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Abstract: The Coulomb excitations of charge density oscillation are calculated for a double-layer
heterostructure. Specifically, we consider two-dimensional (2D) layers of silicene and graphene on
a substrate. From the obtained surface response function, we calculated the plasmon dispersion
relations, which demonstrate how the Coulomb interaction renormalizes the plasmon frequencies.
Most importantly, we have conducted a thorough investigation of how the decay rates of the plasmons
in these heterostructures are affected by the Coulomb coupling between different types of two-
dimensional materials whose separations could be varied. A novel effect of nullification of the
silicene band gap is noticed when graphene is introduced into the system. To utilize these effects for
experimental and industrial purposes, graphical results for the different parameters are presented.
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1. Introduction

A huge number of researchers from various disciplines have been showing their inter-
est in new materials, silicene especially, after the development of its fabrication process in
2012 [1]. Because of its exceptional potential applications in electronic and optoelectronic
devices, many industries are making substantial investments to harness its properties.
Additionally, before making investments for commercial gain, both theoreticians and
experimentalists have been exploring this material for many years. A credit of foremost im-
portance goes to Takeda and Shiraishi [2], who, in 1994, dealt with the atomic and electronic
structure of the material for the first time. These authors calculated the band structure of
silicon in the corrugated stage having optimized atomic geometry. This work, though very
novel, did not receive the attention it deserves until 2004, when single-layer carbon atoms
named graphene were fabricated in the laboratory from graphite by Novoselov et al. [3].
Their research not only validated the stability of two-dimensional (2D) material but also
opened the door for new research on thin film materials, silicene being one of them.

Both silicene and graphene were studied in parallel. The former has a buckled crystal
geometry, whereas the latter has a honeycomb planar geometry. Due to this, differences
arise between them. Ab initio calculations showed that the bandgap of silicene is electrically
tunable [4–6], which is an advantageous property for designing a field effect transistor that
works at room temperature. Another distinct difference between these two materials is the
strength of the spin-orbital coupling (SOC), which is very weak in graphene. Consequently,
the quantum spin Hall effect occurs at extremely low temperatures [7,8]. In contrast to
this, silicene displays quantum spin Hall effect at temperature 18 K, far higher than that
for graphene.

Several investigations have been carried out on both graphene and silicene with
respect to transport phenomena [9–16], as well as their magnetic and electric field
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effects [3,17–23], the fabrication process [24–27], plasmonic behavior [28–38] and the doping
effect on layered graphene and graphene-like heterostructure systems [39,40].

Recently, Dong et al. [41] studied the plasmonic behavior and its decay mode in multi-
layer graphene structure, however, an extensive literature search on the plasmon-related
studies indicates that there has been no investigation regarding plasmon excitations and
their decay rates due to Landau damping for composite silicene and graphene materials.
This hybrid material could have significant benefits for use in the advancement of quan-
tum information technology [42–44], sensing devices [45–47] and protein analytic clinical
devices, [47–50]. Based on these impressive potential applications, we are motivated, in
this work, to choose a system composed of silicene and graphene accompanied by a con-
ducting substrate. A detailed review of the plasmon properties in graphene and various
graphene-based structures has been presented in Ref. [51].

The plasmon mode is tunable by the thickness of the substrate and the variation of
material behavior. We first determine the surface response function of the structure, the
same technique used recently by Gumbs et al. [52,53], which gives us the condition for
the existence of the plasmon dispersion. The analytical result for the surface response
function is further used for different limiting cases and a comprehensive comparison is
made with a variety of structures composed of different graphene–silicene compositions.
Furthermore, the same function is used to obtain the Landau damping rate of the plasmon
modes whose numerical calculation demonstrates that its variation depends on the layer
separation, types of dielectric used and the type of 2D layer employed.

We have organized the rest of our paper as follows. In Section 2, we present the core
idea of our work where we show the analytical result for the surface response function
for the chosen structure. Under limiting conditions, the result is used to derive the results
for a variety of conditions. The graphical results and their interpretation are presented in
Section 3. We conclude our paper with a summary of our main results and conclusions in
Section 4.

2. Theory

In this section, we analyze the plasmonic behavior of the heterostructure consist-
ing of graphene and silicene together for which we employ the low-energy form of the
Hamiltonian near the K point in the Brillouin zone. One significant difference between the
Hamiltonian of graphene and silicene is that a small band gap, ∆ is present in the silicene
energy band structure, which is due to spin-orbit coupling and applied external electric
field. This band gap is not seen in intrinsic graphene.

2.1. Silicene

We now briefly describe the case pertaining to silicene whose Hamiltonian in the
continuum limit is given by:

Hξ = h̄vF(ξkx τ̂x + kyτ̂y)− ξ∆soσzτz + ∆zτ̂z , (1)

where τ̂x,y,z and σx,y,z are Pauli matrices corresponding to two spin and coordinate sub-
spaces, ξ = ±1 for the K and K′ valleys, vF(≈ 5 × 105) m/s is the Fermi velocity for
silicene [5,54], kx and ky are the wave vector components measured relative to the K points.
The first term represents the low-energy Hamiltonian, whereas the second term denotes
the Kane–Mele system [7] for intrinsic spin-orbit coupling with an associated spin-orbit
band gap of ∆so (of order 5 to 30 meV can could reach up to 100 meV) [55]. The last term in
the expression describes the sublattice potential difference that arises from the application
of a perpendicular electric field. Equation (1) for the Hamiltonian is a block diagonal in
2× 2 matrices labeled by valley (ξ) and spin σ = ±1 for up and down spin, respectively.
These matrices are given by [55]:

Ĥσξ =

(
−σξ∆so + ∆z h̄vF(ξkx − iky)

h̄vF(ξkx + iky) σξ∆so − ∆z

)
. (2)
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This gives the low-energy eigenvalues as:

Ek = ±
√

h̄2v2
f |k|2 + ∆2

ξσ (3)

where ∆σξ = |σξ∆so − ∆z|.

