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Abstract: Mechanical ball milling was used to coat SiO2 nanopowder on a Fe-Si-B amorphous powder
in this study. The Fe-Si-B/SiO2 core–shell amorphous composite powder was obtained after 6h of
ball milling. At 490 ◦C, the amorphous powder is thermally stable. Discharge plasma sintering
was used to create a Fe-Si-B/SiO2 magnetic powder core (SPS). At a sintering temperature of 420
to 540 ◦C, the phase composition and magnetic characteristics of the magnetic particle core were
investigated. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to examine
the structural features of the magnetic particle core. A precision resistance tester and a vibrating
sample magnetometer were used to assess the resistivity and magnetic characteristics of the magnetic
particle core. The findings showed that Fe3Si and Fe2B are the phases generated during spark plasma
sintering. High-frequency power loss increases as density rises. However, at the measured frequency,
the magnetic permeability of the magnetic particle core changes slightly and has excellent frequency
characteristics, making it appropriate for use in high-frequency components.

Keywords: spark plasma sintering; mechanical ball milling; iron-based amorphous alloy; soft
magnetic powder core; core loss

1. Introduction

Due to their lack of grain boundary and magnetocrystalline anisotropy, such as having
soft magnetic properties like high resistivity and low eddy current loss, Fe-based amor-
phous alloys have been widely used in high-frequency bands [1]. However, iron-based
amorphous alloys, on the other hand, can only be treated by melting due to the high cooling
rate required for the creation of the amorphous phase, which limits their technical appli-
cations [2]. In recent years, many alloy systems and amorphous alloys with the required
shape and size have been prepared using powder metallurgy technology [3]. Different
authors have proved the effectiveness of powder metallurgy technology in inducing amor-
phization in a variety of iron-based alloys, such as Fe-Si-B [4], Fe-Zr-B [5], Fe-Al-P-B-C [6],
Fe-Co-Ni-Zr-B [7], Fe-Cu-Nb-Si-B [8], and Fe-Ni-P-Si [9]. The key to avoiding crystallization
is to keep the preparation temperature of the amorphous magnetic particle core under
control. Due to the lack of a substantial supercooled liquid zone, preparing an iron-based
amorphous powder core remains difficult. Compared with traditional sintering methods,
discharge plasma sintering (SPS) has significant advantages, such as short duration and
fast heating rate, which can inhibit grain growth and the crystallization of the amorphous
materials during sintering [10]. In recent years, large volume iron-based BGAs such as
Fe-Cu-Ni-Mo-C [11], Ce-Fe-B [12], Fe-Si-B-Cu-Nb [13], and Fe-Cr-Mo-Y-B-C [14] have been
successfully prepared by the SPS technology.

Using the core–shell structure composite powder created by mechanical ball milling,
the gas-atomized Fe-Si-B amorphous powder and SiO2 nano core–shell composite powder
were prepared in this research. SiO2 is chosen to be added to Fe-Si-B, which can exhibit

Materials 2022, 15, 1603. https://doi.org/10.3390/ma15041603 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15041603
https://doi.org/10.3390/ma15041603
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://doi.org/10.3390/ma15041603
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15041603?type=check_update&version=2


Materials 2022, 15, 1603 2 of 10

high magnetic flux density, good soft magnetic properties, and low core loss (6 wt.%). These
are added to the SiO2 insulator layer and form on the surface of the alloy powder so that it
can effectively reduce the eddy current and, consequently, reduce the core loss. The effects
of the spark plasma sintering process on the phase transformation, microstructure, and the
magnetic properties of the magnetic powder core under different sintering temperatures
and holding times were studied. The study establishes a theoretical basis for the research
and development of high-performance amorphous alloy materials.

2. Experimental Materials and Methods

The raw materials used in the study include aerosolized Fe-Si-B amorphous powder
(purity > 99%, 40 µm) and SiO2 powder (purity > 99%, 50 nm). The amount of SiO2
powder added is 6 wt.%. Fe-Si-B amorphous powder and SiO2 powder are added into
the ball milling tank and milled for 6h under the protection of argon. The following are
the ball milling process parameters: The ball milling medium is a 3 mm stainless steel
ball with a 20:1–35:1 ball material ratio and a rotating speed of 200 rpm to 250 rpm. The
core–shell composite powder is made with a Fe-Si-B core and a SiO2 shell. Subsequently,
the composite powder is preloaded with an SPS (Sumitomo sps-3.20mk-iv, Shanghai, China)
graphite model and put into the SPS sintering furnace (SP Shanghai Dongyang Carbon
Co., Ltd. S-3.20 mk-IV, Shanghai, China). The process parameters are: sintering pressure
40 MPa, holding time 1–5 min, and sintering temperature 420~540 ◦C.

