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Abstract: This paper mainly proposes two kinds of artificial neural network (ANN) models for
predicting the plastic anisotropy properties of sheet metal using spherical indentation test, which
minimizes measurement time, costs, and simplifies the process of obtaining the anisotropy properties
than the conventional tensile test. The proposed ANN models for predicting anisotropic properties
can replace the traditional complex dimensionless analysis. Moreover, this paper is not limited to the
prediction of yield strength anisotropy but also further accurately predicts the Lankford coefficient
in different orientations. We newly construct an FE spherical indentation model, which is suitable
for sheet metal in consideration of actual compliance. To obtain a large dataset for training the
ANN, the constructed FE model is utilized to simulate pure and alloyed engineering metals with
one thousand elastoplastic parameter conditions. We suggest the specific variables of the residual
indentation mark as input parameters, also with the indentation load–depth curve. The profile of the
residual indentation, including the height and length in different orientations, are used to analyze
the anisotropic properties of the material. Experimental validations have been conducted with
three different sheet alloys, TRIP1180 steel, zinc alloy, and aluminum alloy 6063-T6, comparing the
proposed ANN model and the uniaxial tensile test. In addition, machine vision was used to efficiently
analyze the residual indentation marks and automatically measure the indentation profiles in different
orientations. The proposed ANN model exhibits remarkable performance in the prediction of the
flow curves and Lankford coefficient of different orientations.

Keywords: plastic anisotropy; stress–strain flow curve; Lankford coefficient; spherical indentation;
artificial neural network; residual indentation mark; machine vision

1. Introduction

Sheet metal forming is widely used in automotive, aerospace, shipbuilding, chemical,
nuclear, and other manufacturing processes. During the production of the sheet, changes in
the microstructure of the metal cause significant differences in the strength characteristics
of the material, producing the anisotropy of the sheet metal. The plastic anisotropy of pure
and synthetic materials has a non-negligible effect on their formation performance [1–3],
affecting the formability of blanks, which is in some cases very serious, including wrinkles
and thinning failures. The study of plastic anisotropy has a great impact on the processing
and manufacturing process of materials, such as punching, and it is also of great signif-
icance to the technology of Wire Arc Additive Manufacturing (WAAM), widely using
aluminum alloys [4]. In general, during the sheet metal forming, the uniaxial tensile test
is used to measure the material anisotropy to obtain the stress–strain curve in different
orientations, including Young’s modulus, yield strength, hardness exponent, and Lankford
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coefficient. However, the uniaxial tensile test requires conducting several experiments with
the specimens in different orientations, which consumes time and materials. Moreover, the
traditional tensile test has certain limitations on the size, shape, and measurement position
of the material specimens, and it is challenging to measure the formed sheet. For these
reasons, the use of indentation tests to evaluate material properties has emerged recently.

The indentation test is a non-destructive, easier, and faster experimental method that
can confirm various mechanical properties of the test material with almost no location,
shape, or size restrictions. A reverse analysis method using an indentation test to infer
the test material’s elastoplastic properties easily has been proposed and established in
the past ten years, the “Oliver–Pharr method” [5]. In addition, the use of indentation
tests to estimate the properties of materials, such as plastic flow curve [6,7] and residual
stress [8–10], is also in progress, while the research on the anisotropy of materials [11–14]
has also become a challenge.