2.2. Graphene

The low-energy model Hamiltonian for monolayer graphene is similar to that in
Equation (2) with the diagonal terms replaced by zero and ξ labeling the valley. In this
regime, the Hamiltonian for intrinsic graphene is given by [56]:

Ĥ = h̄vF

(
0 (ξkx − iky)

(ξkx + iky) 0

)
(4)

with the linear energy dispersion, Ek = ±h̄v f |k| in either valley.

2.3. Polarization Function: Π(q, ω)

Considerable work has been completed on the dynamical properties involving the
use of the dielectric function ε(q, ω) of various types of free-standing 2D systems [57–59]
under different conditions. These include temperature effects [60,61], the role of an ambient
magnetic field for the 2D electron gas (2DEG), graphene, silicene [62] and the dice lattice [58].
For a single 2D layer, one can extract the plasmon dispersion relation and damping rate
by employing the dielectric function. However, the situation is more complicated for
a multi-layer heterostructure that relies on knowledge of the surface response function,
which we have presented in detail below. However, in either case, we need to calculate
the polarization function obtained in the random phase approximation (RPA). For a 2D
layer surrounded by a medium with dielectric constant εb, the dynamic dielectric function
is given by:

ε(q, ω) = 1−V(q)Π(q, ω), (5)

where V(q) = 2πe2

4πε0εbq is the Coulomb interaction potential and ε0 is the permittivity of
free space, q is the wave vector and e is the electron charge. The polarization function
is an important quantity in calculations of the transport, collective charge motion and
charge screening properties of the material. In the one-loop approximation, the polarization
function for gapped graphene is given by [63]:

Π0(q, ω) =
∫ d2k

2π2 ∑
s,s′=±1

{
h̄2v2

f (k + q) · k + ∆2
σ,ξ

Ek · E|k+q|

}
f0(sEk − EF, T)− f0(s′E|k+q| − EF, T)

sEk − s′E|k+q| − h̄(ω + iδ)

(6)

where the angle between k and k + q is θk,k+q. At zero temperature, the Fermi function
f0(z) is just a step function. The analytical expression for the polarization function for
the silicene and graphene monolayer is given by Tabert et al. [62] and Wunsch et al. [57],
respectively.

We now turn our attention to a crucial consideration in this paper regarding the
structure consisting of a silicene layer, a graphene layer and substrates as depicted in
Figure 1. The dielectric constants ε1 and ε2 are related to the space between the two layers
and the semi-infinite region underneath the lower layer. Thus, we assume that there is no
material above the upper layer whose susceptibility is χ1(q, ω), and it is always assumed
to be a vacuum above this top layer.
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Figure 1. (Color online) Schematic illustration of a heterostructure consisting of a pair of 2D layers
separated by a dielectric medium ε1(ω). This structure lies on a substrate with a dielectric function
ε2(ω).

The two 2D layers may be identical or different, possessing different material proper-
ties (graphene or silicene in our case), which is reflected in their energy dispersions though
the presence or absence of a band gap. The two layers could also have different or equal
doping levels (Fermi energies). By employing the boundary condition of continuity of
the electrostatic potential and the discontinuity of the electric field across the interface
separating two media, we solved for the various coefficients appearing in the potential.
Consequently, the result for the surface response function g(q, ω) gives the required condi-
tions for the plasmon dispersion for our case, namely:

φ<(z) = e−qz − g(q, ω)eqz , z . 0 , (7)

φ>(z) = a1e−qz + b1eqz , 0 ≤ z ≤ d ,

φ1>(z) = k1e−qz , z ≥ d .

Here, φ<(z), φ>(z) and φ1>(z) correspond to the electrostatic potential of regions
(I),(II) and (III), respectively, as shown in Figure 1. In order to conduct numerical com-
putation, we make use of linear response theory, for which we have the charge density,
σ1 = χ1φ<(0), σ2 = χ2φ1>, with χ1, χ2 2D susceptibilities. Generalizing, χi = e2Π0

i for
convenience, we obtain the solution of these equations for different coefficients, leading to:

g(q, ω) =
1

D(q, ω)

{
[qε0(ε1 − 1)− χ1][qε0(ε1 + ε2)− χ2]− [qε0(ε1 + 1) + χ1][qε0(ε1 − ε2) + χ2]e−2dq

}
(8)

D(q, ω) ≡ [qε0(ε1 − 1)− χ1][qε0(ε1 + ε2)− χ2]− [qε0(ε1 − 1) + χ1][qε0(ε1 − ε2) + χ2]e−2dq , (9)

where ε1(ω) is the dielectric function of the substrate between layers “1” and “2”, χ1 and χ2
correspond to the susceptibilities of these two layers and d is the thickness of the substrate.
This substrate thickness is in the order of the wavelength of light considered, for a visible
light it could be of the order of a few hundred nanometers. For a thick substrate, the thick-
ness could go up to micrometer in size, and accordingly, the plasmonic mode is modified.
The plasmon dispersion equation is obtained from the solutions of D(q, ω) = 0, which we
solve below. We note that when we set χ2 = 0 and take the limit d→ ∞, Equation (8) gives
the well-established form [64]:

g2D(q, ω) = 1−
{

ε1 + 1
2
− χ1

2qε0

}−1
, (10)
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which is the surface response function for a 2D layer embedded in a medium whose
average background dielectric constant is εb = (ε1 + 1)/2. The plasma resonances, which
Equation (10) gives from its poles, are in agreement with the zeros of the dielectric function
in Equation (5).

