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Abstract: Recently, nanodiamonds with negatively charged luminescent color centers based on
atoms of the fourth group (SiV−, GeV−) have been proposed for use as biocompatible luminescent
markers. Further improvement of the functionality of such systems by expanding the frequencies
of the emission can be achieved by the additional formation of luminescent tungsten complexes in
the diamond matrix. This paper reports the creation of diamond matrices by a hot filament chemical
vapor deposition method, containing combinations of luminescing Si-V and Ge-V color centers and
tungsten complexes. The possibility is demonstrated of creating a multicolor light source combining
the luminescence of all embedded emitters. The emission properties of tungsten complexes and Si-V
and Ge-V color centers in the diamond matrices were investigated, as well as differences in their
luminescent properties and electron-phonon interaction at different temperatures.

Keywords: CVD diamonds; luminescent tungsten complexes; electron-vibrational coupling; temper-
ature dependence

1. Introduction

The creation of multifrequency light-emission sources holds promise for various
requirements of photonics and optical quantum technologies, and has potential applications
in biomedicine and magnetometry. Diamond matrices with embedded color centers occupy
a prominent position in the creation of these emission sources, due to such properties
as biocompatibility, chemical resistance, and exceptional solidity [1]. Scientific interest
in the study of diamond matrices with embedded color centers is supported by a wide
range of methods for the synthesis of diamond matrices, and the possibility of introducing
various atoms and complexes to tune their optical properties. To date, the most widely used
methods of diamond fabrication are chemical vapor deposition (CVD), high-temperature
and high-pressure (HTHP) techniques, and shock-wave synthesis [1]. The CVD method is
considered optimal for the synthesis of diamond particles for the controlled introduction
of impurity atoms, due to the possibility of creating a high-quality diamond matrix and
controlling the number of impurity atoms.

The most popular and well-studied optically active defects are nitrogen-based, because
of the simplicity of their synthesis and their exceptional spin properties. Such centers are
particularly interesting for applications as quantum computers, sensors, and magnetome-
ters. Unfortunately, their wide phonon-assistant component of luminescence and weak
zero-phonon line (ZPL) as well as their impact on other centers means they are not the best
option for constructing multi-frequency light sources. Optically active color centers based
on embedded group IV atoms are nowadays the most popular emitters for such purposes.
The main advantages of color centers based on group IV elements are the high intensity
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of emissions concentrated mostly in the ZPL, with low Huang–Rhys factors due to weak
electron–phonon coupling and narrow FWHM (lower than ~5 nm at room temperature).
The most common centers here are negatively charged silicon vacancy (SiV−) and germa-
nium vacancy (GeV−) which have similar electronic structures with D3d symmetry [2,3].
A few works devoted to these centers have analyzed their electron–phonon interaction
and described the fine optical structure of the luminescent response and its dependence
on the quality of diamond matrices. Thus, in several studies [4–13] of centers based on
Si [4–7] and Ge [8–13], the temperature dependences of the positions and widths of the
ZPLs have been described. The multifrequency emission sources with narrow zero-phonon
luminescence lines at 602 nm and 738 for GeV− and SiV−, respectively, have already been
reported [11,14,15]. The process of improving the functionality of devices based on dia-
mond matrices with embedded color centers is associated with extending the frequency
range of the optical signal by the introduction of additional impurities. Therefore, the
search for new color centers is of great importance, not only to extend the spectral range
but also to find color centers with improved optical properties. To date, a huge number of
possible variations of luminescent defects in the structure of diamond matrixes, including
optically active variations, have been discovered [16,17]. The number of emission frequen-
cies can be expanded by adding suitable impurities forming optically active centers into a
diamond matrix that already contains, e.g., emitters based on SiV− and GeV− color centers.
A promising idea appears to be embedding tungsten (W) atoms into a nanodiamond crystal
lattice during CVD growth, to create luminescent tungsten-based defects. Indeed, there
have been several reports of CVD fabrication of diamond crystal matrices with luminescing
tungsten complexes that demonstrate intense emission bands in the near IR spectral range
of 1.68–1.78 eV (705–750 nm) and are relatively transparent for biological tissues. Moreover,
the simplicity of the implementation process of adding W complexes into the diamond
matrix during CVD growth is particularly attractive [17–20]. It is well-established that
the SiV− and GeV− centers are interstitial point defects of the D3d point group symmetry,
where the Si or Ge atoms are positioned between two adjacent vacancies along the <111>
direction in the diamond lattice [3,7]. However, the position of the W complex in the
diamond lattice has not yet been described. Following the Ludwig and Woodbury model
of electronic structure [21] and based on obtained experimental data, researchers [18] have
suggested that tungsten occupies an interstitial site. However, analysis of peculiarities
of the local vibronic modes (LVM) spectra [19] allows us to assume that the W atom is a
massive substitutional defect.

