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Abstract: The design of modern construction materials with heterogeneous microstructures requires a
numerical model that can predict the distribution of microstructural features instead of average values.
The accuracy and reliability of such models depend on the proper identification of the coefficients for a
particular material. This work was motivated by the need for advanced experimental data to identify
stochastic material models. Extensive experiments were performed to supply data to identify a model
of austenite microstructure evolution in steels during hot deformation and during the interpass times
between deformations. Two sets of tests were performed. The first set involved hot compressions
with a nominal strain of 1. The second set involved hot compressions with lower nominal strains,
followed by holding at the deformation temperature for different times. Histograms of austenite
grain size after each test were measured and used in the identification procedure. The stochastic
model, which was developed elsewhere, was identified. Inverse analysis with the objective function
based on the distance between the measured and calculated histograms was applied. Validation
of the model was performed for the experiments, which were not used in the identification. The
distance between the measured and calculated histograms was determined for each test using the
Bhattacharyya metric and very low values were obtained. As a case study, the model with the optimal
coefficients was applied to the simulation of the selected industrial hot-forming process.

Keywords: plastometric tests; stress relaxation tests; stochastic model; microstructure evolution;
inverse analysis; identification; steel

1. Introduction

Enhancing the strength–ductility synergy of materials has been an objective of research
on structural materials for years. It was shown in many publications that a significant
improvement of this synergy can be obtained by tailoring heterogeneous microstructures.
Multiphase steels (advanced high strength steels (AHSS)) are a leading example of the
enhanced balance between strength and ductility [1]. The special mechanical properties
of multiphase steels are due to the heterogeneity in strength between their structural
components [2,3]. The heterogeneity of mechanical properties may come from differences
in various microstructural features [4,5]. The authors of [6] investigated compositional,
microstructural and local hardness variations in a complex-phase (CP) steel. They showed
that the hierarchically heterogeneous microstructure with smooth gradients of properties
was promising for maintaining the balance between strength and workability. This problem
has been recently investigated by many researchers. Various gradient structures with
varying ferrite grain size were investigated in [7], and a significant influence of grain size
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distribution on mechanical properties was shown. Simultaneous improvement of strength
and plasticity was obtained in [8] using a novel strategy that emphasised the importance of
work hardening and thickness of gradient layer (avoiding sharp gradients characteristic
for thin layers). A similar hypothesis, which combines improved local fracture resistance
with smooth gradients of properties, was put forward in [9]. Although the successful
control or application of chemical or microstructural heterogeneity to achieve the desired
properties was achieved by some researchers (e.g., for pipeline [10], multiphase [11] and
ferritic/martensitic steels [12], as well as for other fields in engineering [13]), it seems that
numerical modelling can still be useful support for the design of these materials. Advanced
numerical models with the capability to predict distributions of various microstructural
features are needed to reach this goal.

The stochastic model, which describes the microstructure evolution during multi-step
hot forming of metallic materials, was developed in [14], and it is described in [15] in the
deformation part (dynamic processes) and in [16] for interpass times (static processes).
The correct evaluation of coefficients in the model for a particular material has a signifi-
cant influence on the accuracy and reliability of the model. This goal is usually reached
by performing experimental tests and the application of inverse analysis to find optimal
coefficients in the model. The inverse solution for hot forming is well described in the liter-
ature [17–19], which also includes the extensive discussion of the existence and uniqueness
of the solution in [20]. However, all published examples of inverse analysis concern deter-
ministic models. The situation is different for the stochastic models when measurements of
histograms of the output parameters have to be considered. The mathematical background
of the inverse approach to the stochastic variables is described in [15]. Furthermore, the
optimal numerical parameters of the model (number of Monte Carlo points, number of
bins), which provide the best convergence and accuracy of optimisation, are proposed in
that paper. Beyond this, the existence and convergence of the model are discussed and
various measures of the distance between the predicted and experimental histograms are
analysed. The practical application of inverse analysis to the stochastic model is described
in [21]. To the best of the authors’ knowledge, research on the identification of stochastic
microstructure evolution models is scarce. The published papers focused on the statistical
inverse problem for the identification of a non-Gaussian tensor-valued random field, e.g.,
in [22], or the uncertainty of inverse analysis [23]. The analysis of the published works
shows that there is a need for the development of the inverse approach to the identifica-
tion of the stochastic microstructure models of steels. This approach requires advanced
experiments, which supply information about the heterogeneity of microstructural parame-
ters instead of the average values. Our objective was to perform experiments that would
supply reliable and accurate data for the identification of the stochastic model described
in [15]. In the investigation, a thermomechanical Gleeble 3800 simulator was used to
perform experiments of controlled deformation to gain the data required for the model
development. The experiments allowed for identifying the kinetics of structural changes
occurring during and after deformation. Using this information, further experiments were
planned with water quenching to “freeze” the austenite microstructure at different stages
of processes occurring in the samples. Following this, the samples were quenched to reveal
austenite grain boundaries, and the measurement of grain size distribution was performed
on microstructure images.