Most research on using indentation testing to extract anisotropy in materials uses
inverse dimensional analysis using finite element (FE) simulations with a large number
of iterations. Nakamura et al. [11] used the load–depth curves obtained by performing
multiple indentation tests with two differently profiled indenter heads, spherical and
Berkovich, for extracting the anisotropy of thermally sprayed coatings. However, the
method performs multiple experiments instead of a single experiment, which increases
the complexity of the estimation. Yoneda et al. [12] showed that the permanent residual
indentation impression exhibited an anisotropic shape by conducting an FE analysis and de-
veloping a more straightforward method to determine the yield strength, work-hardening
exponent, and yield strength ratio. Despite this research only using a single spherical
indentation test to estimate, this reverse analysis method has not been verified by actual
experiments. Based on the indentation load–depth curve and the residual indentation
pile-up height characteristics, Yonezu et al. [13] established a dimensionless function for
the anisotropic properties of a material by using a dimensionless analysis to realize the
reverse analysis of the anisotropic properties of the material. However, only the anisotropy
of the yield strength was studied, and the anisotropy of the strain aspect was not studied.
Wang et al. [14] determined an explicit equation relating the plastic anisotropy to the shape
characteristic parameters of the bottom of the residual deformation profile to uniquely
determine the plastic anisotropy of the material in the section indentation. Although this
method can be used when the load–depth curve is not available, this method is as laborious
as a traditional tensile test. Wu et al. [15] did not need to use the load–depth curve in the
spherical indentation test. Instead, they used only proper orthogonal decomposition to
connect the residual indentation mark characteristics with the constitutive parameters of
the material: pile-up height and weighting of the average and differences in the residual
indentation marks. However, there are unstable factors in the measurement of residual
indentation imprinting, and deviation of prediction is more likely to occur after weighting.

The published research demonstrates that the response of the spherical indentation
test can fully reflect the anisotropy properties of the materials. The previous methods
for extracting anisotropy properties are based on dimensional analyses that correlate the
indentation responses with the constitutive parameters of the anisotropic material, focusing
on the yield strength ratio of the material in the longitudinal and transverse directions.
However, all orientations of the material plane, with the thickness direction, also show
the anisotropic properties. Under this consideration, it is essential to find an effective
prediction method to predict the anisotropy in different orientations, not only the yield
strength ratio but also the Lankford coefficient.

However, in this process, the complex nonlinear relationship between the response of
the indentation test and the anisotropic property of the material is a significant obstacle to
subsequent prediction. The recent rapid development of data networks, such as machine
learning (ML) and machine vision, provides approaches beyond traditional computing
to solve these engineering problems. Previous research used ML methods to extract
material properties through the indentation test. Huber et al. [16] used a neural network to
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determine the fixed Poisson’s ratio of material by characterizing the load–depth response
in the spherical indentation test as pointwise calculations. Tho et al. [17] constructed an
artificial neural network (ANN) with a training dataset and validation dataset from an FE
simulation to interpret indentation load–displacement curves. Muliana et al. [18] generated
an ANN model to approximate the FE load–depth curve and geometric parameters of heavy
materials. Mahmoudi and Nourbakhsh [19] determined the three parameters of LUDWIG’s
equation using the spherical indentation test and neural networks. Jeong et al. [6] proposed
an FE-ANN model that integrates spherical indentation and ANN based on FE simulations
to predict the uniaxial tensile flow of isotropic materials. Lu et al. [20] used several multi-
fidelity ANN approaches to solve the inverse indentation problem, combining experimental
data with simulation data and evaluating actual experiment data for several different metal
materials. They suggested the indentation response from instrument indentation as the
input parameter for predicting the stress–strain curve. However, so far, the research on
predicting material anisotropy by neural network using indentation experiments has not
been developed. Therefore, it would be valuable to study the anisotropy properties with
neural networks instead of complex nonlinear relationships.