In this paper, we propose a variation on the expansion of emissions frequencies by
additional doping of the diamond matrix with tungsten during the process of hot filament
chemical vapor deposition (HFCVD) synthesis when tungsten atoms are captured by
diamond matrices. Luminescent tungsten-based complexes have been formed producing
very intensive zero phonon lines at ~714 nm (1.74 eV) and several intensive vibrational
replicas with 24 meV energy distance. Therefore, we prepared and tested a multi-frequency
light source based on HFCVD diamond matrices with emissions from the SiV− and GeV−

color centers as well as tungsten complexes. It was shown that the incorporation of
tungsten-based complexes into diamond matrices did not lead to significant changes in the
structure and, accordingly, to changes in the optical response of color centers based on group
IV atoms. The spectral properties of ZPL and vibration replicas of tungsten complexes
were studied at a wide range of temperatures from room temperature to 7 K. The optical
properties of tungsten complexes and color centers based on group IV atoms (GeV−) were
compared. An evident distinction was revealed between temperature dependences of
the positions and widths of emission lines for tungsten complexes and those for the color
centers based on group IV atoms, mainly due to different electron–phonon interactions.
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2. Materials and Methods
2.1. The Fabrication of Nanodiamonds with Luminescent GeV−, SiV−, and W Color Centers

The nanodiamonds were grown by the HFCVD technique from a methane–hydrogen
mixture. Prior to HFCVD growth, detonation nanodiamonds with a characteristic size of
~4 nm, which served as nucleation centers, were deposited onto a germanium wafer by
aerosol spraying [22]. The concentration of the detonation nanodiamonds on the substrate
surface was about 107 cm−1. The parameters of the technological process included working
pressure in the reactor of 50 Torr, hydrogen flow rate of 500 sccm, methane concentration
of 2%, growth duration of 3 h, and the substrate holder temperature was 700 ◦C. The
substrate holder was a molybdenum disk 2.5 mm in thickness and 20 mm in diameter. The
temperature of the substrate was measured by a Pt–Pt/Rh thermocouple placed inside a
hole in the substrate holder. The filament consisted of a six-turn coil constructed manually
with 0.8 mm diameter tungsten wire. The filament was installed nonparallel to the substrate
surface, and the distance between the filament and the substrate varied from 6 to 10 mm.
The filament temperature was 2200–2300 ◦C, measured with an optical pyrometer. The
tungsten impurities were incorporated into the nanodiamonds during the HFCVD process
following tungsten evaporation from the filament [23]. Simultaneously, the filament heated
the Si and Ge substrates. Final diamond size distributions were from 500 to 1000 nm.

The formation of SiV−, GeV−, and W complex in the course of HFCVD growth of
nanodiamonds was carried out by introducing dopant atoms in the gas phase. Crystalline
germanium substrate was used as a solid-state source of Ge atoms [15]. Residual silicon
contamination on the substrate holder, due to the use of silicon wafers during HFCVD
growth, was a source of Si atoms. The etching of Ge and Si atom sources with atomic
hydrogen leads to the formation of the volatile GeHx and SiHx radicals, which move to
the nanodiamond surface by means of the diffusion process. The tungsten impurities were
incorporated into the nanodiamonds owing to tungsten evaporation from the filament [23].
Then, Ge, Si, and W atoms incorporated into the diamond lattice promoted the formation
of SiV−, GeV−, and W complex in the diamond matrix.

2.2. Scanning Electron Microscopy, Photoluminescence, and Cryogenic Measurements

The scanning electron microscope (SEM) images of diamond nanocrystals with formed
luminescent GeV− and SiV− color centers and luminescent tungsten complexes were
obtained with the Zeiss scanning electron microscope “Merlin” at an accelerating voltage of
10 kV and a probe current of 150 pA. Conventional approaches were followed to improve
the image quality and topological contrast, namely, fixation of the samples with carbon
tape to create a conductive bridge between the silicon substrate and the sample holder, and
simultaneous registration of the signals with InLens and Everhart-Thornley SE2 detectors.

