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Abstract: The characteristics of local strain distribution and evolution of duplex stainless steel during
the tensile process were studied using the digital image correlation (DIC) technique. In addition, the
finite element inversion of nanoindentation experiments of austenitic and ferrite phases in duplex
stainless steel was carried out to obtain the stress–strain response of the two phases. Further, based
on the representative volume element (RVE) and the material parameters obtained from the finite
element inversion method, the local stress and strain behavior of duplex stainless steel at microscale
was simulated numerically. The results fit well with the experiments, showing that the austenite
phase is softer than ferrite phase, with the larger strain zone concentrated in the austenite phase
and the larger stress zone concentrated in the ferrite phase. The grain boundaries are prone to
obvious stress and strain concentrations. The local stress and strain distributions are influenced by
the shape and interaction of the grains, while the distribution features become more obvious as the
load increases. The research results effectively reveal the two-phase interaction and local failure
mechanism of duplex stainless steel, and may provide a reference for material preparation and safety
design of related structures.

Keywords: duplex stainless steel; nanoindentation; digital image method; finite element; local stress
and strain distribution

1. Introduction

The microstructure of duplex stainless steel contains almost equal proportions of
ferrite and austenite, which combines the excellent properties of ferritic steel and austenitic
steel. Duplex stainless steel has been widely used in industry applications [1–7] due to its
good plasticity and toughness combined with high strength, corrosion resistance, and good
weldability [1–7]. Its mechanical behavior can be explained from the microstructure, which
is predominantly composed of a soft austenite matrix with hard ferrite particles. Hard
ferrite provides substantial strength, while the soft austenite phase is associated with good
ductility.

Due to the discontinuous mechanical properties of duplex stainless steels, significant
stress concentrations can easily occur even under small macro loads [8], which may lead
to large local plastic deformation and failure. Therefore, it is crucial to investigate the
local stress–strain characteristics of each phase material of duplex stainless steel. Common
experimental measurements of the macroscale or local stress and strain behavior include
digital image correlation (DIC), electron backscatter diffraction (EBSD), nanoindentation,
and more [9–13]. In recent decades, many researchers have systematically studied the local
deformation behavior of duplex stainless steel [14–18]. Metro [14] used image analysis
techniques to observe the local deformation behavior of individual grains. After in situ
tensile tests on rod-shaped and plate-shaped duplex stainless steel, it was found that the
changes of local microstructure are closely related to the shape of each phase of the materials.
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Fréchard [15] combined atomic force microscopy (AFM) and EBSD methods to perform in
situ tensile tests on duplex stainless steel, which showed that stress concentrations occurred
at the grain boundaries. In addition, Bartali [16] calculated the displacement and strain
fields of duplex stainless steel at the microstructural scale from surface images during
cyclic loadings using the DIC technique, showing strain inhomogeneities and possible
crack initiation position at the microscale. Liu [12] conducted a tensile test on 2205 duplex
stainless steel at 250 ◦C and observed it using DIC technology, finding that the uneven
strain field mainly appeared in austenite and occasionally appeared at the phase boundary.
The above studies used a variety of test methods to show the local microdeformation and
regularity of duplex stainless steel. However, they were not able to analyze the behavior
and evolution of local stress and strain in the material, nor to explain the interaction
mechanism between the two phases and grain boundaries. Nanoindentation experiments
can be used to further investigate the deformation behavior of duplex stainless steels. Cui
et al. [17] analyzed and compared the mechanical properties of the austenite phase and
ferrite phase, finding that austenite is softer than ferrite and that phase transformation
did not occur during the nanoindentation process. However, the tensile curves of the two
phases were not inverted, and the stress–strain relationship of the two phases could not
be characterized. Furthermore, the mechanical properties of the microparticles have not
been characterized, and the interaction of the two phases under load has not yet been
investigated. Due to the high cost of testing, finite element analysis has been widely used
to investigate the local mechanical behavior of materials. Bartoli [16] proposed a method
for estimating the local strain distribution in two phases of materials. The results show
that the strain concentration exists in band form. Gu [18] analyzed the residual stress of an
arc welded joint of a duplex stainless steel flat electrode via the finite element method and
analyzed the residual stress distribution of different paths. However, most of the existing
studies are not generalized, and do not analyze the distribution and evolution of local
strains in the material.