The structure of the powder and powder core were identified by X-ray diffractometer
(dx-2007, China Dandong Fangyuan Co., Ltd. Dandong City, Liaoning Province, China.
30 KV and 30 mA cu-k α). The morphology and the local chemical uniformity of the powder
and the powder core were studied using the scanning electron microscope (SEM) (Nova
Nanosem 450, Fei, Portland, OR, USA). and the energy dispersive spectrometer (EDS)
(ultra, EDAX, Washington, DC, USA). The static magnetic properties of the dense magnetic
powder core were measured using the vibrating sample magnetometer (VSM) (American
quantum design company, Beijing, China). The loss and permeability of the magnetic
particle core at 20 MT were measured by a soft magnetic AC measuring instrument (mats-
2010sa/500 K, Linkioin, Loudi, China) in the range of 1 kHz to 90 kHz.

3. Results and Discussion
3.1. The Microstructure and the Phase Composition of Fe-Si-B/SiO2 Composite Powder

Mechanical ball milling was used to generate Fe-Si-B powder-coated nano SiO2 pow-
der with a core–shell structure in this work. Figure 1 depicts the SEM photos of the Fe-Si-B
powder before and after being coated with the nano-SiO2 powder. The figure shows that the
Fe-Si-B powder presents a typical gas phase atomized powder morphology and is spherical
and smooth before being coated with SiO2 (Figure 1a). The plastic deformation generated
by the impact and extrusion during the continuous mechanical ball milling process resulted
in an uneven shape of the composite powder and a rather rough surface (Figure 1b). The
particle size distribution diagram of the core–shell powder structure is shown in Figure 2.
The particle size distribution of the powder exhibits a single peak with a median particle
size and average particle size of 30.47 µm and 25.44 µm, respectively. This is consistent
with the average particle size observed under the scanning electron microscope. Figure 3
shows the XRD patterns of the Fe-Si-B powder and the Fe-Si-B/SiO2 composite powder,
respectively. There is no distinguishable crystal diffraction peak in each XRD pattern, which
is an indication that they are completely amorphous structures.

The DSC curve of the Fe-Si-B/SiO2 powder is shown in Figure 4, and it reveals that
the DSC curve is a typical Fe-based amorphous curve with a glass transition peak and
crystallization exothermic peak, and with a glass transition temperature (Tg) of 440 ◦C,
an initial crystallization temperature (Tx) of 480 ◦C, and a supercooled liquid region of
440–480 ◦C—with a width of 40 ◦C. The crystallization peak temperature (Tp) is about
550 ◦C. In the supercooled liquid region, the powder has large viscous flow, atomic diffusion,
and superplasticity [15], and, consequently, the sintering temperature is selected in this
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range during the experiment. Due to the temperature differential between the mold and
the core powder in the SPS sintering, the sintering temperature is 460 ◦C to prevent the
sample from crystallizing.
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Figure 1. SEM of: (a) Fe-Si-B powder and (b) Fe-Si-B/SiO2 composite powder. 
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Figure 2. Particle size distribution of Fe-Si-B/SiO2 composite powder after grinding. 
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Figure 2. Particle size distribution of Fe-Si-B/SiO2 composite powder after grinding. 
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Figure 4. DSC Curve of Fe-Si-B/SiO2 powder.

3.2. Microstructure of the Fe-Si-B/SiO2 Magnetic Particle Core

Based on the DSC curve results of the Fe-Si-B/SiO2 composite powder, the designed
SPS sintering pressure is 40 MPa with a holding time of 1 min, and the sintering temperature
range is 420–540 ◦C. Figure 5 shows the XRD pattern. The results showed that with an
increase in the sintering temperature, α—the crystal phases of Fe (Si), Fe3Si, and Fe2B—will
show obvious diffraction peaks.
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Figure 5. XRD of Fe-Si-B/SiO2 magnetic powder core at different sintering temperatures.