2. Model

The model was developed in [14] and the subsequent steps of the development are
described in the literature [15,16,21]. The general idea of the model, which is based on
the stochastic internal variable (dislocation density) representing microstructure evolution,
is presented in [15]. In Ref. [21], the grain size was included as the second stochastic
variable, and the identification of the model based on the experimental data available in the
literature for medium-carbon steel was performed. In Ref. [16], the model was extended
by accounting for metadynamic and static recrystallisation during interpass times, which



Materials 2022, 15, 1660 3 of 20

allowed for a simulation of multi-step forming processes. The main equations of the model
are repeated below to complete the present paper. The evolution of dislocation density as a
stochastic internal variable is governed by the following equation [15]:

ρ(ti) = ρ(t0)[1− ξ(ti)] +
{

ρ(ti−1) +
[

A1
.
ε− A2ρ(ti−1)

.
ε

1−a7
]
∆t
}

ξ(ti) (1)

where t—time;
.
ε—strain rate; A1 and A2—parameters of the model responsible for athermal

storage (hardening) of dislocations and recovery, respectively; ξ(ti)—parameter responsible
for a random character of recrystallisation; and a7—coefficient.

The coefficients in Equation (1), which are in general based on the Kocks–Estrin–
Mecking (KEM) model [24,25], are defined in Table 1, where b—Burgers vector module;
Z—Zener–Hollomon parameter; l—average free path for dislocations; T—temperature
in K; R—universal gas constant; D—grain size; τ—energy per unit of dislocation length;
G—shear modulus; and a1, a2, a3, a4, a5, a9 and a10—coefficients.

Table 1. Relationships describing the coefficients in Equation (1).

Hardening
A1 = 1

bl where l = a1Z−a9 ,
Z =

.
ε exp

( a10
RT
)

Recovery A2 = a2 exp
(−a3

RT
)

The parameter ξ(ti) accounts for the random character of recrystallisation, where its
distribution is described by the following conditions [15]:

P[ξ(ti) = 0] =
{

p(ti) i f p(ti) < 1
1 otherwise

P[ξ(ti) = 1] = 1− P[ξ(ti) = 0]
(2)

In Equation (2), p(ti) is a function that combines the probability that the material point
recrystallises in a current time step and the present state of material:

p(ti) = a4 × 10−10ρ(ti−1)
a6 3γ(ti)τ

D(ti−1)
exp

(
−a5

RT

)
∆t (3)

where γ—mobile fraction of the recrystallised grain boundary area, which depends on
the (already known) distribution of ξ in the previous step (see [26]), and a4, a5, a6 and
a17—coefficients.

γ(ti) = 1− exp{−P[ξ(ti−1) = 0]− q}a8{1− P[ξ(ti−1) = 0]} (4)

where a5, a6 and a8—coefficients, and q—a small number representing a nucleus of recrys-
tallised grain, which is added to avoid a zero value of γ(ti) in the case of P[ξ(ti−1) = 0] = 0.

Details of the numerical solution are given in [15]. In [21], the grain size was introduced
as a stochastic variable. The initial grain size is D(t0) ≡ D0, which is a random variable.
During heating, a non-uniform distribution of grain size is observed (see Section 3), and
there is a tendency for large grains to begin to consume small grains [27,28]; therefore, the
Weibull distribution was assumed for D0. This distribution is described by the following
probability density function:

f(D0) =
k

D0

(
D0

D0

)k−1
exp

[
−
(

D0

D0

)k
]

(5)

where k and D0—the shape parameter and the scale parameter of the distribution, respectively.
A shape parameter of k = 10 was assumed in [21], which was determined based

on measured grain size distributions. The scale parameter D0 of the distribution was
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established as the average grain size measured after preheating before deformation. Grain
growth was calculated based on the fundamental research of Sellars [29], who proposed
the following equation:

D(ti) =
[

D(ti−1)
a11 + a12 exp

( a13

RT

)
∆t
] 1

a11 (6)

where ∆t = ti − ti−1—time step; D(ti−1) and D(t)—grain size at the beginning and the end
of the time step, respectively; and a11, a12 and a13—coefficients.