In this paper, the local strain distribution and evolution characteristics of duplex
stainless steel during the tensile process are discussed using the digital image correlation
(DIC) technique. Uniaxial indentation tests were performed on the austenite and ferrite
phases of duplex stainless steel using the nanoindentation test method, and the mechanical
properties of the two phases were investigated. Then, based on the finite element inversion
method, the nanoindentation process was simulated to characterize the stress–strain rela-
tionships and material parameters of the two phases. Finally, the local micro-deformation
and stress distribution of the duplex stainless steel was simulated by the finite element
method based on the material parameters from the finite element inversion method and the
RVE obtained from the DIC experiments. The regularity of the local stress–strain behavior
of the dual-phase steel and the interaction between grains and grain boundaries were
further explored.

2. Experimental and Numerical Simulation Methods
2.1. Nanoindentation Experiments

Commercial duplex stainless steel produced by Baoshan Iron and Steel Co., Ltd.,
Shanghai, China was used as the study object. A 20 × 20 × 8 mm duplex stainless
steel sample with clear grain boundaries was obtained by hand grinding, mechanical
polishing, and slight electrolytic etching in a 20% NaOH solution. Then, the sample was
observed under an optical microscope. The nanoindentation tests were conducted on a
Nano Indenter G200 (Agilent Technologies, Santa Clara, CA, USA), with the XP Berkovich
indenter selected. The experimental temperature was 25 ◦C. Six unidirectional indentation
experiments were performed on austenite and ferrite in the region away from the grain
boundaries using a displacement-controlled mode with a peak displacement of 1500 nm
and a thermal drift of 0.05 nm/s.
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2.2. DIC Experiments

In order to fully match the in situ stretching table, the samples processed in the manner
of Section 2.1 were machined to the dimensions shown in Figure 1. At the same time, speckle
was added to the working section to facilitate DIC observation. The experiments were
performed on an in situ stretching table (Deben UK Ltd., Suffolk, UK). The sample was
clamped symmetrically, loaded at a rate of 0.1 mm/min, and interrupted for photographs;
the experimental temperature was 25 ◦C. After stretching to a certain load level, the
load level remained unchanged for a while and the microstructure was photographed
immediately with a scanning electron microscopy (SEM) (Zeiss, Oberkochen, Germany,
Magnified 750 times). The regions with independent and uniformly distributed grains (1#,
Figure 2a) and the regions with relatively narrow and roughly vertical grain-shaped grains
(2#, Figure 2b) were selected as the study area and photographed by SEM for different
sets of loading levels during the experiment. Finally, the strain evolution and local strain
contour plot of the local region under each load level were calculated at each point using
Vic-2D software with the corresponding difference method.
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Figure 1. Schematic drawing of the specimen for tensile test.

Materials 2022, 15, x FOR PEER REVIEW 3 of 16 
 

 

boundaries using a displacement-controlled mode with a peak displacement of 1500 nm 

and a thermal drift of 0.05 nm/s. 

2.2. DIC Experiments 

In order to fully match the in situ stretching table, the samples processed in the man-

ner of Section 2.1 were machined to the dimensions shown in Figure 1. At the same time, 

speckle was added to the working section to facilitate DIC observation. The experiments 

were performed on an in situ stretching table (Deben UK Ltd., Suffolk, UK). The sample 

was clamped symmetrically, loaded at a rate of 0.1 mm/min, and interrupted for photo-

graphs; the experimental temperature was 25 °C. After stretching to a certain load level, 

the load level remained unchanged for a while and the microstructure was photographed 

immediately with a scanning electron microscopy (SEM) (Zeiss, Oberkochen, Germany, 

Magnified 750 times). The regions with independent and uniformly distributed grains (1#, 

Figure 2a) and the regions with relatively narrow and roughly vertical grain-shaped 

grains (2#, Figure 2b) were selected as the study area and photographed by SEM for dif-

ferent sets of loading levels during the experiment. Finally, the strain evolution and local 

strain contour plot of the local region under each load level were calculated at each point 

using Vic-2D software with the corresponding difference method. 

2
.5

8

R3
8

32

0
.5

 

Figure 1. Schematic drawing of the specimen for tensile test. 

 

(a) (b) 

Figure 2. Representative areas after applying speckle: (a) uniform grain distribution area (1#) and 

(b) vertical fence-shaped grain area (2#). 