Compared with previous studies, this paper newly utilizes artificial neural network
(ANN) techniques, which escapes the traditional complex dimensionless analysis to pro-
pose two prediction models for predicting anisotropy properties using a spherical inden-
tation test applied to two different conditions. The proposed prediction models can not
only predict the yield strength anisotropy of the sheet metal but also predict the Lankford
coefficient that represents the anisotropy of the strain aspect in all orientations. The in-
put parameters of the two models are proposed, which are the load–depth curve of the
indentation response and the residual indentation mark, including indentation height and
horizontal length. The stress–strain flow curve of the rolling direction, which is easier to ob-
tain, is added as the input parameter of the first ANN prediction model for predicting yield
strength ratio between any two orientations of the sheet metal, also evaluating the Lankford
coefficient. The second model is the improved model, which predicts Young’s modulus
of the material, the yield strength in one direction, and the hardness exponent. A new FE
spherical indentation model is utilized for constructing the ANN prediction model that
takes into account the effect of the compliance of the applied machine/frame/mounting
material on the indentation response in the actual indentation test. We selected 1000 cases
within the performance range of pure and alloyed metal materials and performed spherical
indentation simulations through an FE model to obtain the training dataset. The character-
istics of the load–depth curves and residual indentation marks obtained from the numerical
simulation are extracted for use in the dataset of the ANN model. The performance of
the proposed ANN prediction model was evaluated by comparison with obtained stress–
strain curves and Lankford coefficient (r-value) in multiple loading directions using the
uniaxial tensile test for different alloys, which is tested by actual spherical indentation
tests. Moreover, to accurately measure the indentation profile obtained from the actual
indentation tests, we used a machine vision method to determine each indentation mark’s
central position automatically.

2. Materials and Methods

In order to construct an artificial neural network model that predicts the anisotropic
properties of materials based on the indentation test, a dataset that is able to train the
artificial neural network model with the physically related effective factors as the input
parameters of the ANN is required. This paper constructed two kinds of ANN models
for predicting plastic anisotropy properties, which is demonstrated in the flow chart in
Figure 1.
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Figure 1. Flow chart for predicting anisotropy properties with two kinds of ANN model: (a) First
ANN model, (b) Second ANN model.

The input parameters of the two models proposed included the load–depth curve
and the residual indentation mark of the indentation response. A more readily available
stress–strain flow curve in the rolling direction (RD) was added as an input parameter to the
first ANN prediction model for predicting the yield strength ratio in any two orientations
of the sheet metal while evaluating the Lankford coefficient. The second model was an
improved model, which predicts Young’s modulus, the yield strength in one direction, and
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the hardness exponent in the condition of the material without knowing the properties of
the RD orientation. A new FE spherical indentation model was utilized for constructing
the training dataset of the ANN prediction models that take into account the effect of the
compliance of the applied in the actual indentation test. Finally, the actual indentation test
and uniaxial tensile test were utilized to verify the accuracy of the ANN model.

2.1. Mechanical Property Measurement of Materials

In order to verify the prediction accuracy of the two ANN prediction models composed
of the datasets obtained from the FE indentation model for the actual experiment, this
paper selected three different metal alloys with different elastoplastic properties as test
materials to conduct indentation tests, steel (TRIP1180), aluminum alloy (AA6063-T6), and
zinc alloy (Zn-Cu-Ti alloy). Since sheet metal forming is one of the most widely used
processes in manufacturing, we selected the following thicknesses for the test materials:
TRIP1180, 1.2 mm; AA6063-T6, 2 mm; and Zn-Cu-Ti, 2 mm. The uniaxial tensile test was
used to measure the mechanical properties of these three materials. Moreover, the accuracy
of the ANN model was verified by comparing the predicted value of the proposed ANN
model with the target value of the uniaxial tensile test that generally obtains material
anisotropy experiments.

Typical dog-bone-shaped tensile test specimens (ASTM-E8 standard) with a gauge
width of 12.5 mm and a gauge length of 50 mm were fabricated at 15◦ intervals (0◦ to 90◦)
to the rolling direction. We tested only 0◦, 45◦, and 90◦ due to the anisotropic property of
TRIP1180 not being large. Quasi-static uniaxial tensile tests based on displacement control
were conducted using a strain rate of 0.003/s at 25 ◦C until a fracture occurred and the
ARAMIS Digital Image Correlation system. Changes in the length and width of specimens
during the tensile test were acquired from the recorded digital images to obtain the plastic
strain of length (ε l

p) and width (εw
p). The Lankford coefficient (r-value) is widely used as an

indicator of sheet metal formability, characterizing its ability to resist thickening or thinning.
The Lankford coefficient can be determined as shown in Equation (1), where the plastic
strain along the specimen thickness (εt

p) can be estimated by the volume conservation
principle using Equation (2). Figure 2 demonstrates the engineering stress–strain curves
and r-value measured for these three materials. The yield strength and properties of
the flow curves are listed in Table 1. The resulting material anisotropy properties were
compared with the predictions of the proposed ANN model to compare the model fidelity.