The photoluminescence (PL) spectra of the diamond nanocrystals in the temperature
range of 7–273 K were measured using a LabRAM HREvo UV-VIS-NIR open spectrometer
(Horiba, Lille, France) coupled with an RC102-CFM closed cycle helium cryosystem (Cryo
Inc., Manchester, NH, USA). The excitation of the luminescence spectra was carried out
using an Nd:YAG laser (Oxxius, Lannion, France) with continuous radiation λ = 532 nm
(2.33 eV) focused using a Leica PL FLUOTAR 50× objective (NA = 0.55) onto a spot of
diameter ~2 µm on the sample surface. The spectral resolution of the setup was ~2.5 cm−1

(~0.13 nm).
The spectrometer allowed simultaneous detection of the both the luminescence and

Raman spectra of the samples used for control, by analysis of the diamond Raman line of
~1332 cm−1, and the crystal quality of the diamond nanoparticles with embedded impurity
atoms forming the luminescent color centers. All measurements were taken at least five
times to confirm the reproducibility of the data obtained.

3. Results and Discussion

Figure 1a presents the characteristic luminescence spectra of typical HFCVD diamond
nanocrystal (nanodiamond) excited by 532.1 nm radiation at different temperatures, i.e., 7 K,
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77 K, and 273 K. The ZPL peaks of GeV− and SiV− centers and W complex are seen in the
vicinities of 602 nm [4–7], 738 nm [8–16], and 714 nm [17–20], respectively. The inset shows
an SEM image of a typical HFCVD nanodiamond with a diameter of about 800 nm. The
presence in the spectra of a narrow band at 572.6 nm corresponding to the Raman line of
diamond at a frequency of 1332 cm−1 with a linewidth of ~5 cm−1 indicates the high quality
of the diamond crystal lattice. Thus, the introduction of tungsten atoms sufficient to obtain
an optical response did not significantly affect the structure of the diamond nanocrystal
and did not lead to the appearance of a significant number of defects in the crystal lattice.
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Figure 1. The PL spectra of the typical HFCVD nanodiamond under study. (a) Illustration of
the temperature-induced evolution the PL spectra of GeV−, SiV− centers and W complexes at
temperatures of 7 K, 77 K, and 273 K; inset shows SEM image of a typical HFCVD nanodiamond with
diameter of ~800 nm. (b,c) Enlarged parts of the PL spectrum at 7 K shown in (a) in the regions of
GeV− and W-complex emissions. The fittings of the ZPL and vibration replicas of W complexes by
Gaussians are shown in panel (c).

Figure 1b,c shows the enlarged parts of the PL spectrum at a temperature of 7 K in the
regions of GeV− and W-complex emissions shown in Figure 1a. Lowering the temperatures
to cryogenic levels led to the redistribution of the intensity between the luminescent lines,
as well as to the appearance of a fine structure of ZPLs at the SiV− and GeV− centers.
The fine structure of GeV− is presented in Figure 1b, while the fine structure of SiV− is
barely visible in Figure 1c. It is well-known that single GeV− as well as SiV− centers
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have four separated ZPL bands corresponding to different electronic transitions [3,7].
Unfortunately, the presence of the centers within a different localization of matrices with
different local strains [11,12] masks this structure and does not allow us to assign the peaks
to the concrete electronic transitions. At temperatures lower than ~70 K a set of numerous
narrow (~0.15 nm (0.5 meV) at 7 K) ZPLs of GeV− centers become visible in the region near
602 nm, the positions of which differed from each other due to different local strains in the
diamond nanocrystal [11,12]. A similar set of narrow ZPLs belonging to SiV− centers was
observed near 738 nm [24]. The fitting by Gaussians of the ZPL and vibration replicas of
the local vibration mode (LVM) for W complexes are shown in panel (c). In the spectral
region of 710–750 nm, the ZPL at 714 nm and a series of vibration replicas at 724 nm,
734 nm, etc., shifted in energy by 24 meV belonging to the LVM of W complexes [18,19] are
observed. No set of narrow lines could be seen in the vicinity of the ZPL of the tungsten
complex, even at lowest temperature of 7 K. The increase in temperature to higher than
~70 K led to homogeneous broadening of the ZPLs of SiV− and GeV− centers, resulting in
the formation of heterogeneously broadened ZPLs for the ensembles of the centers, with
Gaussian line shape and linewidth of about 5 meV. The ZPL and vibration replicas of W
complexes underwent essentially less temperature broadening, but demonstrated more
remarkable reduction in intensity.