2.4. Damping Rate

We now turn to a critical issue in this paper, which concerns the rate of damping of
the plasmon modes by the single-particle excitations. If this rate of damping for a plasmon
mode with frequency Ωp is denoted as γ, then D(Ωp + iγ, q) = 0 is the complex frequency
space. Carrying out a Taylor series expansion of both the real and imaginary parts, we have:

D(Ωp + iγ, q) = Re D(Ωp + iγ, q) + iIm D(Ωp + iγ, q)

= ReD(Ωp) + iγ
∂

∂Ω
ReD(Ω)

∣∣∣∣
ω=Ωp

+ iImD(Ωp)− γ
∂

∂Ω
ImD(Ω)

∣∣∣∣
ω=Ωp

+ · · · (11)

Therefore, setting the function in Equation (11) equal to zero, we obtain γ to the lowest
order as:

γ = −
ImD(Ωp)

∂ReD(ω)/∂ω|Ωp

. (12)

With these formal results, we now evaluate the plasma spectra for a double layer
heterostructure. The expression shows the dependence of γ on the imaginary part of
D(Ωp) and the Real part of D(ω), which in turn, are dependent on the type of layer and
the substrate considered. Eventually, we can infer that the viability of plasmon modes can
be tuned by the dielectric substrate thickness and by the choice of 2D layer. In addition,
the rate of decay also helps us in maintaining the intensity and the frequency of the
obtained plasmon mode. This could have great impact in the development of the quantum
information sharing technology and the data storing devices.

3. Numerical Results and Discussion

In our numerical calculations, energy is scaled in units of E(0)
F and the wave vector

is scaled with k(0)F =
√

πn, which is in the experimental range for electron/hole dop-

ing densities n = 1010 per cm2. This gives k(0)F = 106 per cm and E(0)
F is equivalent

to ∼60 meV. From the preceding discussion, in Section 2, it is clear that the plasmon
modes for any system are given by the zeros of the dielectric function obtained from
Equation (9). Thus, making use of this dispersion equation, we computed the plasmon
mode dispersion relation for a heterostructure based on graphene and silicene with/without
a substrate. For this, we first obtained a graphical result for graphene, as shown in Figure 2.
One can clearly see that a single branch plasmon mode originates from the origin in
q − ω space, which increases monotonically and is subject to Landau damping when
the plasmon mode reaches the interband particle-hole excitation region. Figure 2 is plot-
ted for monolayer graphene embedded in material with background dielectric constant
ε1 = ε2, which we set equal to 1 for simplicity. The situation is similar (ε1 = ε2 = 1) for
Figures 3–7. In Figure 2, the plasmon branches for two values of the Fermi energy are
shown in panels (a,b). The damping rates of these plasmon modes are demonstrated
in panel (c,d), where it is distinctly shown by an arrow pointing at the boundary of the
region where Landau damping takes place. The rate of decay for both types of graphene
are monotonically increasing, signifying that the deeper into the single particle excitation
region plasmon mode enters, the larger the rate of decay becomes. This implies that the
lifetime of the plasmon mode is decreased in the same manner.
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Figure 2. (Color online) Plasmon frequency ωp(q) and damping rates γ(ωp(q), q) for an isolated

graphene layer (SLG) with EF = 1.0E(0)
F (left panels (a,c)) and EF = 1.5E(0)

F (right panels (b,d)).
Two top panels (a,b) demonstrate the plasmon dispersion (either damped or undamped obtained as
Re(ε(q, ω)) = 0, the lower plots (c,d) describe the corresponding damping rate along the plasmon
branches, also calculated and shown as insets (i1) and (i2).
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Figure 3. (Color online) Acoustic (lower) and optical (upper) plasmon modes for a pair of identical

graphene layers with EF = 1.0E(0)
F . Each panel corresponds to different values of the separa-

tion between the layers corresponding to (a) d = 0.5(k(0)F )−1, (b) 1.0(k(0)F )−1, (c) 2.0(k(0)F )−1 and

(d) 5.0(k(0)F )−1, as labeled. The plasmon dispersion (either damped or undamped) is obtained by
solving Re(D(q, ω|d)) = 0.
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corresponds to a different values of the separation between the layers with (a) d = 0.5(k(0)F )−1,
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Figure 5. (Color online) Acoustic (lower) and optical (upper) plasmon dispersions for two silicene layers

with EF = 1.0E(0)
F and the band gaps ∆SO,1 = ∆SO,2 = 0.7E(0)

F , ∆z,1 = 0.2E(0)
F and ∆z,2 = 0.4E(0)

F .

Each panel corresponds to different values of the separation between the layers (a) d = 0.5(k(0)F )−1,

(b) 1.0(k(0)F )−1, (c) 2.0(k(0)F )−1 and (d) 5.0(k(0)F )−1, as labeled.
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Figure 7. (Color online) Plasmon modes for (a) graphene–graphene structure and (b) silicene–silicene
structure with corresponding plasmon damping rate in (c) and (d), respectively.

Going next to the case when we have a structure with two graphene layers together
separated by various distances, a set of plots (as shown in Figure 3) is obtained with two
branches of plasmon modes originating from the origin in the q− ω space. One can see
that when the graphene sheets are brought closer, the plasmon modes move further apart,
signifying weak interactions between the modes. In Figure 3a–d, plasmon modes for
a structure with two graphene layers separated by a distance of 0.5(k(0)F )−1, 1.0(k(0)F )−1,

2.0(k(0)F )−1 and 5.0(k(0)F )−1 are shown, respectively, and all the plots portray that the further
apart the graphene layers are, the closer the two plasmon branches become. For this same
set of figures with the other parameters remaining the same, the plasmon decay rate is
shown in Figure 4, which shows that the plasmon decay for the lower plasmon branch
always starts at a larger wave vector value in comparison to the upper plasmon branch. As
the distance of separation is increased, the two plasmon branches come closer and their
decay also starts from the same value of the wave vector and the rate of decay is almost the
same in value.