  

20μm

A

F

A

Line2
C

B

D

Line1

E

1

2

A
F

A*

B*
C*

E*

D*
Line1*

1

2*

1*

2*

1*

Line2*

20μm

Figure 2. Representative areas after applying speckle: (a) uniform grain distribution area (1#) and (b)
vertical fence-shaped grain area (2#).

2.3. Determination of the Mechanical Parameters for the Two Phases

Before the local stress–strain behavior of duplex stainless steel can be simulated and
described by finite element methods, it is crucial to obtain the mechanical properties of the
austenite and ferrite phases. Dao [19] et al. used a power function strengthening model
(shown in Equation (1)) to characterize the elastoplastic properties of metallic materials. The
load-displacement derived from the indentation test combined with dimensional analysis
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and the finite element method can predict the yield strength and hardening index quite well,
and has been widely developed and used. Furthermore, the inversion method proposed by
Ma [20] can be used to compare the finite element simulation results and the experimental
results with improved efficiency and accuracy.{

Eε
(
σ ≤ σy

)
σy

(
1 + E

σy
εp

)n (
σ > σy

) (1)

Based on the nanoindentation experiment, the elastic modulus E and hardness H of
both phases were obtained. Then, the unidirectional nanoindentation processes of the
austenite phase and ferrite phase were simulated based on the finite element inversion
method to determine the characteristic stress σr, characteristic strain εr, effective strain
εp, yield stress σy, and hardening exponent n for both phases. It should be mentioned
that in the finite element inversion method the indentation load–indentation depth curves
obtained from the simulations and experiments were compared and analyzed for errors,
through which the parameters were continuously updated by optimization iterations until
the simulation results and experimental results met the error requirements. The established
finite element axisymmetric model is shown in Figure 3. The Berkovich indenter [21] is
equivalent to a conical indenter with a vertex angle of 140.6◦, and the mesh is refined near
the tip of the indenter. The element type was a CAX4, the constraint in the vertical direction
is applied to the bottom of the model, the constraint in the horizontal direction is applied
to the left symmetry axis, and displacement control is applied to the reference point. In
addition, the displacement condition is applied on the reference point.
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Figure 3. The boundary conditions and meshing of the finite element model.

2.4. Finite Element Analysis of DIC Experiment

In the DIC experimental observation, two representative regions were selected, one of
which was the uniform distribution area with small grain size and the other the vertical
fence-shaped grain area with large grain size, as shown in Figure 2. Based on the 1# and
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2# regions captured by SEM(shown in Figure 2), the vectorization method was performed
for the geometric modelling, then the finite element model was established using the finite
element software, as shown in Figure 4.
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(1#) and (b) vertically fenced area (2#).

Sheet specimens were used for the tensile test in this study. Because sheet specimens
are relatively thin compared to their in-plane dimensions and are subjected to in-plane
loading during uniaxial tensile tests, a specimen may generally be considered to be in a
plane stress state. Therefore, two-dimensional plane stress CPS3 elements are adopted
in this study to simulate the in-plane tensile behavior of the duplex stainless steel. The
material properties of the austenite and ferrite phases are provided by the parameters and
stress–strain curves obtained in Section 4.1. In the process of finite element simulation, the
multilinear elastoplastic constitutive model was employed for stress–strain description of
the austenite and ferrite phases. Simplified periodic boundary conditions were adopted for
the RVE, as illustrated in Figure 5. All the nodes on the right side of the RVE were subjected
to the same displacement in horizontal direction. Meanwhile, all the nodes on the left side
were constrained in the horizontal direction. In addition, because the RVE is generated
based on a sufficiently small microstructure level, all nodes on the top and bottom surfaces
receive multi-point constraints, as shown in Figure 5, to ensure that they have the same
displacement in the vertical direction. The above-mentioned treatment is consistent with
that reported by Sun et al. [22].
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3. DIC Experiment Results and Analysis
3.1. Strain Evolution Analysis

During the experiments, the speckle patterns were taken intermittently under the
loads of 410N, 460N, 530N, 590N, and 620N. The strain distribution contour plots in the
tensile direction (the horizontal direction in Figure 2) were obtained by Vic-2D software
analysis, as shown in Figure 6. The 1# area is shown in Figure 6a, and the 2# area is shown
in Figure 6b.

