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Abstract: Structural model updating is one of the most important steps in structural health monitor-
ing, which can achieve high-precision matching between finite element models and actual engineering
structures. In this study, a Bayesian model updating method with modal flexibility was presented,
where a modified heuristic optimization algorithm named modified Nelder–Mead firefly algorithm
(m-NMFA) was proposed to find the most probable values (MPV) of model parameters for the
maximum a posteriori probability (MAP) estimate. The proposed m-NMFA was compared to the
original firefly algorithm (FA), the genetic algorithm (GA), and the particle swarm algorithm (PSO)
through the numerical illustrative examples of 18 benchmark functions and a twelve-story shear
frame model. Then, a six-story shear frame model test was performed to identify the inter-story
stiffness of the structure in the original and the damage states, respectively. By comparing the two,
the position and extent of damage were accurately found and quantified in a probabilistic manner.
In terms of optimization, the proposed m-NMFA was powerful to find the MPVs much faster and
more accurately. In the incomplete measurement case, only the m-NMFA achieved target damage
identification results. The proposed Bayesian model updating method has the advantages of high
precision, fast convergence, and strong robustness in MPV finding and the ability of parameter
uncertainty quantification.

Keywords: structural health monitoring; structural model updating; modified firefly algorithm;
modal flexibility; damage detection

1. Introduction

Structural model updating is an important part of structural health monitoring. Using
monitoring data, structural models can be updated to more realistically represent the actual
state of the structures and to obtain mechanical analytical results which are closest to the
real state of the structures. In fact, structural model updating is an inverse problem of
structural analysis, which can be regarded as an optimization problem. Since the 1960s,
the field of structural model updating has developed a variety of methods. However,
errors exist widely in experimental testing and modeling which are caused by various
factors [1,2]. Shinozuka [3] and Collins et al. [4] introduced an uncertainty concept and used
a probability statistical method to evaluate the uncertainty of parameters while updating
the model parameters. As a result, structural model updating has had a milestone leap.

Probabilistic model updating methods can be roughly divided into stochastic finite
element corrections and finite element corrections based on Bayesian methods. Among
them, stochastic finite element correction is a large category, which includes model correc-
tion based on the Monte Carlo method and model correction based on the perturbation
method. Beck and Katafygiotis et al. [5,6] first introduced the Bayesian method into model
updating in 1998 and established a preliminary theoretical framework; they then used the
asymptotic approximation method to estimate a posterior probability in the parameter
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space. Researchers including Beck, Katafygiotis, Yuen, and Feng have conducted a series of
in-depth studies on the problems of incomplete measurement, complex likelihood function,
and posterior probability that are difficult to solve, and proposed "system modal shape",
modal flexibility method, local observation concepts and methods, such as data fusion, to
further enrich the relevant theories [7–12].

Based on the Bayesian model updating framework, model parameters are embedded
in the posteriori probability function. Generally, there are two kinds of methods to solve
the maximum a posteriori probability (MAP) estimate, one is the Laplace approximation
and the other is random sampling of the posteriori probability distribution function. For a
globally identifiable case with a large number of data, we can approximate the posterior
probability distribution function as a Gaussian distribution including mean and variance,
which mean is the most probable value (MPV), and the obtained MPV is the MAP esti-
mate for the model parameters. Because MPV takes the maximum function value for the
posterior probability distribution function, the solution of MPV eventually becomes an
optimization problem. After completing the construction of a mathematical model for the
optimization problem, the optimization algorithm can be used to find the optimal value of
the mathematical model. Due to the limitations of analytical methods, numerical methods
have become the most widely used methods for solving optimization problems. They
can be mainly divided into two categories. The first type includes traditional optimiza-
tion algorithms focusing on single-objective optimization problems, such as the Newton
Iteration Method (NIM), the Conjugate Direction Method (CDM), etc. The other type
includes Heuristic Algorithms (HA) for multi-objective optimization problems. Inspired by
bionics, scholars have developed Metaheuristic Algorithms (MA) [13,14]. A meta-heuristic
optimization algorithm allows randomness in the optimization process of the algorithm by
introducing a mutation factor, thereby reducing the possibility of falling into a local opti-
mum. At present, scholars have proposed many meta-heuristic optimization algorithms,
such as the Genetic Algorithm (GA) [15], the Ant Colony Optimization (ACO) [16], the
Firefly Algorithm (FA) [17], etc.

The firefly algorithm was first proposed by Yang in 2007. It is a global optimization
algorithm inspired by the glowing behavior of fireflies in nature. Since the firefly algorithm
was proposed, due to its simple parameters, fast convergence speed, high precision, as well
as its own automatic population segmentation ability and nonlinear individual attraction
mechanism, it has received extensive attention from the academic community. However,
like other swarm intelligence optimization algorithms, this algorithm is prone to problems
such as premature maturity, falling into local optimum, and insufficient ability to solve
multi-dimensional optimization problems. Therefore, it needs to be appropriately improved
when solving actual complex optimization problems.

Based on the original FA algorithm, this paper makes several modifications and
introduces the Nelder–Mead Algorithm (NMA) for local search and proposes a modified
Nelder–Mead firefly algorithm. Three improvements are proposed: modification in the
control parameters, introduction of a boundary constrain mechanism, and introduction of
a diversity threshold. Eighteen benchmark functions and a 12-story shear frame model are
used to test the performance of the m-NMFA and to provide support for the comparison of
the original FA, the GA, and the PSO to the m-NMFA. A six-story steel shear frame was
designed to perform a vibration experiment for verifying the effectiveness of the m-NMFA
in Bayesian structural model updating.

2. Model Updating Formulation
2.1. Modal Flexibility

The stiffness matrix K and flexibility matrix C of a linear dynamical system with N
degrees of freedom can be written as follows [18]:

K = MΦΛΦTM = M
(
∑N

i=1 ω2
i φiφ

T
i

)
M. (1)
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C = ΦΛ−1ΦT =
N

∑
i=1

1
ω2

i
φiφ

T
i (2)

where M and K are the mass matrix and the stiffness matrix, respectively; Φ = [φ1, φ2, . . . , φn]
is the mass-normalized mode shape matrix; and Λ is the diagonal eigenvalue with squared
natural circular modal frequencies.

In practice, it is always the case that the spatial arrangement of sensors attached to
the structure is generally limited and only a limited number of DOFs can be observed, for
which only incomplete spatial mode shapes can be gained. It can be seen from Equation (2)
that the greater the modal frequency is, the smaller the contribution of one mode to the
flexibility matrix C will be, which is on the contrary to that of Equation (1) and is more
practical in solving vibration-related problems. Therefore, the flexibility matrix C can
be established approximately with only low-frequency modes of interest. Therefore, the
Equation (2) yield as follows [19]:

Cm ≈ Cm
t =

Nm

∑
i=1

1
ω2

i
φm

i (φ
m
i )

T (3)

where Cm denotes the flexibility submatrix with respect to the measured DOFs; Cm
t

denotes the truncated flexibility submatrix; Nm denotes the number of selected low-
frequency modes (frequency from low to high and no interval in this research); and
φm

i ∈ RNo×1 (i = 1, 2, . . . , N m
)

denotes the incomplete mode shapes. Needless to say,
Cm

t is supposed to be as close as possible to Cm; if all the DOFs of a structure are well
observed and all the mode shapes are gained, Cm

t will be exactly equal to Cm.
Mass-normalization is a key issue to build up the flexibility matrix. If the measurement

is incomplete, the dimension of modal parameters, such as mode shapes, would be less than
that of the mass matrix M. To handle this problem, the SEREP method [20] is introduced
to convert M to reduced mass matrix Mm. Then, the incomplete mode shape matrixes are
normalized as follows:

(Φm)TMmΦm = I (4)

2.2. Model Reduction

System equivalent reduction and expansion process (SEREP) is an eigenvalue-based
reduction technique used to approximate the real structural state vectors with mode shape
measured from the DOFs of the user’s interest [20].