Now, in addition, we carried out an investigation of the plasmon modes and their
decay rate for the structure with two silicene layers for various separations. The graphical
results for these calculations are shown in Figure 5 where we again have two plasmon
modes originating from the origin of the q−ω plane. As in the case of a two-graphene-layer
structure, we again notice a similar effect on two plasmon branches coming closer to each
other when their separation increases. This is demonstrated in Figure 5a–d for the layers
separation distance of 0.5(k(0)F )−1, 1.0(k(0)F )−1, 2.0(k(0)F )−1 and 5.0(k(0)F )−1, respectively.
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As a representative calculation, we investigated the decay rate of plasmon modes for
silicene–silicene structure when their separation is d = 0.5(k(0)F )−1 and d = 5.0(k(0)F )−1.
Figure 6 shows that the upper plasmon mode does not decay at all and the lower plasmon
branch decays after reaching a critical wave vector. This behavior is due to the presence of a
band gap for silicene, resulting in an opening in the single particle excitation region, which
provides a larger area in q−ω space for the plasmon mode to survive. The upper plasmon
branch in this case has a larger space and is more likely to self-sustain for a longer period
without damping. On the other hand, the lower plasmon branch enters the intraband
single-particle excitation region where it decays. The rate of decay starts from a critical
value of the wave vector and the magnitude of this decay rate monotonically increases.

A comparison of plasmon modes and their decay for graphene–graphene and silicene–
silicene structures is shown along with the single-particle excitation regions in Figure 7.
The figure in panel (a) of Figure 7 shows that two plasmon modes that stem from the
origin of the frequency-momentum space increase steadily and decay when it reaches the
boundary of the single-particle excitation region. Corresponding red and blue lines are
drawn to further clarify the point where the actual decay begins. The dark triangular region
is the area where the plasmon mode survives without Landau damping and mathemat-
ically, in this region, the imaginary part of the polarization function of graphene is zero.
This means that the plasmon mode has self-sustaining oscillations. The green region where
the imaginary part of the polarization function is nonzero is the single particle excitation
region where the plasmon mode decays into particle-hole mode. The corresponding decay
rate figure, below this panel, shows that the rate of decay for the upper plasmon branch is
greater and its critical wave vector is smaller compared to the lower plasmon branch.

Similar plots for silicene–silicene structures were demonstrated in Figure 7b where
one can see the opening of a gap in the single-particle excitation region yielding two
parts, which is a significant effect arising from the band gap. The imaginary part of the
polarization function in this gap region is zero where the plasmon mode can sustain its
oscillation for a long time. The upper breakaway region is a single-particle excitation region
due to interband transitions of electrons from the valence to the conduction band and the
lower breakaway region is the intraband single-particle excitations region, which is due to
transitions within the same band from below to above the Fermi level. In Figure 7b, two
plasmon modes originate from the origin as demonstrated in the figure. The upper plasmon
mode survives without damping over a wide range of wave vectors and the plasmon branch
enters the gap created by the opening within the single-particle excitation region. The
corresponding decay rate appearing below the plasmon dispersion shows that the upper
plasmon branch does not decay at all, whereas the lower plasmon branch with the part
in closer contact with the intraband single-particle excitation region has a small plasmon
decay rate as illustrated in the corresponding figure in the panel of Figure 7d below. As
the plasmon mode rises, it is separated from the single-particle excitation region where
the decay rate is zero and as it moves further away from the origin, the plasmon branch
becomes closer to the single-particle excitation region where we notice the Landau damping
again. Correspondingly, the decay rate increases monotonically and reaches a maximum
before dropping down, indicating the reappearance of an undamped plasmon branch at a
larger value of the wave vector. Another noticeable effect observed here is the closeness of
the plasmon branches and the plasmon decay rate, which can be altered by altering the
layer separation; this effect may be used as another plasmon mode tuning parameter.

These two branches appear as a result of the Coulomb interaction between the two
layers, which couple the plasmon excitations arising on each layer. Therefore, the resulting
plasmons are physically similar to two coupled oscillators. The obtained plasmon branches
are defined as acoustic (lower frequencies) and optical (higher frequencies), or as in-phase
and out-of-phase [65]. The number of branches is equal to the number of layers [66], or,
more precisely, the number of separate plasmon excitations in them. However, one cannot
attribute one branch to the first layer and the other to the second one.
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We should also mention that the frequency of the optical plasmon branch depends on
the distance between the layers. One can easily verify this by analyzing how far the branch
moves from the main diagonal ω = vFq when the distance between the layers is increased.
However, this dependence is not as dramatic as for the acoustic plasmons, which also
change their shape when the distance between the layers is increased, and the Coulomb
coupling is faded away. Finally, we should say that the main subject of the present paper is
the plasma branches for a system of different layers and their damping rates, which are
affected by the distance between the layers and the type of substrate in between.

To extract more information about the plasmonic behavior, in Figure 8a, we have
presented the figure to show the result highlighting the changes in the plasmonic nature
for a structure with different types of layers and substrates. In Figure 8a, we demonstrate
the plasmon mode for a structure with silicene and graphene separated by a distance of
1.0(k(0)F )−1 with the vacuum in between. One can observe two plasmon modes originating
from the origin in q−ω space.

ω
/ω

p

q/kF

𝛾 𝛾

q/kF

(a) (b)

(c) (d)

ω
/ω

p

q/kF
q/kF

Δz=0.7x1.75μ; 
Δ so=0.7μ; μ =1;

Δz=0.7x1.75μ; 
Δ so=0.7μ; μ =1;

Figure 8. (Color online) Plasmon mode dispersion for a heterostructure. (a) Graphene-vacuum-
silicene, (b) graphene-substrate-silicene with the dielectric function, ε1(ω) = 1−Ω2

p/ω2, for the
substrate. Panels (c,d) represent the plasmon damping rate for the structure corresponding to the
plasmon modes in (a) and (b), respectively. The bottom substrate is given by ε2 = 1 for both cases.

