimension of the searching space; pbestid and gbestid are the best
known positions of the particle and the entire swarm, respectively; xt

id and xt+1
id represent

the positions of particle i at the t-th and (t + 1)-th iterations, respectively; c1 and c2 denote
acceleration coefficients; w is the initial weight; and r1i and r2i represent two random values
between 0 and 1. A flowchart of PSO is illustrated in Figure 8.
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Genetic Algorithm

The development of the Genetic Algorithm (GA) was inspired by natural evolution
and was widely used in engineering optimization due to its ability to solve optimization
problems with unknown geometry of the searching space [90,91]. Each candidate is rep-
resented by a chromosome that can be altered or mutated. Generally, a chromosome is
represented in a binary string of 0 s and 1 s. The length of a string is determined by the
calculation scope and precision. In the process of evolution, a population of individuals are
randomly generated. In each iteration, the objective function of the optimization problem
to be solved is used to assess the fitness of each chromosome in the generation. The chro-
mosomes with better objective values are randomly selected (usually by a roulette-wheel
method) to yield offspring. The genes between two chromosomes are exchanged as per
crossover schemes, including single-point crossover, uniform crossover, and multi-point
crossover [92]. Gene mutation also occurs in this procedure, i.e., the binary code of a
gene is changed from 0 to 1 or vice versa at a low probability. Finally, the new generation
will replace part of the old population. The evolutionary process stops when either the
maximum iteration number or a satisfactory fitness level is reached. A flowchart of GA is
shown in Figure 9.
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Shuffled Frog Leaping Algorithm

The shuffled frog leaping algorithm (SFLA) is a metaheuristic algorithm which achieves
the goal of population optimization by simulating the process of frog foraging. In a limited
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space, frogs are distributed in different positions according to certain rules, which is called
the initial position. Frogs independently search in groups to form different small groups,
called subpopulations, and then they use their own personalized information to move
in the direction of food in their respective areas to complete the position update. All the
subpopulations that have completed the search are reorganized, and the frogs exchange
information with each other, and then regroup. The above process is repeated until the
frogs find the most appropriate food source. A flow chart of SFLA is shown in Figure 10.
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Artificial Bee Colony Algorithm

The Artificial Bee Colony (ABC) algorithm is an optimization algorithm inspired by
bee colony behavior; the optimization process of this algorithm is as follows.

(1) Initialize the population and generate N initial solutions of D dimensions randomly.
X represents a bee population, and X = (X1, X2, X3, · · ·XN), the resulting random
feasible solution is defined as

X j
i = X j

min + rand ∗ (X j
max − X j

min) (28)

where j represents a component of the dimension, calculates the fitness function
values of each dimension, and defines the top half of bees with fitness function values
as the initial hire bee population.
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(2) Each hired bee will generate a new food source around the existing food source. The
generation rules are defined as follows:

newX j
i = X j

i + δ(X j
i − X j

k) (29)

P{Ts(Xi, newXi) = newXi} =
{

1

0
(30)

where k, i, and δ are randomly generated numbers, k 6= i and δ ∈ [−1, 1]. After the
new food source is generated, it is necessary to compare and evaluate the new food
source and the old food source. If the new food source is better than the old food
source, the old food source will be replaced with the new food source, otherwise the
old food source will remain unchanged.

(3) The observed bees choose whether to follow the hired bees from the food information
transmitted by them, so it is a probability problem. The definition of this probability
is as follows:

pi =
f (x)

N
∑

i=1
f (Xi)

(31)

where f (Xi) represents the fitness function value of the i th food source, and it is
defined as follows:

f (Xi) =

{ 1
1+ fi

, fi > 0

1 + abs( fi), fi < 0
(32)

where fi represents the objective function corresponding to the i th food source.
(4) If a food source is still not improved after iteration of the set number of cycles, the

corresponding hired bee will become an observed bee, and a new food source will be
generated to replace the abandoned food source:

X j
i (n) = X j

min + rand(0, 1) ∗ (X j
max − X j

min) (33)