During the calculation random parameter ξ(ti) = 0, the considered point recrystallises,
and its new grain size D(ti) is drawn from the Gauss distribution:

f[D(ti)] =
1√

2πσ2
exp

{
−
[
D(ti)− D(ti)

]2
2σ2

}
(7)

where D(ti)—the expected grain size value, calculated as either dynamically or statically
recrystallised grain size; see details in [16].

The whole model contains 22 coefficients grouped in vector a. Some of these coef-
ficients have physical meaning: a3—activation energy for self-diffusion, a5—activation
energy for recrystallisation, a10—activation energy in the Zener–Hollomon parameter and
a13—activation energy for grain growth. Other coefficients were introduced as the results
of approximation in inverse analysis in previous research works. The application of the
model to real materials and processing methods requires the identification of the model
coefficients. The identification was performed in [16] using the inverse approach for the
experimental data available in the literature. This identification, however, requires a special
set of experimental data, including histograms of microstructure parameters at various
stages of the process. These data were obtained in the experiments performed in the present
work and described in Section 3.

3. Experiment
3.1. Material, Methodology and Parameters of the Tests

The material for the research was steel S355J2, which is an unalloyed, low-carbon,
welded structural steel used for the hot forging and rolling of long products. As mentioned
in the Introduction, two sets of tests were performed. All tests were carried out on the
thermomechanical simulator Gleeble 3800. Conventional inverse analysis [19] was applied
to eliminate the effects of friction and deformation heating. The first set consisted of hot
uniaxial compression of ϕ10 × 12 mm cylindrical samples with a total strain of 1. Different
strain rates and temperatures were applied. The objective was to supply data for the identi-
fication of the coefficients in the equations in Table 1 and Equations (2)–(4). The procedure
of identification was based on the average dislocation density, as described in Section 3.2,
and on the histograms of grain size after deformation. The parameters of the experiments
in the first set of tests are given in Table 2. The second set of experiments consisted of hot
uniaxial compression with lower nominal strains, followed by holding at the deformation
temperature for different times th after the completion of the recrystallisation. The time for
the completion of the static recrystallisation was determined using the stress relaxation
technique [30]. The objective was to supply data for the identification of static recovery
and static recrystallisation parts in the model, see [19] for details The parameters of the
experiments in the second set of tests are given in Table 3. As with previous experiments,
two preheating temperatures were used: 1200 ◦C and 1100 ◦C. The preheating time was
120 s in all tests.
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Table 2. Parameters of hot deformation tests for the preheating temperatures of 1200 ◦C and 1100 ◦C.
The samples were water quenched directly after deformation.

Tp = 1200 ◦C, ε = 1 Tp = 1100 ◦C, ε = 1

Test Td, ◦C
.
ε, S−1 Test Td, ◦C

.
ε, S−1

T1 1200 0.1 T16 1100 0.1
T2 1200 1 T17 1100 1
T3 1200 10 T18 1100 10
T4 1100 0.1 T19 1000 0.1
T5 1100 1 T20 1000 1
T6 1100 10 T21 1000 10
T7 1000 0.1 T22 900 0.1
T8 1000 1 T23 900 1
T9 1000 10 T24 900 10

T10 900 0.1
T11 900 1
T12 900 10

Table 3. Parameters of static recrystallisation tests for the preheating temperatures of 1200 ◦C and
1100 ◦C.