In the method of SEREP, the first step is to separate the mass and stiffness matrices
as follows:

MP =

[
Mmm Mmu
Mum Muu

]
, KP =

[
Kmm Kmu
Kum Kuu

]
. (5)

where m and u denote the measured and unmeasured DOFs. Then, the SEREP transforma-
tion matrix can be written as follows:

T =

[
Φm

Φu

]
(Φm)∗. (6)

where Φm denotes the retained mode shape matrix with No (the number of observed DOFs)
rows and Nm columns, and (Φm)∗ represents the generalized inverse of matrix Φm. The
process of converting Φm to (Φm)∗ is shown in [11,20,21]. Ultimately, the reduced mass
and stiffness matrices can be written as follows:

Mm = TTMPT, Km = TTKPT. (7)

2.3. Bayesian Model Updating Based on Measured Modal Flexibility Data

Bayesian method for finite element model updating is one of the most commonly
used probabilistic methods for structural model updating, and it has been confirmed to
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be efficient and useful [22,23]. In this section, modal flexibility data are used to establish a
posterior-PDF-based objective function.

As the modal flexibility matrix is symmetrical, we can use the lower triangular matrix
of the flexibility matrix Cl to establish the objective function. Let f denote the modal
flexibility data, and the matrix Cl is vectorized based on the following equation:

f =
(

c11, c21, . . . , cNo1, . . . , cii, c(i+1)i, . . . , cNo i, . . . , cNo No

)
(8)

where c denotes the element in the matrix Cl .
It is supposed that the test is repeated Nt times and D denotes the experimental data.

Then, the matrix D can be written as follows:

D =
{

f̂1, f̂2, . . . , f̂Nt

}
(9)

As the modal can be described by the probability distributions of both the unknown
parameters and the prediction error [5], the measured data can be written as follows:

f̂t = f (θ) + et (10)

where f (θ) denotes the prediction of the analytical model and is defined as the vector
for the given values of the model parameters θ. The term et denotes the prediction error
and is assumed to follow the maximum entropy principle [17]. That is to say, et yields a
multi-dimensional Gaussian distribution with zero mean and covariance matrix Σ [5]. The
covariance matrix is computed based on the modal flexibility vectors as follows:

Σ =
1

Nt − 1

Nt

∑
t=1

(
f̂t − f

) (
f̂t − f

)T
(11)

where f contains the average value of Nt experimental modal flexibility vectors. It can be
expressed using the following equation:

f =
1

Nt

Nt

∑
t=1

f̂t (12)

Then, the likelihood function of the t-th set of modal flexibility vector data can be
expressed as follows:

p
(

f̂t

∣∣∣θ, M
)
= C1exp

(
−1

2
( f̂t − f (θ))

T
Σ−1( f̂t − f (θ))

)
(13)

where C1 is a constant. Assuming that the Nt sets of the modal flexibility vector datas are
mutually independent, the likelihood function of D can be written as follows:

p(D|θ, M) = C2exp

(
−1

2

Nt

∑
t=1

( f̂t − f (θ))
T

Σ−1( f̂t − f (θ))

)
(14)

where C2 is also a constant like C1. As the prior PDF p(θ) follows a non-informative
uniform distribution, the posterior PDF p(θ|D, M) can be written in a similar form as the
likelihood function in Equation (14) Given that the observed DOFs are limited, the SEREP
method will be utilized here and then the measured mode shapes are mass-normalized with
respect to the reduced model mass Mm. It is easy to see that Mm depends on θ only and
so does the posterior PDF p(θ|D, M). On this basis, the most probable stiffness parameter
vector θ̂ can be gained by maximizing the posterior PDF value or minimizing its negative
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value. Here, the objective function is defined as a truncated part of Equation (14) and is
simplified with the following logarithm:

J(θ) = −lnp(θ|D, M) (15)

where J(θ) denotes the objective function. Substitute Equation (14) into Equation (15), the
function is expressed as follows:

J(θ) =
1
2

Nt

∑
t=1

( f̂t − f (θ))
T

Σ−1( f̂t − f (θ)) (16)

Till now, the objective function has been established and the model updating problem
has been transformed as an optimization problem. When the most probable stiffness
parameter vector θ̂ is found during the process of minimizing J(θ), the actual stiffness
matrix of a structure is ensured naturally.

The posterior PDF can be well approximated using a set of multi-dimensional Gaussian
distribution with θ̂ and Σθ as its mean value and covariance matrix.

Σθ =
[
H
(
θ̂
)]−1

=
[
∇J
(
θ̂
)
∇T∇J

(
θ̂
)
∇T
]−1

(17)

where H(θ̂) is the Hessian matrix of objective function.
In order to search for the best-fit vector θ̂ exactly and reliably, a modified FA algorithm

is proposed, which is introduced in the next section and utilized in the numerical and
experimental examples in Sections 4 and 5.

3. Firefly Algorithm
3.1. Original Firefly Algorithm

Firefly Algorithm (FA) was first proposed by Xin-She Yang at Cambridge University in
2007 [24] and has become a widely used global optimization algorithm. In the original FA,
it is not gender difference but the intensity of light I, which decreases with the increase in
the square of Cartesian distance between two fireflies r2, that distinguishes fireflies. Fireflies
that have greater I values are regarded as fitting the solution to the objective function better,
and they are supposed to attract the ones with smaller values to them. Given that light will
gradually weaken in a medium as distance increases, the attractiveness parameter β, which
denotes the attraction between any two fireflies, is introduced in this algorithm. Similar to
the intensity of light, the greater the distance is, the smaller the attractiveness parameter β
will be, and the attraction between two fireflies will become weaker. Furthermore, the light
absorption parameter γ is introduced to denote the ability of a medium to absorb light,
which is proposed to simulate the natural environment that fireflies are in.

The behavior of firefly is idealized for algorithmic use, and three rules are introduced
as follows [24]:

• All the fireflies are unisex so they can attract each other without the influence of gender.
• The attractiveness is proportional to the brightness, and they both decrease as their

distance increases.
• The brightness of a firefly is determined by the landscape of the objective function.

In a given medium, light intensity I decreases in a Gaussian form as follows:

I(r) = I0e−γr2
(18)

where I0 represents the intensity at r = 0, and r denotes the distance between any two
fireflies. It can be seen that light intensity decreases exponentially and the influence of the
absorption coefficient γ on light intensity is defined in the exponential term of the function
mentioned above. However, light intensity is flexible in both definition and form since it is
allowed to be the fitness value of a certain objective function to a practical problem [17].
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The attractiveness β of a firefly is proportional to the light intensity I and is also
defined in an exponential form as follows:

β = β0e−γr2
(19)

where β0 is the attractiveness value at r = 0.
The distance r between any adjacent fireflies xi and xj is expressed as follows:

r = ||xi − xj|| = 2

√
n

∑
k=1

(
xi,k − xj,k

)2
(20)

where xi,k is the k-th component of the spatial coordinate xi of i-th firefly, and n denotes the
dimension of the objective function or problems to be optimized.