The generation of new food sources is conducive to ensuring the diversity of the
population and improving the probability of finding the optimal solution. A flow
chart of the ABC algorithm is shown in Figure 11.
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3.4.2. Single-Objective Optimization of Mixture Proportions of Cementitious Materials

Much research has been conducted into the single-objective mixture optimization
of cementitious materials using ML and metaheuristic optimization algorithms. Usually,
most of the research focuses on obtaining a mixture with the minimum cost at a specified
UCS. Cheng et al. applied SVM and GA to optimize the mixture proportions of high-
performance concrete [93]. This approach can minimize concrete cost at a given UCS.
Other ML models and metaheuristic optimization algorithms are also employed to find
minimum mixtures of different types of cementitious materials at specific cost. For example,
Golafshani and Behnood employed biogeography-based programming to optimize the
mixture proportions of silica-fume concrete [42]. They successfully found the minimum cost
of a mixture with the UCS satisfying the requirement. Lee used ANN and a harmony search
algorithm to optimize the cost and UCS of high-performance concrete [94]. Yeh achieved
the lowest cost at a given UCS and slump of high-performance concrete using ANN
and optimization technologies. Although three objectives (i.e., cost, UCS, and slump) are
considered in their research, it is still single-objective mixture optimization. The Pareto front
of the three objectives cannot be obtained by their method [95]. To solve multi-objective
mixture optimization problems, the previous single-objective optimization method must
be extended to MOO algorithms.

3.4.3. Multi-Objective Optimization
Definition of the MOO Problem

We can use simple operators to find the global optimum of a single-objective optimiza-
tion problem. However, for MOO problems, these operators are not applicable. Before
solving an MOO problem, the following definitions should be given [96]:

Definition 1. Minimization problem: The minimization problem is defined as

minF(x) = [ f1(x), f2(x), . . . , fk(x)]
T

Subject to :


gj(x) ≥ 0, j = 1, 2, . . . , t

hj(x) = 0, j = 1, 2, . . . , m

lj ≤ xj ≤ µj, j = 1, 2, . . . , p

(34)

where F(x) is the objective function containing k objectives; t, m, and p are the numbers of inequality
constraints, equality constraints, and variables, respectively; gj(x) and hj(x) are the j-th inequality
and equality constraints, respectively; and [lj, µj] denotes the boundaries of the j-th variable.

Definition 2. Pareto dominance: If ∀i ∈ {1, 2, . . . , D}: ui ≤ vi, and ∃i ∈ {1, 2, . . . , D}: ui < vi,
then, vector u dominates vector v (u ≺ v), u, v ∈ RD.

Definition 3. Pareto set and Pareto front: For a given F(x), assume that Γ ⊂ Sx is a vector set. If
there is no x ∈ Γ that satisfies F(x) ≺ F(x*), then x∗ ∈ Γ is called a Pareto solution. The Pareto set
is given by

PΓ = {x∗ ∈ Γ|¬∃x ∈ Γ : F(x) ≺ F(x∗)} (35)

where ¬∃ represents nonexistence. The Pareto front is defined as

PF =
{

F(x) ∈ Sy
∣∣x ∈ PΓ

}
(36)

Definition 4. Pareto optimal set: For a given MOP F(x), x∗ ⊂ Sx is a Pareto optimal solution if
there exists no feasible solution x satisfying F(x) ≺ F(x*). The Pareto optimal set ∧ is defined as

∧ = {x∗ ∈ Sx|¬∃x ∈ Sx : F(x) ≺ F(x∗)} (37)
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Definition 5. Pareto optimal front: For a given F(x) and a Pareto optimal set ∧, the Pareto
optimal front is defined as

PF∗ =
{

F(x) ∈ Sy
∣∣x ∈ ∧} (38)

Construction of MOO Problems Using the Weighted Sum Method

To extend single-objective metaheuristic optimization algorithms into MOO algo-
rithms, the Weighted Sum method combines multiple multi-objective functions into one
objective and is widely used [87]:

F(x) = α1 f1(x) + α2 f2(x) + · · ·+ αp fp(x) (39)

where αi is the weighting coefficient.
The single objective problem using the Weighted Sum method is not strictly equivalent

to the MOO problem due to the arbitrary selection of the weighting coefficients. In addition,
the weighted sum function can be constructed in many ways (though the linear function is
the mostly widely used). For instance the following quadratic form can be used:

F(x) = α1 f 2
1 (x) + α2 f 2

2 (x) + · · ·+ αp f 2
p(x) (40)

3.5. Multi-Objective Optimization of Mixture Proportions of Cementitious Materials

As stated above, multiple competing objectives are involved in mixture optimization
problems. MOO methods have attracted more and more interest recently. Several scholars
have explored multi-objective metaheuristic algorithms combined with ML models for
MOO of mixture proportions of cementitious materials. Baykasoğlu et al. proposed a MOO
model for mixture optimization of high-strength concrete [97]. They considered three objec-
tives including UCS, slump, and cost which were modelled using regression analysis, ANN,
and Gene Expression programming. The Genetic Algorithm was used as the optimization
algorithm to optimize mixture proportions. This paper introduced the concept of Pareto
optimality in concrete mixture optimization. The authors treated the slump as constraints
and hence this study is actually a bi-objective mixture optimization. Zhang et al. proposed
a framework for multi-objective mixture optimization for cementitious materials [6]. They
optimized mixture proportions of plastic concrete considering three objectives: UCS, cost,
and slump using ML models and multi-objective PSO. They also compared different ML
models in the prediction of different properties of cementitious materials and showed that
BPNN is more accurate in continuous data (e.g., UCS), while RF performs better in more
discrete data (e.g., slump). In addition, the decision-making method—the technique for
order preference by similarity to an ideal solution (TOPSIS)—was first introduced to select
final solutions in the Pareto front. It should be noted that more objectives (e.g., strength,
workability, cost, environmental) should be considered in future work, though it is difficult
to represent more than three objectives in the Pareto front.

4. Future Prospects
4.1. Considering More Properties of Components for Modelling Objectives

The objectives of mixture design are influenced by complex chemical and physical
interactions between the components of cementitious materials. For example, the different
properties of aggregates, such as size, shape, chemical composition, grading, absorptivity,
and surface texture should be considered. The interfacial bonds between the mortar and
aggregates are impacted by these properties, which, in turn, affect the strength of cementi-
tious materials [98]. In addition, the objectives of concrete (e.g., mechanical, environmental,
cost, workability) are also influenced by the properties of supplementary cementitious ma-
terials like silica fume, slag, and fly ash, such as pozzolanic reactivity, chemical variability,
and fineness [99]. Furthermore, the additional processing steps and original industrial



Materials 2022, 15, 7830 21 of 30

source significantly affect the mineral composition and fineness of the properties of these
supplementary cementitious materials.

The generalization ability of the MOO models increases with increasing volumes of
data. It is well known that the properties of field-placed concrete are highly variable due to
the variability of the conditions of the jobsite. Hence, environmental conditions such as
inclement weather, humidity, and temperature should be considered. The above-mentioned
models only consider material composition for modelling objectives of cementitious ma-
terials in a laboratory. Such variabilities cannot be found in laboratory data and thus
the current ML models should be extended by considering both the effects of materials
and environments.

4.2. Developing New Metaheuristic Optimization Algorithms

A metaheuristic optimization algorithm is used to search for optimal mixture pro-
portions based on the previously established ML model. Nonetheless, multi-objective
mixture optimization problems are complex, and metaheuristic algorithms including the
well-known PSO and GA may not achieve a good performance if they are trapped in local
optima when most of the individuals in a population have similar structures [100]. For
instance, the searching efficiency of GA will be eliminated if the population has converged,
as new off spring cannot be produced by the crossover of almost identical chromosomes. It
then only randomly and slowly searches for new domains because of the mutation process.