We noted important differences between the parameters of emission spectra of color
centers based on W complexes and on group IV atoms (SiV−and GeV−):

• stronger temperature-induced reduction of the ZPL and LVM replicas;
• higher relative intensities of the vibration replicas with respect to that of ZPL, i.e., es-

sentially higher values of the Huang–Rhys factor (S). Simple estimation of the Huang–
Rhys factor defined by IZPL/Itot = e−S [25,26] gives a value rising from 0.9 to 1.5 in
the temperature range 7–273 K, while S values of about 0.5–0.65 were reported for the
SiV− and GeV− centers [2,25,26];

• significantly broader (~5–10 times) width of ZPL and LVM replicas at temperatures
close to 0 K.

PL spectra of randomly selected single diamond nanocrystals were measured in the
temperature range 7 K to 237 K. Figure 2 demonstrates a representative set of PL spectra
of single HFCVD diamond nanocrystal in the range of W complex emissions, at several
different temperatures. The spectra contain the ZPL (714 nm) of tungsten complexes and
several LVM replicas (724 nm, 734 nm, 745 nm, etc.) with characteristic energy of 24 meV.
The ZPL of the SiV− center at 738 nm is visible in the low energy area of the tungsten’s
second LVM replica.
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Figure 2. A representative set of PL spectra of single HFCVD diamond nanocrystal in the range of
emission of W complex at different temperatures from 7 K to 273 K. Positions of the ZPL (714 nm) and
several LVM replicas (724 nm, 734 nm, 745 nm, etc.) of tungsten complexes are shown. The ZPL of
SiV− centers at 738 nm can be observed in the low energy area of the tungsten’s second LVM replica.
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To observe the processes governing the ZPL and LVM replicas in emissions of the W
complexes, we obtained the temperature dependencies of the ZPL intensity and linewidth
(FWHM) for the W complexes. In Figure 3 we show these dependencies for the temperature
range of 7–273 K.
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Figure 3. Temperature dependencies of the ZPL intensity and linewidth (FWHM) for the W complexes
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experimental data, the dashed lines are results of fitting with the least square method. Insets in the
figures show the fitting formulas. The error bars are shown.

3.1. ZPL Intensity

Figure 3a presents the temperature dependence of the normalized ZPL intensity; the
points represent the experimental data, and the solid line represents the fitting curve using
a phenomenological calculation. Formula (1) was successfully applied for description of the
reduction of the ZPL intensity in semiconductor heterostructures, SiV− [27], NV [28] centers,
and W complexes [19] in diamonds, due to phonon-assisted non-radiative processes:

I(T)
I(0)

=

(
1 + A· exp

(
− ∆E

kBT

))−1
, (1)

where I(0) is the ZPL intensity at 7 K, A is the negative constant, ∆E is the phonon thermal
activation energy, and kB is the Boltzmann constant. It can be seen that experimentally
observed decrease in the intensity of the ZPL of W complexes with increasing temperature
was well fitted by Formula (1), supporting the conclusion that reduction in ZPL intensity
is mainly due to the thermally activated nonradiative recombination mechanism. The
calculated fitted value ∆E = (17 ± 1) meV was close to the LVM energy of 24 meV. This
indicated that the LVM of the tungsten complex was mainly responsible for the temperature
activation of the nonradiative relaxation of the excited state of the complex, competing
with the process of radiative relaxation.

3.2. ZPL Linewidth

The large widths (~4 meV) of the ZPL and LVM bands even at 7 K, when homogeneous
broadening induced by LVM dephasing the electron and vibronic transitions is relatively
weak, may be caused by several factors. It is worth considering heterogeneous broadening
due to the presence of several emission bands from different W isotopes with different
transition energies, as well as homogeneous broadening due to the relatively high contribu-
tion of strong phonon-assisted (vibronic) transitions, and the increased rate of radiative
relaxation of the W complex.