Tp = 1200 ◦C Tp = 1100 ◦C

Test Td, ◦C
.
ε, S−1 ε th, s Test Td, ◦C

.
ε, S−1 ε th, s

T25 1000 1 0.1 12 T32 1000 1 0.2 8
T26 1000 10 0.2 7 T33 1000 10 0.2 7
T27 900 1 0.2 42 T34 900 1 0.2 38
T28 1000 1 0.4 1.7 T35 900 10 0.2 17
T29 900 10 0.4 8.5
T30 900 1 0.4 12
T31 900 10 0.2 44

The images used as the input for the analysis and measurement of austenite grain
sizes were taken using an Olympus DSX500i light microscope at 693×magnification via
the bright field technique. The equivalent diameter was used as a measure of grain size,
and the measurements were performed in the central part of the sample. To reveal the
grain boundaries of austenite, the samples were etched in saturated picric acid with the
addition of detergent in the amount of 5 mL per 100 mL of acid at 56 ◦C for the time
necessary to reveal the boundaries of prior austenite. This time was dependent on the
deformation history. For the clear etching of grain boundaries, the material for testing was
additionally subject to tempering in a Carbolite Chamber Furnace C-1600. This treatment
created the desired effect, but some of the grains remained undisclosed (Figure 1a), which
made further analysis much more difficult. The determination of grain size distributions
and their measurement was carried out using the MetIlo program. On average, about
200 grain-size measurements were taken for each sample. In the course of the measurement,
manual austenite grain correction was applied to avoid errors connected with the wrong
automatic identification of boundaries. An example image of austenite grain detection after
the manual correction is shown in Figure 1b.
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sults showed that differences between loads for various preheating temperatures were 
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Figure 1. Example of the detection of austenite grain boundaries’ revealed microstructure (a) and the
detection obtained using the MetIlo software (b) for sample T35.

3.2. Dislocation Density

Measurement of the distribution of dislocation density during hot forming is not
possible for steels subject to allotropic transformations. Therefore, as it was suggested
in [21], the average dislocation density calculated from the measured compression forces
was used in the identification procedure. Uniaxial compression tests supplied data in the
form of force vs. die displacement curves, which are shown in Figure 2. An analysis of the
results showed that differences between loads for various preheating temperatures were
negligible. An increase in the slope of the plots during deformation was caused by the
effect of friction, which increased with an increase in the tool–workpiece contact surface.
This effect was accounted for by the application of conventional inverse analysis [19].
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Calculations of the flow stress vs. strain curves required accounting for the effect of
heterogeneities due to the effect of friction, heat generation due to plastic work and heat
transfer due to the die. The inverse approach proposed in [19] was applied. The flow
stress vs. strain curves were calculated by searching for the minimum of the following
objective function:

Φ =

√√√√√ 1
Nt

Nt

∑
i=1

 1
Ns

Ns

∑
j=1

(
Fm

ij − Fc
ij

Fm
ij

)2
 (8)

where Nt—number of tests; Ns—number of load measurement sampling points in one test;
and Fm

ij and Fc
ij—measured and calculated forces, respectively.

The flow stress determined using inverse analysis was used to calculate the average
dislocation density as a function of time. The changes in the average dislocation density
were calculated using the following equation based on the KEM [24,25] model:

ρm(t) =
[

σm(t)
αMbG

]2
(9)

where σm—flow stress calculated from the measured compression forces, b—length of
the Burgers vector, G—shear modulus, M—the Taylor factor (≈3 for an FCC structure)
and α—a constant called the Taylor coefficient hereafter. Following the discussion in [31],
α = 0.5 was assumed in the present work.

The accuracy of the calculations of the average dislocation density (ρm) depends on the
correctness of the evaluation of the shear modulus G, which is a function of temperature.
The dependence of elastic modulus E and shear modulus G on the temperature was
investigated by several studies but, unfortunately, there are large discrepancies between
the published data (cf. [32–34]). The authors of [34] recapitulated the results for various
steels and proposed the following approximation function for the relation E = E(T).

E = E0

{
b1 exp

[
−
(

T − b2

b3

)2
]
+ c1 exp

[
−
(

T − c2

c3

)2
]}

(10)

where E0—elastic modulus at room temperature.
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The coefficients b1, b2, b3, c1, c2 and c3 that appear in Equation (10) were determined
in [34] and they are given in Table 4. In the present work, to make the results closer to the
conditions of hot forming of steels, coefficient c2 was slightly modified [21].