The engineering stress–strain curve can be calculated from the load–displacement
curve recorded in the specimen uniaxial tensile test. The engineering strain can be obtained
by dividing the effective length of the sample, and the engineering stress can be obtained
by dividing the load by the effective cross-sectional area of the specimen. In fact, the
calculated strain is larger than the true case, and the calculated elastic modulus is not
within the normal range due to the deformation of fixture. Therefore, the true strain needs
to be obtained by dividing the engineering strain by a correction value. The correction
value is obtained by comparing the elastic stage of the load–tensile length curve with the
conventional elastic modulus [23,24]:

ε =
εT

f (s)
(2)

where ε is the macroscopic strain, εT is the strain value measured in the micro-sample, and
f (s) is the correction value; thus, the correction value is calculated as 7.5 [24].

The A grains in region 1# are elliptical and relatively evenly distributed. Although
there is no significant change in the size and direction of the grains under in situ stretching,
the strain in the tensile direction is concentrated in the A region due to the relatively softer
property. The austenite grains in the 2# area are mostly fence-shaped, and the size and
direction of the grains do not change significantly. The strain distribution in the tensile
direction is concentrated on the austenite as well. The strain distribution is closely related
to the distribution of the austenite and ferrite phases. The strain tends to be smaller in the
area where the austenite distribution is sparse and the ferrite is concentrated, while in the
region where the austenite phase is densely distributed the strain is larger. In addition, the
distribution is closely related to the shape of the grains. Comparing the strain values of
1# and 2# under the same load condition in Figure 6, it can be seen that the strain in the
austenite grain is relatively large and the peak strain of the 2# region is larger than that of
the 1# region. Comparing the grains in areas 1# and 2#, the austenite grain boundary is more
prone to strain concentration, with much more arris. In addition, the strain distribution is
related to the load level. The difference between the strain in austenite and ferrite grains is
small under low loading conditions, as shown in Figure 6(a1,b1,a2, b2). As the load level
increases, the strain concentration becomes more obvious, and the strain becomes mostly
concentrated on the austenite grains, as shown in Figure 6(a3–a5,b3–b5). Furthermore, as
the load increases, the grains in the 1# and 2# regions are stretched, and the deformation
rotates in the counter-clockwise direction.
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Figure 6. Schematic diagram of strain distribution in regions under different loads: (a1–a5) 1# and
(b1–b5) 2# regions.

3.2. Analysis of Local Deformation

In order to further investigate the local strain distribution characteristics of duplex
stainless steel, five particular positions were selected to further investigate the strain
evolution with increasing load conditions in combination with the shape and distribution
of individual grains and strain distribution contour plots in the tensile direction. Figure 2a
(Figure 2b) shows micrographs of the 1# (2#) region: austenite grains are mostly elliptical,
point A and A* are inside the elongated austenite, point B and B*are inside the ordinary
austenite, and point C and C* are in the austenite and ferrite junction boundary. Point D
and D*are located inside the elongated ferrite, and point E and E* are located inside the
ordinary ferrite.

The strain–load curves of the selected points are shown in Figure 7. As can be seen in
Figure 7, the strain magnitude in the tensile direction of all the points in the 1# region and
2# region increases with the loading level increasing. In addition, there is a similar change
in phase austenite and phase ferrite in the elastic phase. However, as the load increases
and enters the plastic phase, the strain is gradually concentrated in phase austenite. This is
due to the relatively low modulus of elasticity of phase austenite. Therefore, the strain in
austenite is slightly lower than that in ferrite at the elastic stage. Because austenite is softer
than ferrite, the strain-strengthening exponent is lower than that of ferrite. In addition, the
strain of phase austenite is larger than that of phase ferrite. After entering the plastic phase,
the strain becomes more and more pronounced with the increase of load. This is consistent
with the results of nanoindentation experiments and strain contour analysis in the tensile
direction.
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Figure 7. Strain evolution of special points with increasing load in the test: (a) region 1# (b) region 2#.

As shown in Figure 7, the strain value increases gradually from austenite to ferrite
phase. Because austenite (D,E) is relatively soft, the strain in the austenite phase is always
larger than that in the ferrite phase (A,B). At the junction boundary of austenite and ferrite
(C), interaction exists between the austenite and ferrite grains. Therefore, the strain value is
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between that in austenite (A,B) and ferrite (C,D). In addition, the strain values are influenced
by the grain shape. Narrow austenite grains (shown in Figure 6) are distributed in the
austenite concentrated region, which tend to share larger strain. Thus, the strain value in
narrow austenite grains (B and B*) is greater than that in normal austenite grains (A and
A*). Similarly, the long and narrow ferrite grains are located in the austenite concentration
region, which bear a larger strain. In addition, there is significant interaction between the
boundaries of austenite and ferrite (C and C*), leading to larger strains than the general
ferrite (D and D*), which is consistent with the results in Section 2.1. In general, the stress
concentration of austenite and ferrite occurs on the narrow and long grains.