R =
εw

p

εt p (1)

εt
p = −(ε l

p + εw
p) (2)

An AIS2100 (Frontics Inc., Seoul, Korea), as shown in Figure 3, was used for the
spherical indentation test with a force resolution of 5.6 gf and a displacement resolution
of 0.1 µm. Because the rectangular 20 mm × 20 mm specimens for the indentation test
were relatively thin, mounting material was prepared for the test. Moreover, the specimen
surfaces needed to be finely polished and smooth so that no inclination on the surface
of the specimen could affect the experimental process. Four repeated experiments were
performed for each material using a tungsten carbide spherical indenter with a radius of
250 µm, and the maximum indentation depth in each experiment was 70 µm (test specimen
thickness should be at least ten times the indentation depth or three times the indentation
diameter according to ISO 14577-1). When the indenter reached the maximum depth, the
dwell time was 500 ms. Figure 4 shows the load–depth curves calculated from repeated
experiments for each material. TRIP1180 had a higher load for the 70 µm depth than the
other two materials.
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Figure 2. Engineering stress–strain curves and Lankford coefficient (r-value): (a) TRIP1180,
(b) AA6063-T6, (c) Zn-Cu-Ti alloy.
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Table 1. Engineering stress–strain data for each material.

Young’s Modulus
(MPa)

Yield Strength
(MPa)

Strain
Hardening

Exponent (n)

Lankford
Coefficient (r)

TRIP1180
0◦

161,994
1005

0.13
1.499

45◦ 948 1.123
90◦ 939 1.103

AA6063-T6

0◦

50,000

219

0.0712

0.675
15◦ 204 0.436
30◦ 198 0.343
45◦ 203 0.375
60◦ 207 0.398
75◦ 209 0.452
90◦ 212 0.529

Zn-Cu-Ti alloy

0◦

127,700

58

0.306

0.101
15◦ 59 0.117
30◦ 60 0.134
45◦ 63 0.167
60◦ 73 0.300
75◦ 75 0.449
90◦ 76 0.593

Figure 3. The AIS2100 indentation test device.

In order to accurately measure the residual indentation test when the indenter com-
pletely leaves the specimens, the resolution of the measuring device should be less than
1% of the maximum depth according to the macro-instrument indentation test measuring
device standard (ISO14577-2). For the conditions of our actual indentation test, we utilized
a 3D profile measurement device called ContourGT-K to extract characteristics, with a max-
imum vertical resolution of 0.01 nm. However, deviations in the extraction of indentation
profiles in different orientations were due to the inability to accurately measure the center
point of the residual indentation mark manually. This paper adopted the vision system to
solve this difficulty, as depicted in Figure 5. The type of RGB image from the ContourGT-K
is PNG. First, the RGB images were converted into HSV images because the hue values
of HSV-type images can use colors to represent the depth of indentation more accurately
than RGB images. Then the actual X, Y, and Z dimension size range provided by the
ContourGT-K (Bruker Inc., Billerica, MA, USA) was set, which helped us accurately extract
the indentation marks’ profiles. To accurately determine the material in any direction, the
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essential step was determining the center point of the indentation mark. The 0◦ yellow line
that passes through the deepest point should be chosen as the baseline for extracting the X
and Y axis pixels for the other direction lines. The final step was using the X and Y axis
pixels to obtain the Z depth values and define the indentation profile. Table 2 provides
the measurement results from the machine vision analysis. Compared with the traditional
method of using software to determine the direction manually, machine vision can make
more accurate measurements by automatically determining the center point of the residual
indentation mark.