Table 4. Coefficients in Equation (10) for the investigated steel.

b1 b2, ◦C b3, ◦C c1 c2, ◦C c3, ◦C

0.1871 −12.96 132 0.9199 181.6 670

Plots of the average dislocation density vs. logarithmic strain, which were calculated
from the measurements of forces during compression, are shown in Figure 3. The log-
arithmic strain is defined as ε = ln(h1/h), where h1 and h—height of the sample before
the compression and during the compression, respectively. The effect of the dynamic
recrystallisation of the evolution of the dislocation density is clearly visible in this figure.
The dislocation density data were used in the identification of the model.
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3.3. Histograms of Grain Size after Preheating (Prior to Deformation)

After each test, the samples were etched and austenite grain boundaries were revealed.
Micrographs of the samples after preheating are shown in Figure 4. Histograms of the grain
size prior to deformation for the two preheating temperatures (Tp) are shown in Figure 5.
The average grain size for the histograms was 36.5 µm and 22.5 µm for Tp = 1200 ◦C and
Tp = 1100 ◦C, respectively.
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3.4. Grain Size after Hot Deformation (Dynamic Recrystallisation)

All the samples were subjected to metallographic investigations; selected microstruc-
tures of samples preheated at 1200 ◦C followed by deformation are shown in Figures 6–9.

Materials 2022, 15, x FOR PEER REVIEW 9 of 20 
 

 

  
(a) (b) 

Figure 4. Micrographs of samples after preheating for 120 s at 1200 °C (a) and 1100 °C (b). 

 
Figure 5. Histograms of grain size prior to deformation for the preheating temperatures 1200 °C and 
1100 °C. 

3.4. Grain Size after Hot Deformation (Dynamic Recrystallisation) 
All the samples were subjected to metallographic investigations; selected microstruc-

tures of samples preheated at 1200 °C followed by deformation are shown in Figures 6–9. 

   
(a) (b) (c) 

Figure 6. Micrographs after deformation at 1200 °C with strain rates 0.1 s−1 (a), 1 s−1 (b) and 10 s−1 (c), 
preheating temperature 1200 °C. 

Figure 6. Micrographs after deformation at 1200 ◦C with strain rates 0.1 s−1 (a), 1 s−1 (b) and
10 s−1 (c), preheating temperature 1200 ◦C.



Materials 2022, 15, 1660 10 of 20Materials 2022, 15, x FOR PEER REVIEW 10 of 20 
 

 

   
(a) (b) (c) 

Figure 7. Micrographs after deformation at 1100 °C with strain rates 0.1 s−1 (a), 1 s−1 (b) and 10 s−1 (c), 
preheating temperature 1200 °C. 

   
(a) (b) (c) 

Figure 8. Micrographs after deformation at 1000 °C with strain rates 0.1 s−1 (a), 1 s−1 (b) and 10 s−1 (c), 
preheating temperature 1200 °C. 

   
(a) (b) (c) 

Figure 9. Micrographs after deformation at 900 °C with strain rates 0.1 s−1 (a), 1 s−1 (b) and 10 s−1 (c), 
preheating temperature 1200 °C. 

Generally, a substantial spread of the measured grain diameters was observed at a 
higher deformation temperature (1200 °C vs. 1100 °C). Moreover, the spread was larger 
for lower strain rates. For the applied deformation temperatures, dynamic recrystallisa-
tion was initiated in the steels, which is coherent with the fact that grain size in the steady-
state regime of the deformation depends on the Zner–Hollomon parameter. 

  

Figure 7. Micrographs after deformation at 1100 ◦C with strain rates 0.1 s−1 (a), 1 s−1 (b) and
10 s−1 (c), preheating temperature 1200 ◦C.

Materials 2022, 15, x FOR PEER REVIEW 10 of 20 
 

 

   
(a) (b) (c) 

Figure 7. Micrographs after deformation at 1100 °C with strain rates 0.1 s−1 (a), 1 s−1 (b) and 10 s−1 (c), 
preheating temperature 1200 °C. 

   
(a) (b) (c) 

Figure 8. Micrographs after deformation at 1000 °C with strain rates 0.1 s−1 (a), 1 s−1 (b) and 10 s−1 (c), 
preheating temperature 1200 °C. 

   
(a) (b) (c) 

Figure 9. Micrographs after deformation at 900 °C with strain rates 0.1 s−1 (a), 1 s−1 (b) and 10 s−1 (c), 
preheating temperature 1200 °C. 

Generally, a substantial spread of the measured grain diameters was observed at a 
higher deformation temperature (1200 °C vs. 1100 °C). Moreover, the spread was larger 
for lower strain rates. For the applied deformation temperatures, dynamic recrystallisa-
tion was initiated in the steels, which is coherent with the fact that grain size in the steady-
state regime of the deformation depends on the Zner–Hollomon parameter. 