In order to further investigate the influence of the grain distribution and the interaction
between austenite and ferrite grains on the strain distribution in duplex stainless steel, two
kinds of paths were studied according to the austenite grain spacing, as shown in Figure 8.
One kind is the paths between two dispersed austenite grains (where the grain spacing is
large), such as the blue lines 1 and line 1* in Figure 2a. The other kind is the paths between
two compact austenite grains (where the grain spacing is small), such as the blue lines 2
and line 2* in Figure 2b. Figure 8a,b shows the strain distribution curves along the path
direction of line 1 and line 2 from 1 (2) to 2 (1) points (shown in Figure 2a) at loading levels
of 460 N, 530 N, and 590 N, respectively. Figure 8c,d shows the strain distribution curves
along the path direction of line 1* and line 2* from 1* to 2* points (shown in Figure 2b)
at loading levels of 460 N, 530 N, and 590 N, respectively. The A1 (A2, A∗

1 , A∗
2) and B1

(B2, B∗
1 , B∗

2) lines shown in Figure 8 denote the intersection points of the boundary of the
austenite grain and the paths. It can be seen from Figure 8a,c that in both region 1# and
region 2#, the strain magnitude along the paths tends to become smaller when passing
into the ferrite grain from the interior of the austenite grain. Then, in the ferrite region,
the strain magnitude evolves as a parabolic line before crossing into another austenite
grain interior, during which the strain magnitude first decreases and then increases. This
phenomenon is induced due to the strength difference between the austenite and ferrite
grains. In addition, no obvious mutation of strain magnitude exists at the grain boundary,
indicating that there is interaction between the austenite and ferrite grains that affects the
local mechanical properties near the grain boundary. Furthermore, it can be observed in
Figure 8b,d that when the A grain spacing is small, the two adjacent austenite grains in both
the 1# region and 2# regions have a very high strain value close to that in the intermediate
transition ferrite. This further indicates that interaction between the two phases that can
affect each other’s local material properties, which is consistent with the results of analysis
in Figure 8a,c.
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Figure 8. Strain distribution along different paths in the test: (a) path Line1 in the 1# region, (b) path
Line2 in the 1# region, (c) path Line1* in the 2# region, (d) path Line2* in the 2# region.

4. Finite Element Analysis Results and Discussion
4.1. Material Parameters of the Austenite and Ferrite Phase

In this section, the average values of six sets of nanoindentation experimental data are
employed for the finite element inversion method. The final determined strain strengthen-
ing index and yield strength for austenite and ferrite are 0.27, 358.2 GPa and 0.3, 381.2 GPa,
respectively. The tensile stress–strain curves of the austenite and ferrite phases obtained by
the finite element inversion method are shown in Figure 9. It can be seen from the figure
that austenite enters the plastic stage earlier than ferrite, and austenite is softer than ferrite
and generally bears more strain. It should be mentioned that the letters A and F in Figures 9
and 10 denote the austenite and ferrite phases, respectively.

Finite element calculations of the nanoindentation process were performed for the
austenite and ferrite phases to obtain the indentation depth–load curve. Figure 10 shows
the comparison of the simulated and experimental average results for the six groups. It
can be seen in Figure 10 that the load–indentation depth curve obtained from the finite
element numerical simulations fits well with the experimental results, indicating that the
constitutive relationship for the austenite and ferrite phases calculated by the finite element
inversion method is correct. According to the experimental and simulation results, the
maximum load of ferrite phase is greater than the A phase at the same indentation depth,
indicating that austenite is softer and deforms more easily than the ferrite phase.
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Figure 9. Tensile curves of austenite and ferrite phases.
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Figure 10. Load–pressing depth curve for nanoindentation experiments and finite element simulation
results.