For mixture optimization problems, a large amount of time is usually required because
of the stochastic characteristics of the searching approaches of metaheuristic algorithms
based on swarm intelligence [101]. Therefore, it is imperative to develop robust and
efficient metaheuristic algorithms that can obtain optimal solutions under the conditions of
limited financial, time, and material resources for mixture optimization. Recently, the beetle
antennae search algorithm (BAS) was proposed based on individual intelligence [102].
This algorithm uses an individual (a beetle) rather than a swarm to search, and hence the
calculation time is significantly reduced. Furthermore, this method is easy to implement
with simple code and by using a specific step size strategy it is less likely to be trapped
in local optima [103]. Inspired by the previously successful application of BAS to solve
complicated engineering problems, this review proposes a multi-objective BAS (MOBAS)
for solving multi-objective SFC mixture optimization problems.

4.2.1. Basic Beetle Antennae Search Algorithm

The Beetle Antennae Search (BAS) algorithm mimics the beetle’s foraging behavior [102].
The beetle searches for food using its two antennae. When the concentration of odor on
the left-antennae is higher, the beetle moves to the left; otherwise it moves to the right, as
shown in Figure 12. The beetle is simplified to develop the algorithm as shown in Figure 13.
In this model, xl and xr represent a position on the left-antennae side and right-antennae
side, respectively; xi denotes the position of the beetle at the ith time instant (t = 1, 2 . . . );
and d is the distance between the two antennae.

The beetle searches for food in a random direction and we define a random search
vector as

b =
rand (k, 1)
‖rand (k, 1)‖ (41)

where rand is a random function and k denotes the dimension of the searching space. The
position vector of the antennae top can then be written as

xi
r = xi + dib (42)

xi
l = xi − dib (43)

The position vector of the beetle can be formulated using the following iterative
equation:
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xi = xi−1 + δibsign
(

f
(

xi
r

)
− f

(
xi

l

))
(44)

where δ is the step size of the beetle. To avoid local optima, the following step size and
antennae length updating strategy can be used:

di = 0.95i−1 + 0.01 (45)

δi = δi−1 (46)

The pseudocode of BAS is shown in Figure 14.
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4.2.2. Improving Beetle Antennae Search using Levy Flight and Self-inertia Weight

To reduce the risk of trapping in local optima, the step size of the beetle can be adjusted
by Levy flight and self-inertia weight. The improved BAS has been used in the prediction
of concrete properties and the design of concrete mix in past studies [105–110]. It should
be noted that for traditional BAS used in concrete design, the beetle step size is constant
or decreases in each iteration. Adopting this step adjustment strategy can cause some
problems. If the step size is too small, the BAS algorithm may converge slowly or fall into
the local optimal state. However, if the given step size is very large, the global optimality
may be skipped and the result may oscillate. Therefore, Levy flight and self-inertia weights
should be used to adjust the step size of BAS.

(1) Levy flight

Many researchers have adopted Levy flight to improve the searching efficiency of
swarm-based metaheuristic optimization algorithms [111–113]. When the beetle is trapped
in a local minimum, the Levy flight will be triggered to enlarge the step size of the beetle:

δ(i) = α|Levy| ⊗ δ(i−1) (47)

where α is a randomization parameter; α ∈ [0, 1]; ⊗ is entrywise multiplications; |Levy|
represents a Levy distribution with an infinite variance and an infinite mean:

Levy ∼ u = t−λ, (1 < λ ≤ 3) (48)

The Levy flight is triggered when the difference between the adjacent two fitness
values ( f (i) and f (i−1)) is smaller than the difference between the historical worst and best
fitness values ( fw and fb), which can be expressed as follows:∣∣∣ f (i) − f (i−1)

∣∣∣ < µ( fw − fb) (49)

where µ is a coefficient.