A special effect of overcoming the single-particle excitation region of silicene by the
single-particle excitation region of graphene is observed, which causes the shortening of
the plasmon branches that used to be there for the silicene–silicene structure. As soon
as the plasmon branch reaches the particle-hole mode region, the plasmon mode decays
by replacing one silicene layer with a graphene layer in the silicene–silicene structure.
The effect, due to the band gap in silicene, is just nullified. In other words, the plas-
mon modes in the regime, where they used to have plasmon modes before, now do not
have them, because the plasmon mode decays into the particle-hole mode of graphene.
Furthermore, the result of adding a substrate between the silicene and graphene layer
is illustrated in panel (b) of Figure 8. In this case, we could see a new plasmon branch
originating from the bulk plasma frequency and one plasmon branch originating from the
origin. Here, due to the presence of a substrate, the lower plasmon branch bends sharply
toward the intraband single-particle excitation region where it decays causing complete dis-
appearance. The upper plasmon branch and the plasmon from the bulk plasmon frequency
become closer and move toward the interband single-particle excitation region where they
become damped.

The results in Figure 8 correspond to a graphene layer located on the top and the
silicene layer located below it in the heterostructure. The order in which the layers are placed
affects the plasma dispersions only if asymmetric substrates are involved. In contrast, the
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plasmon dispersion relation for a pair of Coulomb-coupled layers embedded in a uniform
background is determined by a 2× 2 determinant equation [67], which is symmetric to
switching the layers. This is what our Equation (9) is reduced to when ε1 = ε2 = 1 and the
background dielectric constants are independent of the frequency ω.

These new effects on the plasmon branches in this type of structure were not reported
previously. Results of this type help develop electronic and quantum computing devices
where knowledge of the plasmonic behavior of materials and their damping nature is
very essential.

4. Concluding Remarks

In summary, we have investigated the key properties of the plasmonic mode and
damping for different combinations of graphene and silicene layers. The effect of the
addition of substrate in between the two layers is further analyzed. This resulted in the
development of a novel technique of tuning the plasmon excitation mode associated with
the two dimensional systems. In our system, a complete new plasmon branch emerges
from the bulk plasmon frequency, this would be very helpful in engineering modern
computing devices.

Another discovery we have from this study is the disappearance of the lower plasmon
branch and the suppression of the silicene band gap effect. Along with the study of inter-
esting features in the plasmon modes, we have also developed an approach for calculating
the decay rates for the plasmons due to Landau damping by the particle-hole modes.

The principal goal of our investigation and the main results of our work are concerned
with the understanding of plasmonic nature and analyzing their Landau damping rates in
a multi-layer structure. In contrast to Ref. [67], which includes only the long-wavelength
limit for graphene without any discussion of gapped materials (such as silicene), our work
is concerned with a thorough and detailed investigation of plasmon and damping rates for
finite-value wave vectors and energies.

Additionally, our results infer that the number of plasmon branches emerging from the
origin can be varied by choosing the number of the 2D layer. In brief, we can say that our
study gives an important idea about the plasmonic behavior of a graphene–silicene-based
heterostructure, which would be very helpful in carrying out further studies of other types
of heterostructure, including a variety of low dimensional materials.

Author Contributions: Methodology, D.D., G.G. and A.I.; Supervision, C.-S.T.; Writing—original
draft, D.D., G.G., C.-S.T. and A.I.; Writing—review & editing, D.D., G.G. and A.I. All authors have
read and agreed to the published version of the manuscript.

Funding: G.G. would like to acknowledge the support from the Air Force Research Laboratory
(AFRL) through Grant No. FA 9453-21-1-0046. A.I. would like to acknowledge the funding received
from TRADA-52-113, PSC-CUNY Award # 64076-00 52.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Exclude this statement as the study did not report any data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Vogt, P.; Padova, P.D.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M.C.; Resta, A.; Ealet, B.; Lay, G.L. Silicene: Compelling

experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 2012, 108, n155501. [CrossRef] [PubMed]
2. Takeda, K.; Shiraishi, K. Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys. Rev. B 1994, 50, 14916.

[CrossRef] [PubMed]
3. Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in

atomically thin carbon films. Science 2004, 306, 666. [CrossRef] [PubMed]
4. Ni, Z.; Liu, Q.; Tang, K.; Zheng, J.; Zhou, J.; Qin, R.; Gao, Z.; Yu, D.; Lu, J. Tunable bandgap in silicene and germanene. Nano Lett.

2012, 12, 113. [CrossRef]

http://doi.org/10.1103/PhysRevLett.108.155501
http://www.ncbi.nlm.nih.gov/pubmed/22587265
http://dx.doi.org/10.1103/PhysRevB.50.14916
http://www.ncbi.nlm.nih.gov/pubmed/9975837
http://dx.doi.org/10.1126/science.1102896
http://www.ncbi.nlm.nih.gov/pubmed/15499015
http://dx.doi.org/10.1021/nl203065e


Materials 2022, 15, 7964 12 of 13

5. Drummond, N.D.; Zolyomi, V.; Fal’Ko, V.I. Electrically tunable band gap in silicene. Phys. Rev. B 2012, 85, 075423. [CrossRef]
6. Liu, J.; Zhang, W. Bilayer silicene with an electrically-tunable wide band gap. RSC Adv. 2013, 3, 21943. [CrossRef]
7. Kane, C.L.; Mele, E.J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 2005, 95, 226801. [CrossRef]
8. Yao, Y.; Ye, F.; Qi, X.L.; Zhang, S.C.; Fang, Z. Spin-orbit gap of graphene: First-principles calculations. Phys. Rev. B 2007, 75, 041401.

[CrossRef]
9. Bao, W.S.; Liu, S.Y.; Lei, X.L.; Wang, C.M. Nonlinear dc transport in graphene. J. Phys. Condens. Matter 2009, 21, 305302. [CrossRef]
10. Dora, B.; Moessner, R. Nonlinear electric transport in graphene: Quantum quench dynamics and the Schwinger mechanism. Phys.