Isotopic effects were observed for GeV− [29] and SiV− [30]. A simple estimation of
broadening of the ZPL and LVM bands due to isotopic shift was calculated according to
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the approach proposed by A. Dietrich et al. in framework of a simple harmonic oscillator
model [30], allowing this variant to be excluded from consideration. Indeed, natural
tungsten has four stable isotopes with a comparable content in the mixture: 182W (26.50%),
183W (14.31%), 184W (30.64%), and 186W (28.43%). The LVM band broadening can be
roughly estimated by the energy shift between the LVM bands of the isotopes with heaviest
and lightest masses:

∆ELVM(186, 182) ∼ ELVM

(
1 −

√
m186

m182

)
= 0.53 meV, (2)

where ELVM of 24 meV is the energy of the experimentally measured LVM energy, m186 and
m182 are the masses of the 186W and 182W isotopes. The same isotope-induced broadening
value of 0.53 meV was estimated for the ZPL line. These values were almost an order of
magnitude smaller than the measured FWHM of the ZPL and LVM peaks for W complexes,
showing negligible contribution of the isotopic effect. We can therefore assume that at a
temperature of 0 K the large ZPL width of the W complex is due to the relatively high con-
tribution of phonon-assisted (vibronic) transitions increasing the rate of radiative relaxation
of the W complex. This effect appears reasonable because of the high intensities of the LVM
bands comparable with the ZPL intensity in the PL spectra of the W complexes with high
Huang–Rhys value.

Figure 3b shows the experimentally measured temperature dependence of the ZPL
linewidth (FWHM) and its fitting by Formula (3):

Г(T) = ГR + ГNR + ГLVM × 1

exp
(
}ΩV
kBT

)
− 1

, (3)

where ГR is the homogeneous line width independent of temperature, due to the radiative
decay of the excited state W in the complex via the ZPL and LVM channels, ГNR is respon-
sible for homogeneous broadening due to the nonradiative relaxation of the excited state of
the complex caused by the defects of host crystal lattice and surface, ГLVM represents the
intensity of electron-vibration coupling and is related to the Huang–Rhys factor (S), and
h̄ΩV is the actual energy of the local vibrations. We propose in first approximation that
in this formula the ГR and ГNR do not depend on temperature ГR + ГNR = const. The fit
used C, ГLVM, and h̄ΩV as the variable parameters, as shown in Figure 3b, and gave the
following values: C = (2.6 ± 0.2) nm, ГLVM = (6.0 ± 0.3) nm, and h̄ΩV = (22 ± 2) meV.
The calculated fitted C value of 2.6 nm was close to the FWHM of ZPL at the lowest sample
temperature of 7 K, while at 22 meV the value of h̄ΩV is almost equal to the LVM energy
of the W complex, i.e., 24 meV. The latter indicates that the LVM of the tungsten complex
is mainly responsible for the temperature-activated phonon dephasing the excited state
of the complex, resulting in ZPL broadening. The fitted value of ГLVM = 6.0 nm was half
that for the SiV− center of 12.96 nm [27], which seems strange because electron-vibration
coupling in the W complex was stronger than in the SiV− center ( SW ∼ 1.25 compared to
SSiV− ∼ 0.6). This fact and the temperature dependence of the S value in the W complex
are yet to be studied and explained.

4. Conclusions

In this paper, we have reported the hot filament chemical vapor deposition synthesis
of diamond nanocrystals containing a combination of luminescent SiV− and GeV− color
centers as well as tungsten complexes. In addition to the well-known emissions of GeV−

and SiV− color centers at 602 nm and 738 nm, a luminescent tungsten-based complex
with an intensive zero phonon line at ~714 nm was accompanied by several intensive
vibrational replicas with 24 meV energy distance. It was shown that the formation of
tungsten-based complexes in diamond matrices did not lead to significant changes in the
diamond crystal structure. The spectral properties of ZPL (position and linewidth) and
the vibration replicas of tungsten complexes were studied at a wide range of temperatures
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from room temperature to 7 K and were compared with those of GeV− color centers. It
was shown that the W complex demonstrated high electron–phonon interaction with a
Huang–Rhys factor of ~1.5, resulting in comparative intensity of ZPL and vibronic bands
in the emission spectra of the complex. As a result, we demonstrated a multi-frequency
light source based on HFCVD diamond matrices with emissions from both the SiV− and
GeV− color centers as well as tungsten complexes.
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