(2) Self-adaptive inertia weight

The authors use a monotonically decreasing function to implement the self-adaptive
inertia weight:

δi+1 = ηi × δi (50)

where δi is the step size at the current position and ηi is the self-adaptive inertial weight
which can be calculated as follows:

ηi = (1− α)0.95 + α
f i
w − f i

f i
w − f i

b
(51)

where f i is the fitness function at the current position; f i
w and f i

b represent the worst and
the best fitness values, respectively; α is a hyper-parameter to trade off between the two
items, where the first item ((1− α)0.95) indicates the inertial weight and the second item

(α f i
w − f i

f i
w − f i

b
) represents the self-adaptive property. Algorithm 1 shows the improved BAS

algorithm by using Levy flight and self-adaptive inertia weight.
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Algorithm 1: Modified BAS

Input: Fitness function f (xt), initial position of the beetle X0, initial step size δ0, max imum
iteration number n, ratio of antennae length to step size c, attenuation coefficient of step size η.
Output: Optimal positions Xb, optimal fitness function value fb.
FOR i = 1 to n

Generate random antennae direction b;
Calculate the antennae length di = c× δi;
Calculate the left-hand and right-hand positions xl and xr;
Calculate the fitness function value f (xl) and f (xr) at the left and right antennae position;
Calculate the next position xi;
Calculate the fitness function value f (xi+1) at next position xi+1;
IF f (xi+1) < fb
THEN Update xb to xi+1; Update f (b) to f (xi+1);
END
Update step size δi+1 using Equation (11);

IF
∣∣∣ f (xi+1)− f (xi)

∣∣∣ < µ( fw − f (b))

THEN Update the size δi+1 using Levy flight according to Equation (9);
ELSE Update the size δi+1 according to Equation (8)
END
i = i + 1

END

4.2.3. Multi-Objective Beetle Antennae Search Algorithm

The previously mentioned Weighted Sum method can be used to extend the basic BAS
to MOBAS. The pseudocode for MOBAS is shown below as Algorithm 2.

4.3. Incorporating Many Objectives

Currently, only one or two objectives (usually UCS and cost) are considered in the
optimization studies. However, in real applications, many objectives are important. Thus, in
future work, it is necessary to develop many-objective optimization models that are able to
consider the trade-offs between a large number of competing objectives. For example, fresh
properties of cementitious materials (e.g., slump and set time) should be incorporated. As
an indicator of workability, slump is mostly influenced by water-to-cement ratio, gradation
and shape of aggregates, superplasticizer, and air entraining agents [114], while set time is
significantly affected by water-to-cement ratio, cement fineness, cement type, types and
amount of supplementary cementitious materials, and superplasticizers. Therefore, input
variables should be carefully selected for different objectives. In addition, when optimizing
the mixture proportions of functional cementitious materials, specific objectives need to
be taken into consideration, such as the permeability of pervious concrete, the density of
lightweight concrete and the flexural strength of fiber reinforced concrete.

In addition, it is known that in the cement production process, approximately 0.9 ton of
CO2 is emitted for each ton of cement [115]. The cement industry contributes approximately
5–7% of global CO2 [116]. Therefore, the greenhouse gas emissions are particularly high
for concrete production due to the extensive use of cement. It is natural for engineers and
researchers to consider environmental objectives for mixture optimization of cementitious
materials. Changing the decision variables is an effective way to reduce the impact of
cementitious materials on the environment. Some researchers have used supplementary
cementitious materials (e.g., silica fume, blast furnace slag, and fly ash) to replace part of
the cement in order to reduce CO2 emission [117–119]. Other researchers have applied
recycled aggregate to replace partial or whole natural sand, or natural coarse aggregates in
concrete to reduce the depletion of non-renewable energy resources [120,121]. Therefore,
it would be very useful to develop many-objective mixture optimization models that can
trade off between many objectives (e.g., mechanical properties, cost, environmental impact,
and durability) to optimize mixture proportions containing various decision variables.
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Algorithm 2: MOBAS

Input: Fitness function F = [ f1(xi
j), . . . , fk(xi

j), . . . , fK(xi
j)]