Figure 4. Load–depth curves from the indentation tests: (a) TRIP1180, (b) AA6063-T6, (c) Zn-Cu-Ti alloy.
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Figure 5. Schematic diagram of the residual indentation mark analysis procedure using machine vision.

Table 2. Analysis results from using machine vision for TRIP1180, AA6063-T6, and Zn-Cu-Ti alloy.

Direction TRIP1180 AA6063-T6 Zn-Cu-Ti Alloy

Indentation height (µm)

0◦ 52.315 58.747 76.597
15◦ − 63.026 74.496
30◦ − 65.357 72.689
45◦ 53.521 63.161 70.363
60◦ − 60.717 68.673
75◦ − 59.539 65.604
90◦ 53.587 59.109 65.520
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Table 2. Cont.

Direction TRIP1180 AA6063-T6 Zn-Cu-Ti Alloy

Indentation length (µm)

0◦ 158.385 160.625 191.154
15◦ − 170.201 190.768
30◦ − 175.103 187.953
45◦ 159.306 170.885 184.407
60◦ − 165.869 178.858
75◦ − 162.791 178.190
90◦ 160.481 162.335 177.520

2.2. Input Parameters for the Proposed ANN Model

For predicting the anisotropy properties of various materials with the spherical inden-
tation test, it is necessary to take into consideration the factors that affect the indentation
response due to the properties of the material. Therefore, the selection of effective physically
related influencing factors is crucial.

From the previous research [5–7,11–15], it was clear that the indentation response
that affects the material properties mainly comes from two representative parts: the rela-
tionship between the indentation load and penetration depth (load–depth curve) and the
geometric characteristics of the residual indentation marks. For the load–depth curve of the
indentation test, various dimensionless functions using the ∏ theorem have already been
proposed to predict the elastoplastic properties for an isotropic case [21]. The characteristics
which are shown in Figure 6, the plastic work ratio ( Wp

Wt
), initial unloading slope ( dPu

dh

∣∣∣
hm

),

loading curvature (C), and final indentation depth (hr), were extracted to use the ∏ theorem
functions to reverse analyze the elastoplastic properties of the material: Young‘s modulus
(E), hardness exponent (n), and yield strength (σy). Dao, M. et al. [21] proposed that the

plastic work ratio ( Wp
Wt

) and initial unloading slope ( dPu
dh

∣∣∣
hm

) can be utilized through the

∏4 and ∏6 theorems for solving Young‘s modulus (E) and the true projected contact area
(Am) of indenter. The dimensionless function ∏1 can be used for solving the stress of
0.033 strain (σ0.033). Dao, M. et al. used the previously determined E and σ0.033 to obtain
the hardness exponent (n) through the ∏2 and ∏3 theorems. Finally, the yield strength
(σy) was determined by the estimated properties. The curvature of the loading part for
elastic–plastic materials of the spherical indentation test utilized in this paper was almost
linear [22]. Therefore, the elastoplastic properties of the whole specimen were predicted by
these influencing factors of the load–depth curve.

For the residual indentation mark, the difference according to the orientations of the
material is highly dependent on the yield strength ratio (m) of the material in different
orientations [13]. Furthermore, the yield strength ratio (m) is associated with the Lankford
coefficient (r), which will be introduced in Section 2.3. We determined the residual indenta-
tion mark as the deformation normal to the specimen surface near the contact boundary
under the fully unloaded condition. In Figure 7, if the deformed height (hz) of the original
surface after removing the load was positive, it was piling up, and if it was negative, it was
sinking in. The total height (hc) of the indentation mark was defined as the sum of the resid-
ual indentation depth (hf) and deformed height (hz), for example, the total height of rolling
direction (hcx) and transverse direction (hcy). Yonezu et al. [13] applied the Π theorem to a
dimensionless analysis; hcx/hcy can be expressed as the following dimensionless function
using Equation (3). The Π6 function shows the residual indentation height depends on the
anisotropy properties, σr/E∗ and m. Yonezu et al. [13] used a large amount of FE data to
summarize the relationship between hcx/hcy and σr/E∗ by fitting the curve, showing the
strong dependency of the yield strength ratio (m), as shown in Equation (4).