Figure 6 depicts the relative density of the sintered blocks at various sintering temper-
atures, thereby demonstrating that the density increases with an increase in the sintering
temperature. The relative densities were 93.2%, 98.31%, 98.72%, and 98.93%, respectively.
When the sintering temperature is lower than 440 ◦C, the block maintains an amorphous
structure and crystallization occurs when it reaches 480 ◦C [16]. It is only by sintering in
the supercooled liquid region and promoting the diffusion and mass transfer at the powder
particle interface that we can obtain a fully dense alloy [17].
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The SEM image of the fracture of the magnetic particle core sintered at 460 ◦C is shown
in Figure 7. There are many apparent remnants of the liquid layer on the surface of the
particle and between the particles, and the SiO2 nanopowder melts and fills the gap in
the Fe-Si-B particles. This shows that plasma formation is highly exothermic in the SPS
process, hence, the temperature at the edge of the surface can rise to thousands of degrees
Celsius [18]. This phenomenon is characterized by the formation of sparks between the
surfaces of the opposite particles above the gap. There are many gaps and spaces between
the particles as shown in Figure 7b, which result in the accumulation of charges during the
SPS process [19].
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When preparing compacts with SPS, the potential pollution of graphite punch-and-die
carbon to the sample must be considered [20]. In order to confirm the carbon contamination
of the punches and dies from the SPS equipment, an EDX microanalysis was performed
on the edge of the compact slice obtained by SPS at 460 ◦C—as shown in Figure 8. It is
found that there is a large amount of carbon on the surface of the magnetic particle core,
and the diffusion depth of carbon is estimated to be about 2–4 µm. Figure 9 shows the EDS
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spectrum of the polished surface of the Fe-Si-B/SiO2 powder core. The results show that
iron is fairly evenly distributed in the analysis area. The distribution of silicon and boron is
also similar, although these two chemical elements do not exist in both compounds (Fe-Si
and Fe-B). This can be explained by the uniform distribution of Fe-Si and Fe-B phases in
the sintered billet.
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Figure 9. EDS of polished surface of Fe-Si-B/SiO2 magnetic particle core.

Compared with an Fe-Si-B ribbon, the Fe-Si-B magnetic powder core has a stronger
demagnetization due to its annular shape. Therefore, a stronger magnetic field is required
to achieve magnetic saturation. Figure 10 shows an Fe-Si-B ribbon, Fe-Si-B powder, and
Fe-Si-B/SiO2 magnetic particle core at different sintering temperatures. It can be seen from
the figure that the Fe-Si-B ribbon, Fe-Si-B powder, and Fe-Si-B/SiO2 magnetic particle core
show a typical soft magnetic circuit.

Compared with ribbon samples, stronger fields should be required for the magnetic
saturation of a power disc sample due to a stronger demagnetization factor resulting from
the disc shape. However, these powder discs also exhibited a typical soft magnetic loop
and the magnetization saturated at the magnetic field at about 160 kA/m. The effects
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when the magnetization is at 800 A/m (B800) and µe is at 1 kHz on the resistivity and Hc
external magnetic fields are shown in Table 1. The table lists the data compared with the
amorphous ribbon. When the sintering temperature increases from 460 ◦C to 540 ◦C, the
magnetization of the magnetic powder core increases from 1.15 T to 1.54 T, because the
increase of temperature increases the density of the sample and makes its Ms gradually
close to the theoretical value. In addition, the Hc value of the amorphous ribbon is very
different from that of the magnetic powder core. This is because the magnetic powder core
is made of powder pressed together by SPS and sintered at a low temperature. Furthermore,
there is a great stress in the interior, thereby leading to an increase of coercivity. In addition,
the magnetic powder core may also have small local defects after sintering, which result in
gaps between the powders. Thus, the µe decreases from 6700 to about 50 and Hc increases
from 7.9 A/m to more than 800 A/m. For saturation magnetization, the original powder
has the highest Ms of 1.54 T, which is close to the Ms of the GB standard 1k101Fe-Si-B
amorphous ribbon. The resistivity of the Fe-Si-B/SiO2 decreases with the increase of
sintering temperature, but it is significantly higher than that of the comparative amorphous
belt sample I (137.1 µΩ·cm), which is because the SiO2 insulating layer hinders the electron
movement in Fe-Si-B particles and achieves a good insulation effect.
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Table 1. The magnetization under the applied field of 800 A/m (B800), µe at 1 kHz and Hc.