Rev. B 2010, 81, 165431. [CrossRef]
11. Tian, S.; Wang, P.; Liu, X.; Zhu, J.; Fu, H.; Taniguchi, T.; Watanabe, K.; Chen, J.H.; Lin, X. Nonlinear transport of graphene in the

quantum Hall regime. 2D Mater. 2016, 4, 015003. [CrossRef]
12. Rosenstein, B.; Lewkowicz, M.; Kao, H.C.; Korniyenko, Y. Ballistic transport in graphene beyond linear response. Phys. Rev. B

2010, 81, 041416. [CrossRef]
13. Dahal, D.; Gumbs, G. Effect of energy band gap in graphene on negative refraction through the veselago lens and electron

conductance. Phys. Chem. Solids 2017, 100, 83–91. [CrossRef]
14. Wakamura, T.; Gueron, S.; Bouchiat, H. Novel transport phenomena in graphene induced by strong spin-orbit interaction. arXiv

2021, arXiv:2112.07813.
15. Kim, W.Y.; Kim, K.S. Carbon nanotube, graphene, nanowire, and molecule-based electron and spin transport phenomena using

the nonequilibrium Green’s function method at the level of first principles theory. J. Comp. Chem. 2008, 29, 1073–1083. [CrossRef]
[PubMed]

16. Yan, X.Z.; Romiah, Y.; Ting, C.S. Electric transport theory of Dirac fermions in graphene. Phys. Rev. B 2008, 77, 125409. [CrossRef]
17. Gumbs, G.; Iurov, A.; Horing, N.J.M. Non-local plasma spectrum of graphene interacting with a thick conductor. Phys. Rev. B

2015, 91, 235416. [CrossRef]
18. Gumbs, G.; Balassis, A.; Dahal, D.; Glasser, M.L. Thermal smearing and screening in a strong magnetic field for Dirac materials in

comparison with the two dimensional electron liquid. Eur. Phys. J. B 2016, 89, 234. [CrossRef]
19. Checkelsky, J.G.; Ong, N.P. Thermopower and Nernst effect in graphene in a magnetic field. Phys. Rev. B 2009, 80, 081413.

[CrossRef]
20. Nakamura, M. Orbital magnetism and transport phenomena in two-dimensional Dirac fermions in a weak magnetic field. Phys.

Rev. B 2007, 76, 113301. [CrossRef]
21. Yan, J.; Zhang, Y.; Kim, P.; Pinczuk, A. Electric field effect tuning of electron-phonon coupling in graphene. Phys. Rev. Lett. 2007,

98, 166802. [CrossRef] [PubMed]
22. Yu, Y.J.; Zhao, Y.; Ryu, S.; Brus, L.E.; Kim, K.S.; Kim, P. Tuning the graphene work function by electric field effect. Nano Lett. 2009,

9, 3430. [CrossRef] [PubMed]
23. Liu, X.; Li, Z. Electric field and strain effect on graphene-MoS2 hybrid structure: Ab initio calculations. J. Phys. Chem. Lett. 2015, 6,

3269. [CrossRef]
24. Eletskii, A.V.; Iskandarova, I.M.; Knizhnik, A.A. Graphene fabrication methods and thermophysical properties. Physics-Uspekhi

2011, 54, 227. [CrossRef]
25. Jia, X.; Campos-Delgado, J.; Terrones, M.; Meunier, V.; Dresselhaus, M.S. Graphene edges: A review of their fabrication and

characterization. Nanoscale 2011, 3, 86. [CrossRef]
26. Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A.P.; Saleh, M.; Feng, X.; et al. Atomically

precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 470. [CrossRef]
27. Aliofkhazraei, M.; Ali, N.; Milne, W.I.; Ozkan, C.S.; Mitura, S.; Gervasoni, J.L.; (Eds.) Graphene Science Handbook: Fabrication

Methods; CRC Press: Boca Raton, FL, USA, 2016.
28. Dadkhah, N.; Vazifehshenas, T.; Farmanbar, M.; Salavati-Fard, T. A theoretical study of collective plasmonic excitations in

double-layer silicene at finite temperature. J. App. Phys. 2019, 125, 104302. [CrossRef]
29. Men, N.V. Plasmon modes in N-layer silicene structures. J. Phys. Cond. Matt. 2021, 34, 8. [CrossRef]
30. De Abajo, F.J.G. Graphene plasmonics: Challenges and opportunities. ACS Phot. 2014, 1, 135. [CrossRef]
31. Farmer, D.B.; Rodrigo, D.; Low, T.; Avouris, P. Plasmon-plasmon hybridization and bandwidth enhancement in nanostructured

graphene. Nano Lett. 2015, 15, 2582–2587. [CrossRef]
32. Gumbs, G.; Horing, N.J.; Iurov, A.; Dahal, D. Plasmon excitations for encapsulated graphene. J. Phys. App. Phys. 2016, 49, 225101.

[CrossRef]
33. Iurov, A.; Zhemchuzhna, L.; Dahal, D.; Gumbs, G.; Huang, D. Quantum-statistical theory for laser-tuned transport and optical

conductivities of dressed electrons in α-T3 materials. Phys. Rev. B 2020, 101, 035129. [CrossRef]
34. Iurov, A.; Gumbs, G.; Huang, D.; Silkin, V.M. Plasmon dissipation in gapped graphene open systems at finite temperature. Phys.

Rev. B 2016, 93, 035404. [CrossRef]
35. Iurov, A.; Gumbs, G.; Huang, D.; Zhemchuzhna, L. Controlling plasmon modes and damping in buckled two-dimensional

material open systems. J. Appl. Phys. 2017, 121, 084306. [CrossRef]
36. Gumbs, G.; Iurov, A.; Wu, J.Y.; Lin, M.F.; Fekete, P. Plasmon excitations of multi-layer graphene on a conducting substrate. Sci.