hcx

hcy
=

hcx/R
hcy/R

= Π 5(
σr

E∗
, n, m,

h
R
) ≈ Π 6(

σr

E∗
, m) (3)
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hcx

hcy
= C1(

σr

E∗
) C2 (4)

C1 = (m− 1)(−0.0408m + 0.2256) + 1

C2 = (m− 1)(−0.0521m + 0.1885)
(5)

where C1 and C2 are related to the material yield strength ratio (m), showing the coefficients
C1 and C2 increase with the yield strength ratio (m), as shown in Equation (5). In the
indentation mark, the radial length corresponding to the indentation height (hc) is defined
as the residual indentation length (L). It decreases as the yield strength increases when the
elastic modulus and indenter diameter are held constant [23] and can also be used as the
influencing factor.

Figure 6. Load–depth curve of indentation test and its related factors.

Figure 7. Schematic diagram of the impression morphology caused by spherical indentation.
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A review of the influencing factors of the spherical indentation test can reflect ma-
terial properties. Figure 8 demonstrates the physically related influencing factors of the
indentation response.

Figure 8. Schematic diagram of the influencing factors for the artificial neural network.

2.3. Dataset Acquisition Using FE Model for ANN Model

For obtaining the extensive training datasets for the ANN model, which was applied
to predict the anisotropic properties of various metallic materials, this paper newly con-
structed an FE spherical indentation model, which is suitable for sheet metal by using the
ABAQUS/standard. The indenter was assumed to be an analytically rigid model with
a radius of 250 µm, and the specimen was defined as a deformable FE (C3D8R) model
of 2 mm × 2 mm, with the size large enough to avoid the influence of outer boundary
effects, and the height was the same as the actual specimens. The contact friction coefficient
between the specimen and indenter surfaces was 0.12. Refined meshes were applied in the
local contact region, as shown in Figure 9, in which the length of one side was 0.25 mm. A
mesh size of 0.00625 mm and a 64,000 C3D8R element were applied to prevent the effect
of the mesh size. To reduce computation time, we constructed a relatively coarse mesh
in the area far from the contact surface and used a quarter-symmetric model. There were
two processes of indenter movement, loading, and unloading, which were performed
in the actual test. The indenter moved 70 µm from the specimen surface in the negative
z-direction during the loading process, and for the unloading process, the indenter moved
in the positive z-direction until it left the specimen. Figure 9 demonstrates the finite element
model for this analysis process.

The linear elastic property was used, and the plasticity behaviors after the elastic prop-
erty were defined, using the power-law strain hardening equation shown in Equation (6):

σ = Eε, f or σ ≤ σy

σ = Rεn, f or σ ≥ σy
(6)

Anisotropic materials’ plasticity behaviors can be described using Hill’s yield crite-
rion [24], which is one of the simplest and most widely used yield functions, given in
Equation (7).

f (σ) =
√

F(σ22 − σ33)
2 + G(σ33 − σ11)

2 + H(σ11 − σ22)
2 + 2Lτ2

23 + 2Mτ2
31 + 2Nτ2

12 (7)

where the F, G, H, L, M, and N are the anisotropic parameters [24] and were determined
using Equation (8).
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F = 1
2

(
1

R2
22
+ 1

R2
33
− 1

R2
11

)
; G = 1

2

(
1

R2
33
+ 1

R2
11
− 1

R2
22

)
H = 1

2

(
1

R2
11
+ 1

R2
22
− 1

R2
33

)
; L = 3

2R2
23

; M = 3
2R2

13
; N = 3

2R2
12

(8)

Figure 9. FE spherical indentation model and mesh settings.