As mentioned above, fireflies with a greater value of light intensity I is supposed to
attract the ones with a smaller value of I. Assume that the i-th firefly is weaker than the j-th,
then the movement of firefly i to firefly j is described as follows:

xi = xi + β0e−γr2(
xj − xi

)
+ αεi (21)

where the second term is the attraction part, and the third term is the randomization
part with step parameter α. εi is drawn from different distributions, such as Gaussian
distribution, uniform distribution, and levy flight. In many cases, a uniform distribution is
utilized as the simplest form and, thus, εi becomes a vector of random numbers uniformly
generated in [17,25–27]. An example of a levy flight distribution is shown in [24].

The firefly algorithm is an efficient algorithm, and Algorithm 1’s pseudocode is shown
as follows:

Algorithm 1 the firefly algorithm

Initialize the parameters(α, β, γ, n)
Initialize randomly a population of n fireflies

Evaluate the fitness of the initial population at xi by objective function
While (k < MaxGen) do

For i =1:n
For j = 1:n

If Firefly j is better than i
Firefly i moves towards j

End if
End for
Evaluate the new solution

End for
Rank and update the best solution found so far
Update iteration counter k;
Update α

End while

3.2. Modified Nelder–Mead Firefly Algorithm

The modified Nelder–Mead firefly algorithm(m-NMFA) is generally a hybrid version
combining the advantages of the local optimization algorithm, the Nelder–Mead algorithm
(NMA), and the global optimization algorithm. In order to strengthen the superiority
of the hybrid algorithm, three improvements are proposed: modification in the param-
eters α and β, introduction of a boundary constrain mechanism, and introduction of a
diversity threshold.
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3.2.1. Modification in Parameters α and β

Multiple studies have proved that the parameter α and the attractiveness parameter β
are of great influence in both convergence speed and accuracy of results [24,24–33].

Yang in 2008 [17] used a fixed-step parameter α = 0.2 to solve a four-peak function
and then pointed out that a decreasing α could improve the convergence of the FA. Two
examples are given as follows:

α = α∞ + (α0 − α∞)e−t (22)

and
α = α0θt (23)

where α0 is the initial step parameter and α∞ is the final value. θ ∈[0,1] is the randomness
reduction constant. α iterates as the iteration counter t increases. It can be seen that the step
parameter α is limited between α0 and α∞ in Formula (22) and gradually approaches α∞.
Similarly, α gradually approaches zero in Equation (23). Moreover, in Equation (23), the θ
and α0 values have great influence in the decay speed of step parameter α in the process
of iteration, which will produce a unknown effect—positive or negative—on the solution
result. In previous studies, different θ values are taken to cope with different problems.
Yang and He [34] pointed out that θ could take values from 0.95 to 0.97, Manoharan [30]
and Rizk-Allah [35] took θ as 0.9, and Wang [31] took θ as 0.7 and α0 as 0.25. Moreover, a
noticeable issue has been highlighted that the scaling parameter Sd should be introduced in
consideration of the actual scales of the problem of interest [36].

Sd = ud − ld (24)

where d denotes the d-th dimension unknown variable, and ud and ld are the upper
and lower limit values. Therefore, εi in Equation (21) should be replaced by εiS, where
S={Sd, d=1,2, . . . n}.

Beside the strategies mentioned above, various versions of the step parameter iteration
formula have been proposed in the last decade. Brajević [27] proposed a novel strategy that
iterates α with the maximum number of interaction and the initial step parameter α0 and it
is written as follows:

α
(t)
κ = α

(t−1)
κ

(
1

90, 000

) 2
MaxGen

(25)

where κ is the identifier of each firefly and takes the dimension of the problem as its
maximum value; MaxGen denotes the maximum number of interaction; and t denotes
the current number of iterations. The step parameter decreases more quickly and will be
much smaller than that in Equation (23). Ignoring the distinction among all the fireflies,
Equation (25) can be expressed by another form as follows:

α(t) = α0Θ
ρt

MaxGen (26)

where Θ = (1/90, 000)2 ≈ 1.234× 10−10, and ρ is defined as the reference coefficient and
its value is 1. Previous tests have shown that the results drawn from an α that is of a
slightly smaller value during the previous iterations (take 50 iterations for example) tend to
outperform the results drawn from a greater α value in convergence speed. Previous tests
have also shown that the convergence speed of the algorithm increases but the accuracy
decreases gradually if ρ is taken to be an integer constant value ranging from 1 to 3. That is
to say, the decrease rate of α in a later course of iteration should be well controlled to have a
good balance between exploration and exploitation to the maximum. So, let ρ be expressed
in a nonlinear form using the following equation:

ρ = 1 + 2
(

MaxGen− t
MaxGen

)2
(27)
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Figure 1 shows the decreasing process of the reference coefficient.

Materials 2022, 15, 8630 8 of 26 
 

 

 
Figure 1. Iteration of the reference coefficient (Θ= 1.0 × 10−10, α0=0.5). 

Apart from the modification on the step parameter, extensive efforts have been made 
to modify the attraction parameter β and the light absorption parameter γ. If β0 and γ are 
taken to be constants, the distance between any two adjacent fireflies will approach zero 
gradually. As the iteration number increases, it will ideally follow the equation below:   𝑙𝑖𝑚→ 𝛽 = 𝑙𝑖𝑚→ 𝛽 𝑒 = 𝛽  (28) 

This ensures that the attraction within a firefly colony will always be a contributing 
factor. In practice, however, it would be a tough problem in high-dimensional problems 
if the distance between any two firefly individuals is too large at the very beginning of the 
iteration progress and the attraction is too weak to get the individuals closer. As a conse-
quence, the algorithm stagnates. Moreover, the higher the dimension of a project is, the 
more easily this phenomenon will occur.  

Selvarasu [33] proposed a modified β formula: 𝛽 = 𝛽 + (𝛽 − 𝛽 )𝑒  (29) 

where βmin and βmax are the lower and upper boundaries of the attraction parameter β. This 
strategy prevents the attraction from being excessively large or small. Herein, this paper 
utilizes Equation (29) to improve the performance of the FA in solving high-dimensional 
problems.  

3.2.2. Boundary Constrain Mechanism 
Similar to other swarm intelligence methods, such as the Bee Colony Algorithm 

(BCA), the Genetic Algorithm (GA), and the Particle Swarm Optimization (PSO), the FA 
will be ill-conditioned if the variables of firefly individuals exceed the feasible region. 
Yang introduced a boundary constrain mechanism that forces the outer variables to the 
border, and the formula is expressed as follows: 𝑥 , = 𝑙 ,𝑢 , 𝑥 , 𝑙𝑥 , 𝑢  (30) 

where xi,j denotes the i-th firefly individual and the j-th variable, and lj and uj are the 
lower and upper boundaries of the j-th variable. On the one hand, this mechanism ensures 
that all the variables of one firefly are within the feasible range and, moreover, prevents 
the algorithm from falling into the local optimum or leading to a completely wrong 

Figure 1. Iteration of the reference coefficient (Θ = 1.0 × 10−10, α0= 0.5).