  

Figure 8. Micrographs after deformation at 1000 ◦C with strain rates 0.1 s−1 (a), 1 s−1 (b) and
10 s−1 (c), preheating temperature 1200 ◦C.

Materials 2022, 15, x FOR PEER REVIEW 10 of 20 
 

 

   
(a) (b) (c) 

Figure 7. Micrographs after deformation at 1100 °C with strain rates 0.1 s−1 (a), 1 s−1 (b) and 10 s−1 (c), 
preheating temperature 1200 °C. 

   
(a) (b) (c) 

Figure 8. Micrographs after deformation at 1000 °C with strain rates 0.1 s−1 (a), 1 s−1 (b) and 10 s−1 (c), 
preheating temperature 1200 °C. 

   
(a) (b) (c) 

Figure 9. Micrographs after deformation at 900 °C with strain rates 0.1 s−1 (a), 1 s−1 (b) and 10 s−1 (c), 
preheating temperature 1200 °C. 

Generally, a substantial spread of the measured grain diameters was observed at a 
higher deformation temperature (1200 °C vs. 1100 °C). Moreover, the spread was larger 
for lower strain rates. For the applied deformation temperatures, dynamic recrystallisa-
tion was initiated in the steels, which is coherent with the fact that grain size in the steady-
state regime of the deformation depends on the Zner–Hollomon parameter. 

  

Figure 9. Micrographs after deformation at 900 ◦C with strain rates 0.1 s−1 (a), 1 s−1 (b) and 10 s−1 (c),
preheating temperature 1200 ◦C.

Generally, a substantial spread of the measured grain diameters was observed at a
higher deformation temperature (1200 ◦C vs. 1100 ◦C). Moreover, the spread was larger for
lower strain rates. For the applied deformation temperatures, dynamic recrystallisation
was initiated in the steels, which is coherent with the fact that grain size in the steady-state
regime of the deformation depends on the Zner–Hollomon parameter.
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3.5. Grain Size during Interpass Times (Metadynamic and Static Recrystallisation)

Selected examples of grain size histograms measured at various times after the end
of deformation are shown in Figure 10. The parameters of the tests are given in Table 3.
It can be seen that a substantial spread of the distribution of equivalent diameter was
obtained. This can be attributed to the spread of the initial size distribution, as well as to
the partially stochastic nature of the static recrystallisation phenomenon. As opposed to
the samples subject to dynamic recrystallisation, the histograms of equivalent diameter
were strain-dependent.
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4. Identification and Validation of the Model

The identification procedure is described in [16]. Inverse analysis was applied to deter-
mined the coefficients a in the model. The aim of this analysis was to find the optimal values
of these coefficients by searching for the minimum of the following objective function:

Φ(a) = Φρ(a) + ΦDDRX(a) + ΦDSRX(a) (11)

where

Φρ(a) = wρ

Ntc

∑
i=1

d(ρci(a), ρmi) (12)

ΦDDRX(a) = wD

Ntc

∑
i=1

d(Hci(a), Hmi) (13)

ΦDSRX(a) = wD

Nti

∑
i=1

d(Hci(a), Hmi) (14)

Here, ρc(a)—expected average value of dislocation density calculated for the model
coefficients a, ρm—average dislocation density determined from the compression tests
(see Section 3.2), Hc(a)—distribution of grain size calculated for the model using the
coefficients a, Hm—distribution of grain size measured in the experiments, Ntc—number of
compression tests, Nti—number of measurements of histograms during interpass times
and wρ and wD—weighted coefficients.

In Equation (12), d(ρci(a),ρmi) was defined as the mean square root error (MSRE)
between the measured and the calculated average dislocation density in the ith experiment:

d(ρci(a), ρmi) =
1

Ns

√√√√ Ns

∑
j=1

(
ρcij(a)− ρmij

ρmij

)2

(15)
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where Ns—number of sampling points for measurements of average dislocation density in
the ith test.

In parts of the objective Equations (13) and (14), d(Hci(a),Hmi) was defined as the
distance between the measured and the calculated histograms of grain size in the ith
experiment. Following the analysis in [15], the Bhattacharyya [35] metric was used to
calculate this distance. This metric is calculated as follows:

d(Hc, Hm) = − log
n

∑
i=1

√
Pm(i)Pc(i) (16)

where n—number of histogram bins; Hm and Hc—measured and calculated histograms,
respectively; and

Pk(i) =
Hk(i)

n
∑

i=1
Hk(i)

(17)

The experiments were divided into two sets. Hot deformation tests (T1, T3, T5, T7,
T13, T15, T19 and T20) and static recrystallisation tests (T25, T28, T32 and T35) were used
in the identification procedure, and the remaining tests were used for the validation of the
model. The coefficients in the model determined for the objective Equation (11) are given
in Table 5.