In the ABAQUS/standard material model, Hill’s yield and its six parameters were
used to define the plastic properties [15,25,26]. Among those parameters, R11, R22, and
R33 were parameters for the normal direction, and R12, R13, and R23 were parameters for
the shear direction. These parameters were used as properties representing anisotropy,
with R11 defining the ratio (m) of the yield strength between the RD direction and the TD
direction. The other Hill ratios were assumed to be 1. The anisotropy properties in the RD
and TD directions, as well as properties for the other directions, can be derived using the
characteristics of the residual indentation marks from the FE model as the basis for the ANN
model. Moreover, R11 and R33, which relate to Hill’s yield criterion, are also associated with
Lankford coefficients, as given in Equation (9), which means that the yield strength ratio
(m) is related to the Lankford coefficient (r). Therefore, the relationship between the yield
strength ratio and r-value ratio from RD to TD can be obtained through these two equations
to predict the yield strength ratio (m) in the RD direction and any other direction. As above,
the r-value ratio (rr) of the predicted direction to RD can be obtained by Equation (10).
Nevertheless, to predict the r-value more accurately, we fitted several sets of data of the
three actual materials and obtained a better relationship formula between the r-value ratio
and yield strength ratio, as shown in Equation (11). The proposed fitting formula was
more appropriate to the actual experimental data than the previous formula, as shown in
Figure 10a, and the R-square of the proposed formula was 0.96088. The standard deviation
of experiments was less than 0.1. The accuracy of the proposed formula was then verified
with other experimental data for these three materials in Figure 10b, which showed a good
agreement with experimental data. And Figure 11 shows that our actual experimental data
were basically within the 95% confidence interval and prediction regions of the proposed
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formula. Thus, our prediction model can predict the r-value in different orientations by
using the r-value at RD from the tensile test.

R11 =

√
r0(r90 + 1)
r90(r0 + 1)

= m, R33 =

√
r0(r90 + 1)

r90 + r0
= 1 (9)

rr =
1

(2m2 − 1)
(10)

rr =
0.99843
m6.25156 (11)

Figure 10. Formula for the r-value ratio and yield strength ratio: (a) Fitting process, (b) Validation process.

To verify the constructed FE model, the anisotropic properties of TRIP1180 were
applied to simulations, and the results were compared with the actual indentation test
results. We confirmed that neither the loading nor unloading parts matched, as shown
in Figure 12a. Since the properties of the load–depth curve are closely related to the
stress–strain flow curve of the material, deviations of the finite element analysis from the
experimental results can lead to deviations in the predictions of the material properties. It
was thus important to modify our indentation FE model to match the actual experiment to
ensure the accuracy of our FE-ANN model prediction. Therefore, to implement an actual
experiment in the same analytical model, we considered the factors that influenced the
experiment, particularly the elastic deformation (i.e., compliance) of the test device and the
mounting material, proposed by Doerner and Nixis [27]. The total compliance (Ctotal) of
the actual experiment was the sum of specimen compliance (Cspecimen), device compliance
(Cdevice), and mounting material compliance (Cmounting) [27–29], as shown in Figure 13.
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Figure 11. The confidence band and prediction band of the proposed formula.

Figure 12. Cont.
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Figure 12. Comparison of results after considering compliance (Comparison of the load–depth curve):
(a) TRIP1180, (b) AA6063-T6, (c) Zn-Cu-Ti alloy.

Figure 13. The schematic diagram for considering compliance.

Compliance (Cdevice and Cmounting) for the device and mounting material can be ob-
tained from the difference between total compliance (Ctotal) and specimen compliance
(Cspecimen), as shown in Equation (12).

Cdevice + Cmounting = Ctotal − Cspecimen (12)

The total compliance can be found as the inverse of the tangential slope ( dh
dP ) of the

unloading curve at the maximum load point in the test. Next, we calculated the specimen
compliance based on Sneddon’s elastic punch solution, which relates the reduced Young’s
modulus of the specimen to the projected contact area (A) and is expressed by Equation (7),
where Eind and vind are the elastic modulus and Poisson’s ratio of the indenter [30], re-
spectively, and Emat and vmat are the elastic properties and Poisson’s ratio of the indented
TRIP1180 (1.2 t), which is tested by uniaxial tensile test, as are listed in Table 3.