B800 (T) Hc (A/m) µe
Resistivity
(µΩ·cm)

Fe-Si-B ribbon 1.56 7.9 6700 137.1
Fe-Si-B powder 1.54 2111 590 -

Fe-Si-B/SiO2, 460 ◦C, 2 min 1.15 934 45 691.44
Fe-Si-B/SiO2, 500 ◦C, 2 min 1.23 809 48 449.42
Fe-Si-B/SiO2, 540 ◦C, 2 min 1.54 3574 76 301.56

Figure 11 shows the variation curves of the initial relative permeability and the core
loss of sintered samples within the frequency range of 10–100 kHz with a maximum
induction field of Bm = 0.05 T. The maximum loss in the high-frequency spectrum is a 5 min
holding time. Sintering times of less than 5 min can reduce the magnetic loss of the sample.
The density and resistivity characteristics of the magnetic particle core helps explain the
evolution of the magnetic properties. Generally, in the high-frequency range, the eddy
current loss is directly proportional to the square of the applied frequency and is inversely
proportional to the compact resistivity. Comparing the initial relative permeability of the
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sintered samples revealed that the sample with the highest permeability is the one kept for
5 min, which is almost twice as large as that obtained by sintering for 1 min. Permeability
is very sensitive to density, microstructure, and purity, given that the XRD, SEM, and EDS
results assumed that the purity and microstructure are similar. As a result, it can be inferred
that the main cause of the change in permeability is density. The increase in density causes
a direct rise in the initial relative permeability. The sample’s density is low, and its porosity
is high, resulting in poor magnetic permeability. During the 5 min holding period, the
permeability is essentially consistent over the whole frequency range.
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Figure 12 shows the effect of the sintering temperature on the AC magnetic properties
of the sample. The results showed that the effects of the sintering temperature on the per-
meability and the magnetic loss are the same. The initial relative permeability is enhanced
by increasing the sintering temperature. In addition, when the sintering temperature is in-
creased, the iron loss of the sample increases, but when the sintering temperature is 540 ◦C,
the iron loss decreases. Conversely, at high frequency, the loss of amorphous alloy is mainly
eddy current loss. Also, the grain size increases with an increase in sintering temperature,
which increases the effective radius of the eddy current, and thereby increases the energy
required for the domain rotation and the magnetization or demagnetization—resulting in
an increased loss. Furthermore, when the sintering temperature exceeds the crystallization
temperature, the amorphous phase crystallizes completely and the bulk is dominated by
nanocrystals. In this process, the density of the bulk increases and the micro-stress in the
powder is released during the sintering process. Their combined effect reduces the force
hindering the movement of the domain wall and domain rotation in the material [21],
resulting in the reduction of the eddy current loss by the material.
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4. Conclusions

SMCs with the micro-cell structure were prepared using the SPS sintering spherical
atomized Fe-Si-B amorphous powder coated with SiO2 nanopowder.

(1) The core–shell composite powder of the Fe-Si-B coated nano SiO2 nanopowder was
prepared by mechanical ball milling. The width of the supercooled liquid region of the
composite powder is up to 40 ◦C, and the amorphous alloy has a strong amorphous
forming ability.

(2) The Fe-Si-B/SiO2 bulk amorphous nanocrystalline magnetic materials were prepared
by spark plasma sintering. When the sintering pressure was 40 MPa, the sintering
temperature range was 420–540 ◦C with a holding time of 1 min, and the prepared
bulk Fe-Si-B particles (core) were well separated and insulated by the SiO2 (shell)
intergranular layer in the core of the powder—and the density reached 98.93%. The
block crystallizes at about 460 ◦C, and its crystalline phases are Fe3Si and Fe2B.

(3) When the sintering and holding times are increased, there is an improvement in
the density, maximum relative permeability, and magnetic loss of the Fe-Si-B/SiO2
sintered block. The magnetic permeability of the Fe-Si-B/SiO2 sintered block is stable
in the high-frequency region. The magnetic properties are best when the sintering
temperature is 420 ◦C for 2 min, with excellent soft magnetic properties.
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