Table 5. Optimal coefficients in the stochastic model.

a1 a2 a3 a4 a5 a6 a7
0.000846 302256 334,936 1.145 290,476 1.7925 0.295

a8 a9 a10 a11 a12 a13 a14
0.786 0.28 3,740,945 4.3 5 × 1021 410,000 67,484
a15 a16 a17 a18 a19 a20 a21

0.274 20.91 0.5 45 0.29 0.19 6430

5. Model Validation

Predictions of the model with the optimal coefficients were compared with the ex-
periments, and selected results are presented in Figure 11. Some selected results for static
recrystallisation tests are shown in Figure 12. The Bhattacharaya distance is given in the
bottom-left corner of the plot. The visual comparison of the measured and calculated
histograms confirmed the qualitatively good predictive capability of the model.

The accuracy of the model can be better evaluated using a quantitative comparison of
the distance between the measured and calculated histograms defined by Equation (16).
The values of the Bhattacharyya distance for all hot deformation tests are shown in Figure 13
and for all static recrystallisation tests in Figure 14.

The comparison between the measured and calculated average grain sizes was an ad-
ditional evaluation of the accuracy of the model. These results are shown in Figure 15 for all
hot deformation tests and in Figure 16 for all static recrystallisation tests. The comparisons
of the measured and calculated grain sizes generated conclusions that qualitatively agreed
with the observations based on the Bhattacharyya distance shown in Figures 13 and 14.
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6. Discussion of Results

Advanced stochastic models, which predict the distribution of microstructural features
instead of average values, can describe the heterogeneity of microstructures of modern
multiphase steels. The accuracy and reliability of such models depend on the proper
identification of coefficients for a particular material. The need for advanced experimental
data for the identification of the stochastic material model was a motivation for this work.

Extensive experiments were performed to supply data for the identification of the
model of austenite microstructure evolution in steels during multi-step hot deformation
and during interpass times between deformations. The applied experimental methodology
allowed for the precise identification and quantitative description of the processes involved
in austenite microstructure restoration in the process of deformation using controlled
deformation parameters. The crucial condition to generate an accurate model is to precisely
perform austenite boundary etching. Boundaries that are not clearly etched need to be
manually reconstructed, which may lead to a significant error in the process of generation
of austenite grain size distribution histograms.

The analysis of the optimisation procedure in the inverse solution showed that the
Bhattacharyya metric was an efficient and reliable measure of the distance between the
measured and calculated histograms. A good convergence of the optimisation was ob-
served, and reasonably low values of the Bhattacharyya metric were obtained for all the
tests. The results confirmed the good accuracy and reliability of the inverse stochastic
approach. It can be assumed that a Bhattacharyya metric below 0.3 is acceptable for the
comparison of microstructures. The predictions of the model with optimal coefficients
were in good agreement with the measurements. The Bhattacharyya metric was below 0.2
for the experiments used in the identification, and below 0.33 for the experiments used
in the validation. The value of 0.3 was slightly exceeded in a few tests, which may have
been due to experimental errors. In the tests with the largest Bhattacharyya metrics, the
standard deviations in the experiments were large (e.g., T1, T26, T31). This problem will be
the subject of further research.

In the hot deformation experiments, better accuracy was obtained for tests at higher
temperatures and lower strain rates (e.g., T1–T4) in which dynamic recrystallisation domi-
nated. In the static recrystallisation experiments, better accuracy was obtained for the tests
with larger strains and at higher temperatures (e.g., T28–T30) in which recrystallisation
was faster.

7. Case Study

Simulations of hot forging industrial processes were performed to demonstrate the
predictive capabilities of the stochastic model. Forge 3D finite element (FE) software was
used to simulate the thermal and mechanical phenomena during deformation and during
interpass times. Forge is a computational package dedicated to the simulation of metal
forming processes. The software consists of a loosely coupled set of programs, bound by
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a common launcher user interface. The package also consists of a database with material
models. Forge 3D offers automatic adaptive remeshing, which is the main advantage of
this software. The post-processing application takes a project input file and uses its data
for estimating results and showing them to the user through the graphical user interface
(GUI). Three-step forging of the part shown in Figure 17a was considered. The details of
the industrial forging process for this part are given in [36], where more information on
the application of Forge 3D to simulations of hot forging can be found. The results of FE
simulations in the form of temperature distribution after subsequent stages of forging are
presented in Figure 17b–d.
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ture after stage 1 (b), stage 2 (c) and stage 3 (d) of the forging process.