Rep. 2016, 6, 21063. [CrossRef] [PubMed]

http://dx.doi.org/10.1103/PhysRevB.85.075423
http://dx.doi.org/10.1039/c3ra44392b
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevB.75.041401
http://dx.doi.org/10.1088/0953-8984/21/30/305302
http://dx.doi.org/10.1103/PhysRevB.81.165431
http://dx.doi.org/10.1088/2053-1583/4/1/015003
http://dx.doi.org/10.1103/PhysRevB.81.041416
http://dx.doi.org/10.1016/j.jpcs.2016.08.014
http://dx.doi.org/10.1002/jcc.20865
http://www.ncbi.nlm.nih.gov/pubmed/18072178
http://dx.doi.org/10.1103/PhysRevB.77.125409
http://dx.doi.org/10.1103/PhysRevB.91.235416
http://dx.doi.org/10.1140/epjb/e2016-70452-4
http://dx.doi.org/10.1103/PhysRevB.80.081413
http://dx.doi.org/10.1103/PhysRevB.76.113301
http://dx.doi.org/10.1103/PhysRevLett.98.166802
http://www.ncbi.nlm.nih.gov/pubmed/17501446
http://dx.doi.org/10.1021/nl901572a
http://www.ncbi.nlm.nih.gov/pubmed/19719145
http://dx.doi.org/10.1021/acs.jpclett.5b01233
http://dx.doi.org/10.3367/UFNe.0181.201103a.0233
http://dx.doi.org/10.1039/C0NR00600A
http://dx.doi.org/10.1038/nature09211
http://dx.doi.org/10.1063/1.5083200
http://dx.doi.org/10.1088/1361-648X/ac3c66
http://dx.doi.org/10.1021/ph400147y
http://dx.doi.org/10.1021/acs.nanolett.5b00148
http://dx.doi.org/10.1088/0022-3727/49/22/225101
http://dx.doi.org/10.1103/PhysRevB.101.035129
http://dx.doi.org/10.1103/PhysRevB.93.035404
http://dx.doi.org/10.1063/1.4977202
http://dx.doi.org/10.1038/srep21063
http://www.ncbi.nlm.nih.gov/pubmed/26883086


Materials 2022, 15, 7964 13 of 13

37. Dahal, D.; Gumbs, G.; Huang, D. Effect of strain on plasmons, screening, and energy loss in graphene/substrate contacts. Phys.
Rev. B 2018, 98, 045427. [CrossRef]

38. Iurov, A.; Zhemchuzhna, L.; Gumbs, G.; Huang, D.; Fekete, P.; Anwar, F.; Dahal, D.; Weekes, N. Tailoring plasmon excitations in
α − T 3 armchair nanoribbons. Sci. Rep. 2021, 11, 20577. [CrossRef]

39. Raza, A.; Ikram, M.; Aqeel, M.; Imran, M.; Ul-Hamid, A.; Riaz, K.N.; Ali, S. Enhanced industrial dye degradation using Co doped
in chemically exfoliated MoS2 nanosheets. Appl. Nanosci. 2020, 10, 1535–1544. [CrossRef]

40. Ikram, M.; Ali, S.; Aqeel, M.; Ul-Hamid, A.; Imran, M.; Haider, J.; Haider, A.; Shahbaz, A.; Ali, S.X. Reduced graphene oxide
nanosheets doped by Cu with highly efficient visible light photocatalytic behavior. J. Alloy. Compd. 2020, 837, 155588. [CrossRef]

41. Dong-Thi, K.P.; Nguyen, V.M. Plasmonic Excitations in 4-MLG Structures: Background Dielectric Inhomogeneity Effects. J. Low
Temp. Phys. 2022, 206, 51–62. [CrossRef]

42. Calafell, I.A.; Cox, J.D.; Radonji, M.; Saavedra, J.R.M.; de Abajo, F.G.; Rozema, L.A.; Walther, P. Quantum computing with
graphene plasmons. NPJ Quant. Inf. 2019, 5, 1–7.

43. Hanson, G.W.; Gangaraj, S.H.; Lee, C.; Angelakis, D.G.; Tame, M. Quantum plasmonic excitation in graphene and loss-insensitive
propagation. Phys. Rev. A 2015, 92, 013828. [CrossRef]

44. Christensen, T.; Wang, W.; Jauho, A.P.; Wubs, M.; Mortensen, N.A. Classical and quantum plasmonics in graphene nanodisks:
Role of edge states. Phys. Rev. B 2014, 90, 241414. [CrossRef]

45. Esfandiari, M.; Jarchi, S.; Nasiri-Shehni, P.; Ghaffari-Miab, M. Enhancing the sensitivity of a transmissive graphene-based
plasmonic biosensor. App. Opt. 2021, 60, 1201–1208. [CrossRef]

46. Tong, J.; Jiang, L.; Chen, H.; Wang, Y.; Yong, K.T.; Forsberg, E.; He, S. Graphene-bimetal plasmonic platform for ultra-sensitive
biosensing. Opt. Commun. 2018, 410, 817–823. [CrossRef]

47. Hu, W.; Huang, Y.; Chen, C.; Liu, Y.; Guo, T.; Guan, B.O. Highly sensitive detection of dopamine using a graphene functionalized
plasmonic fiber-optic sensor with aptamer conformational amplification. Sens. Actuat. Chem. 2018, 264, 440–447. [CrossRef]

48. Andoy, N.M.; Filipiak, M.S.; Vetter, D.; Sanz, O.G.; Tarasov, A. Graphene-Based Electronic Immunosensor with Femtomolar
Detection Limit in Whole Serum. Adv. Mat. Technol. 2018, 3, 1800186. [CrossRef]

49. Viswanathan, S.; Narayanan, T.N.; Aran, K.; Fink, K.D.; Paredes, J.; Ajayan, P.M.; Renugopalakrishanan, V. Graphene-protein
field effect biosensors: Glucose sensing. Mat. Today 2015, 18, 513–522. [CrossRef]