Apart from the modification on the step parameter, extensive efforts have been made
to modify the attraction parameter β and the light absorption parameter γ. If β0 and γ are
taken to be constants, the distance between any two adjacent fireflies will approach zero
gradually. As the iteration number increases, it will ideally follow the equation below:

lim
t→∞

β = lim
t→∞

β0e−γr2
= β0 (28)

This ensures that the attraction within a firefly colony will always be a contributing
factor. In practice, however, it would be a tough problem in high-dimensional problems
if the distance between any two firefly individuals is too large at the very beginning of
the iteration progress and the attraction is too weak to get the individuals closer. As a
consequence, the algorithm stagnates. Moreover, the higher the dimension of a project is,
the more easily this phenomenon will occur.

Selvarasu [33] proposed a modified β formula:

β = βmin + (βmax − βmin)e−γr2
(29)

where βmin and βmax are the lower and upper boundaries of the attraction parameter
β. This strategy prevents the attraction from being excessively large or small. Herein,
this paper utilizes Equation (29) to improve the performance of the FA in solving high-
dimensional problems.

3.2.2. Boundary Constrain Mechanism

Similar to other swarm intelligence methods, such as the Bee Colony Algorithm (BCA),
the Genetic Algorithm (GA), and the Particle Swarm Optimization (PSO), the FA will
be ill-conditioned if the variables of firefly individuals exceed the feasible region. Yang
introduced a boundary constrain mechanism that forces the outer variables to the border,
and the formula is expressed as follows:

xi,j =

{
lj,
uj,

xi,j ≤ lj
xi,j ≥ uj

(30)

where xi,j denotes the i-th firefly individual and the j-th variable, and lj and uj are the lower
and upper boundaries of the j-th variable. On the one hand, this mechanism ensures that
all the variables of one firefly are within the feasible range and, moreover, prevents the
algorithm from falling into the local optimum or leading to a completely wrong solution.
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On the other hand, it reduces the diversity of the firefly population to some extent. This
mechanism has been utilized by Ivona Brajević [37] and Rajan [38].

The optimal solution of a multi-dimensional problem is determined by all the variables.
It is possible that a newly generated firefly individual would deviate from the optimal
solution with only several variables being updated. Therefore, a new boundary constraint
mechanism is proposed. If any one of the variables overflows, a new firefly individual will
be regenerated randomly, Algorithm 2 is:

Algorithm 2 boundary constrain mechanism

For i = 1:n
For j = 1:D

If xi,j < lj or xi,j> uj

Then xi,j = lj + rand× (u j−lj
)

End if
End for

xi = xi + F*(xbest − xi)
End for

where rand ∈ [0, 1] denotes a random factor that is used to generate a new variable
randomly, and F ∈ [0, 0.5] is another random factor that leads the new firefly towards the
current global best solution xbest. Both rand and F follow a uniform distribution.

3.2.3. Hybrid of Nelder–Mead Algorithm and the Diverse Threshold

The Nelder–Mead Algorithm is a local optimal algorithm that adapts itself to the
local landscape and contracts on to the final minimum. This method for finding the local
minimum is widely used and it can be realized expediently by using the built-in function
“fminsearch” in MATLAB software. The way of combining the NMA and the FA is to start
the NMA in the iterative process of the FA in order to dig out a better solution nearby the
current global best solution found up to t-th (t ≤MaxGen) iteration.

However, the start point of the NMA in the iterative process needs to be well weighted
because when to enable the NMA will greatly affect the solution accuracy and convergence
speed. If the NMA starts too early, the current best solution will be far from reliable and
the NMA will run meaninglessly, which will result in inefficiency. Meanwhile, if it starts
too late, the contribution of the solution searched by the NMA to the algorithm will be
weakened. Therefore, the concept of diversity threshold is introduced. When the diversity
of a firefly population reaches a certain threshold, the NMA is enabled to balance the
contradiction mentioned above.

Let xk,best and xk,worst denote the best and worst firefly individuals of the single k-th
iteration, and xg,best and xg,worst denote the current global best and worst individuals found
up till the k-th iteration. The diversity threshold is calculated as follows:

ξ =
xk,best − xk,worst

xg,best − xg,worst
(31)

T = eξ−1 (32)

Then, the NMA is enabled when eξ−1 < T0, where T0∈[0, e−1]. The FA would be
capable of finding a relatively stable solution close to the target when eξ−1 is from 0.0001
to 0.01, that is to say, it is feasible to take T0 from 10−3 to 10−5, and then the step parameter
α would be small enough to correspond with the NMA.

4. Numerical Illustrative Examples

In order to demonstrate the superiority of the newly modified algorithm, 18 benchmark
functions and a 12-story shear frame model are used to test the performance of the m-NMFA
and to provide support for the comparison of the original FA, the GA [39] and the PSO [40]
to the modified algorithm.
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4.1. Benchmark Work of m-NMFA

Table 1 presents 18 well-known benchmark functions [41,42], and the order number
(column 1), the function name (column 2), the formula (column 3), the feasible region
(column 4), the minimum value (column 5), and the dimension (column 6) of each function
are given successively. These functions can be generally divided into two categories:
multimodal functions (f1–f9) and unimodal functions (f10–f18). The multimodal functions
are used to prove the ability of the proposed algorithm to escape the local optimal solution
and seek the global optimal solution, and the unimodal functions are used to illustrate the
precision of the results searched out by the algorithm.

In this test, all the population size and the number of chromosomes are taken to
be 30. The maximum number of iterations is taken to be MaxGen = 1000. For the FA
algorithms, the initial value of the step parameter is taken to be 0.5 in the m-NMFA and
0.25 in the original FA; the attractiveness parameters βmin and βmax take the values of 0.2
and 1.0, respectively; and the absorption coefficient γ is taken to be 1.0. For the GA, the test
uses the built-in GA optimization algorithm of MATLAB R2017a Win64, and most of the
input parameters take the default values of the built-in toolbox, except for the number of
chromosomes, the maximum number of iterations, and FunctionTolerance which is defined
as a stop criterion. When the average relative change in the best fitness function value over
MaxGen generations is less than or equal to FunctionTolerance, the algorithm stops. Given
that it demands the same iteration number for all the algorithms, the criterion value should
be significantly small and, therefore, takes the value of 10−100 in the test. For the PSO, the
learning factors take the value of c1= c2= 2, the maximum velocity is taken to be 1.0, and
the inertia weighting factor is in a linear form:

ωt = ω2 − t× ω2 −ω1

MaxGen
(33)

where ωi is the inertia weighting factor of the i-th iteration, and ω1 and ω2 are the lower
and upper limit values of ω. If the velocity or spatial vector of a particle in one dimension
reaches or exceeds the boundary, all dimensions of the particle will be reset to the boundary
value. All the functions are run independently using each of the optimization method for
100 times to avoid stochastic discrepancy in MATLAB R2017a Win64, Windows 10 system.