The solution of the stochastic evolution Equation (1) can be performed for each Gauss
point of the FE mesh, accounting for the current local temperatures and strain rates. How-
ever, such detailed information is usually not needed, and it is satisfactory if the histograms
are calculated in the selected critical points in the forging. IT was done by using the “sen-
sors” in the Forge software. Forge allows for selecting a few points (sensors) in the volume
of the forging in which the time–temperature–deformation history is recorded. This history
was used to solve Equation (1) and to calculate histograms of dislocation density and grain
size in the selected points. The results for points 1 and 2 in Figure 17a are presented in
Figure 18. These points represented the massive part and thin part of the forging and were
subjected to different time–temperature–deformation histories.

A simulation of the manufacturing cycle composed of three-stage forging followed by
accelerated cooling with a rate of 25 ◦C/s to the temperature 820 ◦C was performed. The
calculated distributions of dislocation density and grain size at the end of forging and after
cooling to 820 ◦C are shown in Figure 19. The analysis of the results confirmed the model’s
capability to supply quantitative information about the distribution of microstructural
parameters in the complex industrial hot-forming processes. The predictions were in
qualitative agreement with the authors’ knowledge about the forging process. For point 2,
which was subjected to larger deformations, the dynamic recrystallisation was faster and
the grain size was smaller. This tendency was maintained during cooling. Finer grains and
a larger static recrystallisation volume fraction were obtained for point 2.
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The representation of the dislocation density histograms was not convincing. This
model was based on the assumption that the bins in the histograms were of equal length.
Consequently, the majority of the material either had a very large dislocation density in
the last bin or, after recrystallisation, had very low dislocation density and was located in
the first bin. The volume fraction of the material with intermediate dislocation densities
was negligible. In the future, the authors will change the model and introduce a different
length of the bins.
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8. Conclusions

The identification of the stochastic model of hot forming for metallic materials requires
experimental data, which supplies information about distributions of microstructural
parameters for different process conditions. Tests composed of hot deformation and
holding after deformation for different times were performed. The following conclusions
were drawn:

• The objective function in the inverse analysis was formulated as a distance between the
measured and the calculated histograms. It was shown that using the Bhattacharyya
metric as a measure of this distance was a very efficient approach. The results con-
firmed the good accuracy and reliability of the inverse stochastic approach. The
predictions of the model with optimal coefficients agreed with the measurements. The
Bhattacharyya metric was below 0.2 for the experiments used in the identification and
below 0.33 for the experiments used in the validation, which is a reasonable accuracy
when steel microstructures are compared.

• In the hot deformation experiments, better accuracy was obtained for the tests at higher
temperatures and lower strain rates (e.g., T1–T4) in which dynamic recrystallisation
dominated. In the static recrystallisation experiments, better accuracy was obtained
for the tests with larger strain (T28–T30) in which recrystallisation was faster.

• It was observed that the accuracy of the model identification was directly dependent
on the quality of the etching of austenite grain boundaries. Since, typically, not all
boundaries were clearly etched, a manual reconstruction of the missing boundaries
segments needed to be done, which could have resulted in significant errors.

• The lower accuracy of the developed model for low strains could be connected with a
significant overlapping of the recovery and recrystallisation processes, which needs
the improved methodology of the separation of their effect in plastometric studies.
This will be the subject for future activities.

• The model with optimal coefficients was applied to the simulation of the three-stage
hot-forging process. The predictions of the model were in qualitative agreement with
the authors’ knowledge regarding hot forging, and the extensive predictive capabilities
of the model were confirmed. Dislocation density (when the recrystallisation of austen-
ite is not completed) and grain size at the beginning of phase transformation have a
strong influence on the kinetics of these transformations. Thus, calculated distributions
of the microstructural features can be used as a starting point for stochastic modelling
of the phase transformation and prediction of histograms of phase composition in the
final product. This problem will be the scope of the authors’ future research.
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