The macro stress–strain curves obtained from the finite element simulation method
introduced in Section 2.4 for the representative regions 1# and 2# are shown in Figure 11.
The experimental results from the DIC test are also shown in Figure 11. It can be seen that
good agreement between the simulation and experimental results is achieved using either
representative region 1# or 2#. In addition, Figure 11 shows the local stress–strain curves
for the highest stress points in the austenitic and ferrite phases during uniaxial stretching.
It can be seen that the stress in the austenitic phase is lower than the macroscopic stress in
the duplex stainless steel at the same macroscopic stress–strain level, while the stress in the
ferritic phase is higher than the macroscopic stress, reflecting the strengthening effect of the
ferritic phase on the duplex stainless steel.
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4.2. Micro-Plastic Deformation Behavior and Evolution Analysis

The strain distributions in the tensile direction of the 1# and 2# regions were calculated
by the finite element method under different loading levels (410N, 460N, 530N, 590N, and
620N), and are compared with the experimental results in Figure 12a,b. It can be seen
that the strain contour plots obtained by experiment are consistent with those obtained
from the finite element simulations. The mechanical characteristics of the duplex stainless
steel analyzed by the experimental strain contour plot are apparent in the finite element
simulation results as well. Thus, the finite element analysis method adopted in this paper
is feasible, and the microstructure distribution can be used to predict the strain distribution
of the material under macroscopic loading. Simultaneously, Figure 7 shows the simulated
strain evolution curves of the A-E characteristic points with increasing loading, which is
consistent with the experimentally derived pattern. Moreover, the finite element method
can compensate for the limitation of the DIC technique, which is highly versatile and can
be used to predict the mechanical properties for a variety of materials. The finite element
method can help researchers to discuss the local stress distribution in different regions.
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under different loads: (a) 1# region, (b) 2# region.

4.3. Analysis of Microscopic Stress Distribution

The stress distribution diagrams for the 1# and 2# regions obtained by the finite
element simulations under loading levels of 410N, 460N, 530N, 590N, and 620N are shown
in Figure 13. The stress–strain curves for the characteristic points A–E (A*–E*) in Figure 2
are shown in Figure 14.
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Figure 13. Stress distribution contours under different loads: (a1–a5) 1# region, (b1–b5) 2# region.

According to the stress distribution map, the larger stress is concentrated on the ferrite
phase in both region 1# and region 2# under a certain load, indicating that the strength of
the ferrite is relatively higher. Pronounced growth of stress appears as the loading level
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increases. It can be concluded from Figure 13 that the internal stress in ferrite phases is
smaller than that around the grain boundaries, and the stress in the austenite phase is larger
than that around the grain boundaries. Obvious stress concentration occurs at higher load
levels due to the interaction between the austenite and ferrite phases. Furthermore, the
ferrite grains close to the austenite grains tend to bear higher loadings, which is related to
higher stress concentration. The stress concentration regions are distributed in strip shapes
and extend along the stretching direction. The stress concentrations in the ferrite phase
occur in the regions with high austenite grain density, and appear much more obvious as
the loading increases. A notable feature can be identified in that the stress concentration
value of the 2# region is larger than that in the 1# region due to the different grain shapes.
Compared with the grains in the 1# region, the austenite grains in the 2# region are fence-
shaped and the grain surface is sharper. Furthermore, stress concentrations are more
obvious as the loading level increases.

Figure 14a shows the stress–strain curves for points A, B, C, D, and E in the 1# region,
while Figure 14b shows the stress–strain curves for points A*, B*, C*, D*, and E* in the
2# region. The 1# region and the 2# region exhibit the same characteristics: the curves
from high to low are D, E, C, A, and B, which is consistent with the experimental analysis
mentioned earlier.
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5. Conclusions

In this paper, the local strain and stress distribution and evolution characteristics of
duplex stainless steel during the tensile process were studied based on the DIC technique
and the finite element method. Meanwhile, a finite element inversion method combined
with a nanoindentation approach was developed to obtain the material parameters of the
ferrite and austenite phases. The simulation results from the developed numerical methods
fit well with experimental observations from the DIC technique. The results show that the
high strain zone is mainly located in the austenite phase; however, the high stress zone is
mainly located in the ferrite grains and the grain boundaries. There is a strong interaction
between the austenite and ferrite phases, and the interaction between the two phases affects
the local material properties of each phase near the grain boundaries. This study effectively
reveals the two-phase interaction and local failure mechanism of duplex stainless steel, and
may provide a reference for material preparation and safety design of related structures.
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