Table 1 shows the results of the m-NMFA under different diversity threshold values,
and additionally, the second to fifth columns show the results of the improved algorithm
without the NMA. In each case, the mean value, the standard deviation (SD), and the
maximum (Max) and minimum (Min) values of the results of each 100 runs are listed. It can
be seen from the results that, compared to the case without the NMA, the other three cases
are generally better, which proves that the introduction of the NMA can effectively improve
the accuracy and stability of the firefly algorithm. In addition, although taking T0 = 10−1

can improve the optimization performance of the algorithm to a certain extent, the results
are not good enough. When T = 10−3–10−5, the accuracy and stability of the optimization
algorithm are better than the results of T = 10−1, which shows that the start point of the
local optimization algorithm in the global optimization algorithm has a significant impact
on the optimization result. This test also proves that a diversity threshold value in the
range of T = 10−3∼ 10−5 is relatively appropriate. In subsequent tests and studies, the
m-NMFA will adopt the value of T = 10−5.

Table 2 shows the mean values, the standard deviations, and the maximum and
minimum values of every 100 runs. It can be seen that the modified algorithm performs
generally the same as the other three algorithms in f 1 and f 2, and it is slightly inferior to
the GA in f 7 and f 8. As for the minimum values of f 10 and f 14, m-NMFA performs slightly
worse than PSO and GA. Apart from the cases mentioned above, the m-NMFA significantly
outperforms the FA, the GA, and the PSO in both precision and dispersion in most cases.
It is worth mentioning that the ability of the m-NMFA to search for the minimum values
of multimodal functions is well-illustrated in the tests of f 7 and f 8 for its distinguished
minimum values out of the other values.
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Table 1. Benchmark functions.

No. Function Names Formulations Limits Min D

f1 Cross-in-Tray Function f1(x)= −0.0001
(∣∣∣∣sin(x 1) sin(x 2)exp

(∣∣∣∣100−
√

x2
1+x2

2
π

∣∣∣∣)∣∣∣∣+1
)0.1

xi∈[−10,10] −2.0626 2

f2 Schaffer N2 Function f2(x)= 0.5+(sin(x2
1−x2

2))
2−0.5

[1+0.001(x2
1+x2

2)]
2

xi∈[−100,100] 0 2

f3 Hartmann 6-D Function

f3(x)= −
4
∑
i

αiexp

(
−

6
∑

j=1
Aij

(
xj−Pij

)2
)

, where

α =(1.0, 1.2, 3.0, 3.2)T

A=


10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14


P= 10−4


1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381



xi∈(0,1) −3.3224 6

f4 Zakharov Function f4(x) =
D
∑

i=1
x2

i +

(
D
∑

i=1
0.5ixi

)2

+

(
D
∑

i=1
0.5ixi

)4
xi∈[−5,10] 0 30

f5 Alpine Function f5(x) =
D
∑

i=1
|xi sin(xi)+0.1xi| xi∈[−10,10] 0 30

f6 Griewank Function f6(x) =
n
∑

i=1

x2
i

4000 −
n
∏
i=1

cos
(

xi√
i

)
+1 xi∈[−600,600] 0 30

f7 Penalized 1 Function

f7(x) =
π
D

{
10 sin2(πy1) +

D−1
∑

i=1
(yi−1)2

[
1 + 10 sin2(πyi+1

)]
+ (yD−1)2

}
+

D
∑

i=1
u(xi, 10, 100, 4),

where

yi= 1+ 1
4 (xi+1), u(xi, a, k, m) =


k(xi−a)m,

0,
k(−xi−a)m,

xi> a
−a ≤ xi ≤ a

xi< −a

xi∈[−50,50] 0 30

f8 Penalized 2 Function
f8(x) = 1

10

{
sin2(3πx1) +

D−1
∑

i=1
(xi−1)2

[
1 + sin2(3πxi+1)

]
+ (xD−1)2

[
1 + sin2(2πxD)

]}
+

D
∑

i=1
u(xi, 5, 100, 4),

xi∈[−50,50] 0 30
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Table 1. Cont.

No. Function Names Formulations Limits Min D

f9 Ackley Function f9(x)= −20 exp

(
−0.2

√
1
n

n
∑

i=1
cos(2πxi)

)
+20 + e xi∈[−32.768,32.768] 0 30

f10
Sum of Different Powers

Function f10(x) =
D
∑

i=1
|xi|i+1 xi∈[−1,1] 0 30

f11 Sphere Function f11(x) =
D
∑

i=1
x2

i
xi∈[−5.12,5.12] 0 30

f12 Sum Squares Function f12(x) =
D
∑

i=1
ix2

i
xi∈[−5.12,5.12] 0 30

f13 Rosenbrock Function f13(x) =
D−1
∑

i=1
(100

(
xi+1−x2

i
)2
+(x i−1)2

)
xi∈[−2.048,2.048] 0 30

f14 Dixon-Price Function f14(x) = (x1−1)2 +
D
∑

i=2
i
(
2x2

i−xi−1
)2 xi∈[−10,10] 0 30

f15
Rotated Hyper-Ellipsoid

Function f15(x) =
D
∑

i=1

i
∑

j=1
x2

j
xi∈[−65.536, 65.536] 0 30

f16 Perm Function 0, d, β f16(x) =
D
∑

i=1

(
D
∑

j=1
(j + 10)

(
xi

j −
1
ji

))2
xi∈[−30,30] 0 30

f17 Schwefel 1.2 Function f17(x) =
D
∑

i=1

(
i

∑
j=1

xj

)2
xi∈[−100,100] 0 30

f18 Schwef 2.22 Function f18(x) =
D
∑

i=1
|xi|+

D
∏
i=1
|xi| xi∈[−100,100] 0 30



Materials 2022, 15, 8630 13 of 24

Figure 2 shows the convergence diagrams of the 18 functions operated by the FA,
the GA, the PSO, and the m-NMFA. The value of the ordinate is the mean value after
100 operations. It can be seen that the m-NMFA converges faster in most cases and has a
strong high-precision solution searching ability.

4.2. Numerical Simulation of Shear Frame

A 12-story steel shear frame shown in Figure 3 is used to test the performance of the
m-NMFA. The frame is assumed to be fixed on a solid ground and is of 1.8 m in height. The
masses are uniformly distributed on each floor and are totally supported by six full-length
rectangular columns with an identical cross-section of 6 mm in thickness and 25 mm in
width. The mass of each floor is taken to be me = 75 kg, and the inter-story stiffness is
calculated to be ke = 1.512 × 105 N/m. Hence, the nominal undamaged structure mass and
stiffness matrices are calculated as follows:

Mu =


me

me
. . .

me


12×12

(34)

Ku =



2ke −ke
−ke 2ke −ke

−ke
. . . . . .
. . . . . . −ke

−ke 2ke


12×12

(35)
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It is assumed to have a stiffness reduction of overall 20%, 40%, and 20% on the 5th,
6th, and 7th inter-story columns, which is denoted by the artificially settled damage vector
θith(i = 5, 6, 7). Gaussian white noises with mean values of zero are considered for the
modal data, and the degrees of which are taken to be 1% for modal frequencies and
3% for modal shapes. Complete and incomplete measurements are considered. In the
complete measurement case, all the first 12 modal parameters can be well measured. In the
incomplete case, it is assumed that only the first eight modal parameters and the special
displacement information of the 1st, 2nd, 4th, 6th, 8th, 10th, 11th, and 12th stories can be
obtained. In order to eliminate accidental errors, the tests are executed independently for
Nt = 100 times and 100 sets of modal parameters are used. The simulation progress is
operated using the FA, the GA, the PSO, and the m-NMFA separately and the algorithm
parameters are kept the same as those in Section 4.1.
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In this example, the standard deviation (SD) and the coefficient of variances (CV) are
calculated for each parameter, which are listed in Tables 2 and 3. Figure 4 shows the results
of the damage vector θ for both cases. It can be seen that, in the complete measurement case,
all the algorithms are able to identify the position and the degree of the damage ideally.
However, in the incomplete measurement case, only the m-NMFA can achieve the goal of
identifying the damage of a structure.
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Table 2. The results of shear frame: complete measurement case.