T
, initial position of the beetle

X0 = {x0
1, . . . , x0

j , . . .}, initial step size δ0 = {δ0
1, . . . , δ0

j , . . .}, maximum iteration number N, ratio
of antennae length to step size c and step size attenuation coefficient α.
Output: M optimal Pareto positions (non-dominated solutions)
XPF = {xPF,1, . . . , xPF,m, . . . , xPF,M}
m = 1;
WHILE (m ≤ M)

Calculate the random weight of each objective Ω = [v1, . . . , vk, . . . , vK ], and normalized with
vk = ∑K

k=1 vk;
FOR i = 1 to N
Generate random antennae direction bi;
Calculate the antennae length di = c× δi

m;
Calculate the left-hand and right-hand positions xi

l and xi
r;

Calculate the weighted sum function value Φ
(
xi

l
)

and Φ
(
xi

r
)

at the left and right antennae
position with Φ(x) = Ω·F;

Calculate the next position xi+1 = xi + δi;

Calculate the weighted sum function value Φ
(

xi+1
)

at next position xi+1;

IF Φ
(

xi+1
)
< Φb THEN

Update xb to xi+1;
Update Φb to Φ

(
xi+1);

END IF
Update step size δi+1 = αδi;
END FOR
IF xb satisfy all the constraints
IF xb is not dominated by XPF, THEN
Update XPF = XPF ∩ xb;
Update m = m + 1;
END IF
FOR XPF,t IN XPF
IF xb dominates xPF,t, THEN
Update XPF = XPF − xPF,t;
Update m = m− 1

END IF
END FOR

END IF
END WHILE

Other challenges that exist in many-objective mixture optimization are how to visualize
the data with many objectives and how to select a final solution on the resulting Pareto
front. To visualize the data, data visualization techniques, such as parallel coordinates,
can be used to visualize and understand the solutions on the Pareto front [122]. For the
selection of non-dominated solutions on the Pareto front, it is common to select the final
mixture based on engineering requirements; however, multi-criteria decision selection
methods such as TOPSIS (Technique of Order Preference Similarity to the Ideal Solution)
can be applied [123].

5. Conclusions

Currently, much of the research literature focuses on single-objective mix optimization,
such as finding the minimum cost of a mix for a particular UCS. However, the hybrid
optimization of modern cementitious materials needs to meet multiple objectives simulta-
neously. These objectives are usually competing with each other, so the ML-based MOO
model and swarm intelligence-based multi-objective optimization algorithm is applied to
find the Pareto front of the multi-objective hybrid optimization problem.
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In this paper, the common methods of mixture optimization (experimental method,
Taguchi method, and response surface method) are reviewed. Then, the formulation of
the cementitious material mixture optimization problem is discussed, including the de-
termination of decision variables, application constraints, modeling objectives, and the
development of metaheuristic optimization algorithms. The single-objective hybrid opti-
mization problem is realized by the single-objective metaheuristic optimization algorithm,
while for the multi-objective hybrid optimization problem, it is necessary to extend the
single-objective metaheuristic optimization algorithm to the multi-objective metaheuristic
optimization algorithm.

The future of cementitious material mixing optimization has also been prospected.
By increasing the amount of data and considering more influencing variables, such as
environmental factors and components, the generality of the existing MOO model is
improved. Additional objectives should be considered when producing cementitious
materials with improved working performance, strength, durability, reduced costs, and
minimal environmental impact. Therefore, the development of computationally efficient
robust MOO models will continue to make progress in the hybrid optimization field.

This study sums up the mixture optimization of cementitious materials using machine
learning and metaheuristic algorithms and it can be employed by engineers and researchers
who want to optimize the mixture proportions of cementitious materials. However, it
should be noted that more possible multi-objective optimization algorithms may be used for
cement-based material design in the future, so more studies based on different algorithms
will be carried out, and a more extensive literature review study should be carried out at
that time. In addition, the reliability comparison between different algorithms should be
paid more attention to in future research. Other challenges will also need to be addressed
in the future, such as how to visualize data with multiple objectives and how to choose the
final solution on the acquired Pareto front.
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