50. Huang, A.; Li, W.; Shi, S.; Yao, T. Quantitative fluorescence quenching on antibody-conjugated graphene oxide as a platform for
protein sensing. Sci. Rep. 2017, 7, 40772. [CrossRef]

51. Goncalves, S.P.; Peres, N. I An introduction to Graphene Plasmonics; World Scientific: Singapore, 2016.
52. Gumbs, G.; Dahal, D.; Balassis, A. Effect of Temperature and Doping on Plasmon Excitations for an Encapsulated Double-Layer

Graphene Heterostructure. Phys. Stat. Solidi (b) 2018, 255, 1700342. [CrossRef]
53. Hwang, E.H.; Sarma, S.D. Plasmon modes of spatially separated double-layer graphene. Phys. Rev. B 2009, 80, 205405. [CrossRef]
54. Ezawa, M. A topological insulator and helical zero mode in silicene under an inhomogeneous electric field. New J. Phys. 2012,

14, 033003. [CrossRef]
55. Tabert, C.J.; Nicol, E.J. Valley-spin polarization in the magneto-optical response of silicene and other similar 2D crystals. Phys.

Rev. Lett. 2013, 110, 197402. [CrossRef] [PubMed]
56. Neto, A.C.; Guinea, F.; Peres, N.M.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009,

81, 109. [CrossRef]
57. Wunsch, B.; Stauber, T.; Sols, F.; Guinea, F. Dynamical polarization of graphene at finite doping. New J. Phys. 2006, 8, 318.

[CrossRef]
58. Balassis, A.; Dahal, D.; Gumbs, G.; Iurov, A.; Huang, D.; Roslyak, O. Magnetoplasmons for the α− T3 model with filled Landau

levels. J. Phys. Cond. Matt. 2020, 32, 485301. [CrossRef] [PubMed]
59. Roldan, R.; Goerbig, M.O.; Fuchs, J.N. The magnetic field particle-hole excitation spectrum in doped graphene and in a standard

two-dimensional electron gas. Semicond. Sci. Technol. 2010, 25, 034005. [CrossRef]
60. Patel, D.K.; Ashraf, S.S.; Sharma, A.C. Finite temperature dynamical polarization and plasmons in gapped graphene. Phys. Stat.

Solidi (b) 2015, 252, 1817–1826. [CrossRef]
61. Ramezanali, M.R.; Vazifeh, M.M.; Asgari, R.; Polini, M.; MacDonald, A.H. Finite-temperature screening and the specific heat of

doped graphene sheets. J. Phys. Math. Theor. 2009, 42, 214015. [CrossRef]
62. Tabert, C.J.; Nicol, E.J. Dynamical polarization function, plasmons, and screening in silicene and other buckled honeycomb

lattices. Phys. Rev. B 2014, 89, 195410. [CrossRef]
63. Pyatkovskiy, P.K. Dynamical polarization, screening, and plasmons in gapped graphene. J. Phys. Cond. Matt. 2008, 21, 025506.

[CrossRef] [PubMed]
64. Persson, B.N.J. Inelastic electron scattering from thin metal films. Solid State Commun. 1984, 52, 811–813. [CrossRef]
65. Hwang, H.E.; Sarma, S.D. Dielectric function, screening, and plasmons in two-dimensional graphene. Phys. Rev. B 2007,

75, 205418. [CrossRef]
66. Zhu, J.J.; Badalyan, S.M.; Peeters, F.M. Plasmonic excitations in Coulomb-coupled N-layer graphene structures. Phys. Rev. B 2013,

87, 085401. [CrossRef]
67. Sarma, S.D.; Li, Q. Intrinsic plasmons in two-dimensional Dirac materials. Phys. Rev. B 2013, 87, 235418. [CrossRef]

http://dx.doi.org/10.1103/PhysRevB.98.045427
http://dx.doi.org/10.1038/s41598-021-99596-z
http://dx.doi.org/10.1007/s13204-019-01239-3
http://dx.doi.org/10.1016/j.jallcom.2020.155588
http://dx.doi.org/10.1007/s10909-021-02642-3
http://dx.doi.org/10.1103/PhysRevA.92.013828
http://dx.doi.org/10.1103/PhysRevB.90.241414
http://dx.doi.org/10.1364/AO.411974
http://dx.doi.org/10.1016/j.optcom.2017.11.039
http://dx.doi.org/10.1016/j.snb.2018.03.005
http://dx.doi.org/10.1002/admt.201800186
http://dx.doi.org/10.1016/j.mattod.2015.04.003
http://dx.doi.org/10.1038/srep40772
http://dx.doi.org/10.1002/pssb.201700342
http://dx.doi.org/10.1103/PhysRevB.80.205405
http://dx.doi.org/10.1088/1367-2630/14/3/033003
http://dx.doi.org/10.1103/PhysRevLett.110.197402
http://www.ncbi.nlm.nih.gov/pubmed/23705739
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1088/1367-2630/8/12/318
http://dx.doi.org/10.1088/1361-648X/aba97f
http://www.ncbi.nlm.nih.gov/pubmed/32717729
http://dx.doi.org/10.1088/0268-1242/25/3/034005
http://dx.doi.org/10.1002/pssb.201451682
http://dx.doi.org/10.1088/1751-8113/42/21/214015
http://dx.doi.org/10.1103/PhysRevB.89.195410
http://dx.doi.org/10.1088/0953-8984/21/2/025506
http://www.ncbi.nlm.nih.gov/pubmed/21813983
http://dx.doi.org/10.1016/0038-1098(84)90011-5
http://dx.doi.org/10.1103/PhysRevB.75.205418
http://dx.doi.org/10.1103/PhysRevB.87.085401
http://dx.doi.org/10.1103/PhysRevB.87.235418

	Introduction
	Theory
	Silicene
	Graphene
	Polarization Function: (q,)
	Damping Rate

	Numerical Results and Discussion
	Concluding Remarks
	References