No. θa
FA GA PSO m-NMFA

θ SD CV θ SD CV θ SD CV θ SD CV

1 0 0.026 0.0012 0.0452 0.0083 0.0011 0.1374 −0.0030 0.0020 0.6884 0.0081 0.0011 0.1408
2 0 0.007 0.0016 0.2196 −0.0053 0.0015 0.2858 −0.0104 0.0029 0.2772 −0.0054 0.0015 0.2785
3 0 0.032 0.0014 0.0452 −0.0044 0.0013 0.2932 0.0004 0.0042 9.3279 −0.0047 0.0013 0.2729
4 0 0.042 0.0015 0.0350 0.0061 0.0013 0.2196 0.0414 0.0043 0.1042 0.0058 0.0013 0.2291
5 −0.2 −0.185 0.0012 0.0065 −0.1932 0.0012 0.0060 −0.2016 0.0024 0.0121 −0.1933 0.0012 0.0060
6 −0.4 −0.404 0.0008 0.0019 −0.4036 0.0008 0.0019 −0.4124 0.0015 0.0036 −0.4036 0.0008 0.0019
7 −0.2 −0.205 0.0012 0.0058 −0.1992 0.0012 0.0061 −0.2025 0.0026 0.0127 −0.1993 0.0012 0.0061
8 0 0.028 0.0015 0.0553 −0.0058 0.0014 0.2402 −0.0063 0.0027 0.4338 −0.0061 0.0014 0.2299
9 0 0.032 0.0013 0.0416 −0.0030 0.0012 0.3932 −0.0235 0.0030 0.1271 −0.0031 0.0012 0.3779

10 0 0.046 0.0021 0.0452 −0.0060 0.0017 0.2859 −0.0019 0.0030 1.5957 −0.0062 0.0017 0.2760
11 0 0.015 0.0015 0.0943 −0.0079 0.0014 0.1722 0.0127 0.0040 0.3176 −0.0080 0.0014 0.1688
12 0 −0.001 0.0024 2.7776 −0.0121 0.0022 0.1850 0.0621 0.0065 0.1043 −0.0120 0.0022 0.1868

Table 3. The results of shear frame: incomplete measurement case.

No. θa
FA GA PSO m-NMFA

θ SD CV θ SD CV θ SD CV θ SD CV

1 0 0.017 0.0024 0.0293 0.0045 0.0020 0.0459 0.0613 / 1.2185 −0.0026 0.0020 0.7461
2 0 0.0473 0.0015 0.0368 0.0383 0.0077 0.0150 0.1942 / 0.6339 0.0070 0.0044 0.6253
3 0 0.0436 / 0.0039 0.0036 0.0023 0.2470 0.1399 0.0023 0.0077 0.0199 0.0081 0.4085
4 0 0.0117 / 0.0244 0.0271 / 0.0141 0.1616 0.0097 0.0346 −0.0272 0.0062 0.2278
5 −0.2 −0.0973 0.0121 0.3250 −0.1704 0.0015 0.0026 0.1186 / 0.4796 −0.2036 0.0037 0.0184
6 −0.4 −0.3829 0.0038 0.0348 −0.3727 0.0069 0.0104 −0.3700 / 0.0330 −0.4072 0.0037 0.0091
7 −0.2 −0.2059 0.0037 0.0098 −0.0327 0.0018 0.0041 −0.0968 / 0.0248 −0.1977 0.0047 0.0235
8 0 0.0682 0.0036 0.1014 0.0266 0.0038 0.0056 0.1807 / 0.0366 −0.0156 0.0089 0.5712
9 0 −0.0001 0.0022 0.0083 0.0813 0.0048 0.0841 0.1135 / 0.4384 −0.0244 0.0071 0.2907

10 0 0.0468 0.0067 0.0263 −0.0314 0.0037 0.2940 0.0855 / 0.2556 0.0058 0.0062 1.0808
11 0 0.0299 0.0043 0.0431 0.0151 0.0045 0.0155 0.1274 0.0018 0.0393 0.0046 0.0027 0.5872
12 0 0.0211 0.0030 0.0867 0.0336 0.0018 0.0134 0.1086 / 0.0620 −0.0079 0.0030 0.3828
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5. Experimental Illustrative Example

A six-story steel shear frame is designed to perform a vibration experiment, in which
the modal parameters are identified by FDD to form a modal flexibility matrix. Then, the m-
NMFA is utilized to search out the minimum value of the modal-flexibility-based objective
function. Damage identification problem is introduced to illustrate the effectiveness of the
proposed method.

The structure is fixed on the ground by foundation bolts. The length, width, and
thickness of the interlayer plates are 450 mm, 450 mm, and 10 mm, respectively. The
thickness center spacing of each plate is 250 mm. The interlayer stiffness is provided by
the main columns fixed at the four vertices of the plates and additional columns at the
midpoint of the side edges. An angle steel is welded with a steel plate in the center of it.
An external excitation of random force and random position is applied to the structure
by hammering excitation. The displacement response of each layer is measured using
an IL-300 laser displacement meter. The measuring point is set at the center of the angle
steel baffle. The sampling frequency of the meter is 200 Hz. The masses from m1 to m6
are 17.151 kg, 17.123 kg, 17.215 kg, 17.169 kg, 17.193 kg, and 16.731 kg, respectively, and
the nominal interlaminar stiffness is 81920n/m. Before the test, a lumped mass reference
finite element model is established according to the measured mass of each layer and the
calculated nominal stiffness.

The displacement responses of the steel shear frames in the damaged and undamaged
states are tested. In the damaged state, the additional columns of the fifth floor are missing,
of which the nominal damage coefficient is −20%. In both tests, the responses of the 1st,
2nd, 4th, 5th, and 6th stories are measured, and the measurement repeats 50 times for each
test and lasts for 5 min each. Figures 5 and 6 show the time domain information of the
undamaged and damaged structures.

The frequencies of the first six modes of the frame structure are shown in Table 4,
which take the average values of 50 measurements. The mode shapes shown in Figure 7
are normalized with respect to the reduced mass matrix Mm.

Table 4. The first six frequencies of the shear frame identified by FDD (Unit: Hz).

Modal Order Undamaged Damaged

1 2.6616 2.6104
2 7.8329 7.3901
3 12.5790 12.3932
4 16.6569 16.5127
5 19.7584 19.0000
6 21.4556 21.2004
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In the Bayesian probabilistic approach, the probability distributions of the model
updating parameters of the damaged and undamaged structures are needed to calculate
the cumulative probability distribution of the damage parameters in the damaged state.
The distributions of the damage parameters can be obtained using the following formula:

Pn(d)= P
(
(1 + θd

n) < (1− d)(1 + θud
n )
)
≈ Φ

 (1− d)
(

1 + θ̂
ud
n

)
−
(

1 + θ̂
d
n

)
√
(1− d)2(σud

n
)2

+
(
σd

n
)2

 (36)

where the damage extent d is used to describe the value of the stiffness reduction parameter;
θd

n and θud
n are the model updating parameters of the damaged and undamaged structures;

and θ̂d
n, θ̂ud

n , σ̂d
n and σ̂ud

n are the mean values and standard deviations of the model up-
dating parameters in Gaussian probability distribution. The value of θn can be obtained
by choosing the mean value of each distribution in the probability density function dia-
gram. The standard deviations of the n-th damage parameters can be calculated using the
following formula:

σn =
∑∞

i (dn,i−θn)
2y(xn,i)∆d

∑∞
j y(dn,j)∆d

(37)

where ∆d = dn,v+1−dn,v, v ∈ {i, j|i ∈ N∗, j ∈ N∗}, and y(d) is the Gaussian probability
density function of d.

The model updating parameters of the finite element model of the undamaged struc-
ture are identified using the m-NMFA, which are shown in Table 5. The model updating
parameters of the damaged structure are shown in Table 6.

Table 5. Model updating parameters of the undamaged structure using the Bayesian probability method.

n 1 2 3 4 5 6

θ̂ud
n 0.4402 −0.0904 −0.1299 −0.1259 −0.0910 −0.0126

θ̂ud
n 0.0051 0.0022 0.0033 0.0030 0.0028 0.0023

Table 6. Model updating parameters of the damaged structure using the Bayesian probability method.

n 1 2 3 4 5 6

θ̂ud
n 0.4923 −0.0792 −0.1438 −0.2008 −0.3099 −0.0250

θ̂ud
n 0.0050 0.0022 0.0034 0.0032 0.0018 0.0023

According to the identification results shown in Tables 5 and 6, the cumulative prob-
ability distribution of the structural damage parameter of each floor is calculated using
Formula 35. The cumulative probability distribution is plotted in Figure 8. The probability
density function is plotted in Figure 9. Figure 10 shows the mean value of each distribution
in the probability density function directly.
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6. Conclusions

Based on the modal flexibility matrix, this paper uses the Bayesian probability method
to establish the objective function for the model updating problem, which is solved using
the proposed m-NMFA. The results show that this method can accurately fix the damage
position and determine the damage extent.

Compared to the other meta-heuristic optimization algorithms, the proposed m-NMFA
has a stronger optimization ability in solving benchmark functions and the finite element
model updating objective functions, which shows a higher applicability in the practical
problems of model updating. The reason why the m-NMFA has more superior optimization
performance is mainly due to the following three points:

1. In the research on the random step size formula, it is found that the smaller the
random step size is at the beginning of the iteration, the faster the convergence speed
of the algorithm will be. However, as the random step size gradually approaches zero
at the end of the iteration, its value should be large enough to keep the algorithm with
sufficient exploration ability.

2. In the research on the value of diversity threshold, a fraction is used to quantify the
diversity of the population to enable the NMA algorithm to start at an appropriate
time. The diversity threshold is quantized into a value between (0, e−1] through
exponential form. When the diversity threshold is taken to be between 10−3~10−5,
the algorithm can obtain a more accurate optimal solution.

3. The selection of the iterative formula of the attraction parameter has great impact on
the solving ability of the FA in solving the multi-dimensional optimization problems,
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The selection of the iterative formula of the attraction parameter has a great impact
on the ability of the FA in solving multi-dimensional optimization problems, which
would lead to stagnation and non-convergence if an improper formula were selected.
This paper avoids such problem by selecting an appropriate formula for the coefficient
of attraction.

In the research of model updating based on modal flexibility and Bayesian method, the
modal flexibility theory, the system equivalent reduction and expansion process, and the
basic theory of Bayesian method are introduced. The objective function established based
on these theories provides a relatively complete theoretical support for solving the model
updating problems of limited measuring points and number of modes, so that people can
obtain reliable results from limited structural information. Bayesian method allows people
to empirically select the prior probability distribution of the modified parameters so as
to exert influence on the identification results, which provides theoretical and practical
convenience for solving the problems of model updating. Through the numerical simulation
of a 12-story shear frame and the experimental test of a 6-story steel shear frame, the
reliability of the Bayesian probability method in solving model updating and structural
damage identification is verified.
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Appendix A

Table 1. The results of the improved algorithm under different diversity threshold values.

No.
Modified Algorithm with No NMA T = 10−1 T = 10−3 T = 10−5

Mean SD Max Min Mean SD Max Min Mean SD Max Min Mean SD Max Min

f1 −2.063 2.68 × 10−15 −2.063 −2.063 −2.063 2.68 × 10−15 −2.063 −2.063 −2.063 2.68 × 10−15 −2.063 −2.063 −2.063 2.68 × 10−15 −2.063 −2.063
f2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
f3 −3.022 0.032 −2.942 −3.042 −3.025 0.028 −2.981 −3.042 −3.012 0.031 −2.981 −3.042 −3.021 0.029 −2.981 −3.042
f4 73.192 28.043 145.588 19.536 2.90 × 10−6 2.12 × 10−6 1.30 × 10−5 4.38 × 10−7 2.61 × 10−6 2.25 × 10−6 1.48 × 10−5 3.05 × 10−7 2.71 × 10−6 1.99 × 10−6 8.48 × 10−6 1.95 × 10−7

f5 1.703 1.369 7.756 0.033 2.39 × 10−4 1.49 × 10−4 7.06 × 10−4 1.67 × 10−5 2.13 × 10−4 1.39 × 10−4 6.57 × 10−4 7.92 × 10−6 2.71 × 10−4 1.74 × 10−4 7.94 × 10−4 2.14 × 10−5

f6 4.91 × 10−3 6.50 × 10−3 0.028 3.77 × 10−6 0.032 0.064 0.460 1.16 × 10−13 0.035 0.034 0.162 6.91 × 10−13 3.89 × 10−3 7.00 × 10−3 0.044 1.32 × 10−13

f7 0.957 1.102 7.171 4.62 × 10−4 3.727 5.407 26.387 8.15 × 10−15 1.650 3.082 22.824 9.36 × 10−15 0.423 0.621 3.720 1.05 × 10−15

f8 0.155 1.251 12.226 2.03 × 10−5 26.232 35.036 100.531 5.94 × 10−16 2.743 9.077 55.762 6.46 × 10−14 0.808 4.779 45.357 9.50 × 10−15

f9 0.262 0.448 1.900 7.99 × 10−15 3.955 1.580 17.586 2.317 0.240 0.483 1.900 4.44 × 10−15 0.265 0.502 1.778 4.44 × 10−15

f10 2.90 × 10−6 2.60 × 10−6 1.69 × 10−5 2.55 × 10−7 8.93 × 10−78 3.94 × 10−77 3.64 × 10−76 1.74 × 10−84 2.20 × 10−71 2.20 × 10−70 2.20 × 10−69 7.04 × 10−84 3.68 × 10−72 3.68 × 10−71 3.68 × 10−70 5.99 × 10−83

f11 2.96 × 10−8 1.64 × 10−7 1.17 × 10−6 1.39 × 10−32 7.52 × 10−15 7.52 × 10−14 7.52 × 10−13 1.72 × 10−32 2.89 × 10−32 7.39 × 10−33 4.76 × 10−32 1.65 × 10−32 1.84 × 10−15 1.84 × 10−14 1.84 × 10−13 1.56 × 10−32

f12 1.558 1.552 6.694 0.044 3.62 × 10−7 4.53 × 10−7 2.13 × 10−6 1.85 × 10−9 3.80 × 10−7 4.71 × 10−7 2.56 × 10−6 1.19 × 10−9 3.36 × 10−7 4.60 × 10−7 2.73 × 10−6 9.01 × 10−10

f13 29.276 7.036 77.985 22.668 0.997 1.735 3.987 4.51 × 10−13 0.797 1.603 3.987 1.81 × 10−12 0.678 1.505 3.987 5.81 × 10−12

f14 8.061 9.410 65.806 0.681 0.667 2.04 × 10−7 0.667 0.667 0.667 0 0.667 0.667 0.667 6.21 × 10−8 0.667 0.667
f15 118.714 131.326 674.149 0.563 3.09 × 10−7 3.91 × 10−7 1.82 × 10−6 5.69 × 10−10 3.12 × 10−7 4.06 × 10−7 2.05 × 10−6 1.35 × 10−10 2.95 × 10−7 4.39 × 10−7 2.48 × 10−6 2.02 × 10−10

f16 1.74 × 1026 1.04 × 1027 8.19 × 1027 8.19 × 1027 209.091 326.701 1.42 × 103 2.53 × 10−8 135.316 229.458 1.50 × 103 2.71 × 10−7 187.578 296.558 1.42 × 103 9.43 × 10−8

f17 2.41 × 104 1.58 × 104 8.91 × 104 4.35 × 103 6.13 × 10−4 4.51 × 10−4 2.48 × 10−3 7.10 × 10−5 7.22 × 10−4 6.88 × 10−4 5.09 × 10−3 1.08 × 10−4 6.11 × 10−4 3.91 × 10−4 1.99 × 10−3 1.32 × 10−4

f18 2.444 2.584 16.389 0.041 1.68 × 10−3 1.18 × 10−3 5.81 × 10−3 7.15 × 10−6 1.70 × 10−3 1.16 × 10−3 5.61 × 10−3 7.39 × 10−5 1.73 × 10−3 1.09 × 10−3 6.50 × 10−3 2.66 × 10−5

Table 2. Comparison of the four optimization algorithms.

No.
FA GA PSO m-NMFA

Mean SD Max Min Mean SD Max Min Mean SD Max Min Mean SD Max Min

f1 −2.0626 2.65 × 10−15 −2.0626 −2.0626 −2.0626 1.01 × 10−10 −2.0626 −2.0626 −2.0626 2.68 × 10−15 −2.0626 −2.0626 −2.0626 2.68 × 10−15 −2.0626 −2.0626
f2 3.53 × 10−5 3.26 × 10−4 3.25 × 10−3 0.00 × 100 0.046 0.0982 0.475 2.95 × 10−14 0 0 0 0 0 0 0 0
f3 −3.0197 0.0366 −2.9233 −3.0425 −3.0179 0.0303 −2.9799 −3.0425 −2.9622 0.0871 −2.6175 −3.0425 −3.0210 0.0295 −2.9810 −3.0425
f4 193.2893 48.4340 328.8250 91.7273 61.9113 71.3777 318.4053 1.5917 76.3396 77.5750 528.4291 1.1334 2.71 × 10−6 1.99 × 10−6 8.48 × 10−6 1.95 × 10−7

f5 4.7192 2.4243 12.9291 0.9156 0.1317 0.2206 1.7274 3.80 × 10−3 3.2038 1.9981 11.9646 0.5124 2.71 × 10−4 1.74 × 10−4 7.94 × 10−4 2.14 × 10−5

f6 0.8609 0.4527 2.8608 0.0800 4.13 × 10−3 9.34 × 10−3 0.0620 4.08 × 10−5 13.8875 4.8491 30.1011 4.08 × 10−5 3.89 × 10−3 7.00 × 10−3 0.0443 1.32 × 10−13

f7 4.3163 2.2529 12.2211 0.4024 0.0667 0.0862 0.3263 4.56 × 10−5 3.4507 1.1366 7.0231 4.56 × 10−5 0.4225 0.6215 3.7198 1.05 × 10−15

f8 21.3056 16.1388 122.1799 1.0126 0.0259 0.0344 0.2279 2.73 × 10−4 7.0522 10.4476 49.7862 2.73 × 10−4 0.8075 4.7795 45.3568 9.50 × 10−15

f9 2.4178 0.9188 4.9678 0.6201 1.6640 0.5075 2.9591 9.45 × 10−2 4.8442 1.2063 7.6330 0.0945 0.2651 0.5021 1.7780 4.44 × 10−15

f10 1.94 × 10−5 3.23 × 10−5 2.21 × 10−4 1.14 × 10−6 6.81 × 10−4 2.05 × 10−3 0.0159 7.55 × 10−8 4.98 × 10−6 1.51 × 10−5 1.08 × 10−4 0 3.68 × 10−72 3.68 × 10−71 3.68 × 10−70 5.99 × 10−83

f11 0.2330 0.1597 0.8486 0.0507 0.0193 0.0219 0.1432 8.46 × 10−4 0.2220 0.1488 0.8418 0.0385 1.84 × 10−15 1.84 × 10−14 1.84 × 10−13 1.56 × 10−32

f12 15.7275 10.1891 50.2489 1.5753 0.5308 0.6093 3.2460 0.0150 7.0292 4.2909 25.7904 0.3848 3.36 × 10−7 4.60 × 10−7 2.73 × 10−6 9.01 × 10−10

f13 73.6154 26.5540 148.5464 31.3071 38.1670 40.1835 135.4710 0.2690 70.8902 50.9525 496.6682 30.3306 0.6777 1.5051 3.9866 5.81 × 10−12

f14 86.3426 153.5819 1.46 × 103 6.6724 6.7756 5.5898 33.0558 0.3401 18.2969 19.1600 125.8380 2.8606 0.6667 6.21 × 10−8 0.6667 0.6667
f15 1.60 × 103 1.35 × 103 7.49 × 103 80.0058 0.6165 0.8272 4.9430 0.0178 106.0857 99.0572 678.9951 9.3399 2.95 × 10−7 4.39 × 10−7 2.48 × 10−6 2.02 × 10−10

f16 2.04 × 1051 1.96 × 1052 1.96 × 1053 3.12 × 1012 8.54 × 1011 7.48 × 1012 7.40 × 1013 1.69 × 10−3 3.37 × 1025 2.51 × 1026 2.38 × 1027 1.92 × 103 187.5780 296.5578 1.42 × 103 9.43 × 10−8

f17 7.361 × 104 5.340 × 104 2.837 × 105 1.429 × 104 180.9207 674.6373 6.31 × 103 9.3670 6.02 × 103 3.85 × 103 2.44 × 104 961.8477 6.11 × 10−4 3.91 × 10−4 1.99 × 10−3 1.32 × 10−4

f18 19.3688 12.8955 103.0825 3.6407 2.8971 1.2763 7.2355 0.2871 6.4787 3.0430 18.5810 2.2303 1.73 × 10−3 1.09 × 10−3 6.50 × 10−3 2.66 × 10−5
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