Cspecimen = 1
2Er

√
π
A

Er = ( 1 − vind
2

Eind
+ 1 − vmat

2

Emat
)
−1 (13)
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Table 3. Relevant properties of TRIP1180 and the indenter.

Indenter Material

E (MPa) 700,000 161,994
v 0.31 0.31

A linear regression of Ctotal and 1/
√

A, which is shown in Equation (14), calculated
m and b through a set of experiments with different maximum loads (Pmax, hmax). The
sum of the device and mounting compliance can be calculated after calculating the total
compliance and specimen compliance.

Ctotal = m

√
1
A

+ b (14)

The spring with rigidity was obtained using Equation (15) as the reciprocal of the sum
of device compliance and mounting compliance, which locates the bottom of the specimen
in the FE model. Figure 14 demonstrates the FE model added a spring that represents the
compliance of the frame of the test machine nodes on the baseline and connects it to the
one spring node using kinematic coupling [31]. As shown in Figure 15, the stiffness of the
spring was set to be symmetrical with respect to the zero point in the loading and unloading
processes of the indentation test. The simulated result of the load–depth curve using the FE
model with the added spring is shown in Figure 12a. Compared with the previous analysis,
the deviation of maximum load, elastic area, plastic area, plastic area ratio, initial unloading
slope, and final depth improved by 3.13%, 49.45%, 10.42%, 12.28%, 154.51%, and 32.54%,
respectively. Moreover, we compared the experimental load–depth curve of AA6063-T6
and Zn-Cu-Ti with the FE simulation load–depth curve to verify whether adding the spring
to the FE model applies to other materials, as shown in Figure 12b,c.

Spring sti f f ness(K) =
1

Cdevice + Cmounting
(15)

Figure 14. FE model with spring boundary condition.
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Figure 15. The characteristics of the spring boundary condition.

2.4. Anisotropy Artificial Neural Network Model

The two kinds of ANN models were constructed for predicting plastic anisotropy
properties of sheet metal with respect to the yield strength and Lankford coefficient, which
were trained with 1000 datasets. The first model exploited the RD properties as the input
data to explore that the indentation test can make good predictions of yield strength ratios
for anisotropic properties, which was because the properties of the RD orientation are
easily obtained. This prediction model predicts the yield strength ratio (m) between any
other direction and the RD to obtain the stress–strain curve for the other direction with
reference to RD properties. Moreover, the Lankford coefficients for other directions were
evaluated based on the previously proposed relationship between the value ratio of RD and
the yield strength ratio in the predicted direction. The ANN structure includes multiple
inputs that are multiplied by different weights and then uses a mathematical function to
determine whether it can stimulate neurons, with an activation function for calculating the
output of the artificial neuron. This ANN belonged to the multi-layer perceptron class, in
which five hidden layers are set in the input and output layers. The backward propagation
algorithm was used to continuously adjust the weights and thereby minimize the error
between the output values, and the correct answer was used for training the ANN. The
input layer of the first model consisted of 18 neurons, as shown in Table 4, the output layer
had 1 neuron, representing the yield strength ratio (m). In the supervised training of the
ANN, the following hyper-parameters were used: number of epochs: 10,000; batch size:
64; and choice of activation function: sigmoid. In addition, in the training process of this
research, the initial learning rate was set to 0.005. The mean absolute error (MAE) was set
as the loss function, as defined in Equation (16):

MAE =
1
n ∑n

i=1

∣∣∣ytarget − xpred.

∣∣∣ (16)

where ytarget and xpred. indicate the target value and prediction value, n is the total number
of the dataset. In addition, the elastic and plastic properties of a material can also be
predicted using the indentation test. Therefore, we took not only the yield strength ratio
(m) but also the elastic modulus (E), yield strength (σy) in any orientation, and hardness
exponent (n) as prediction targets and constructed an improved model from our previous
model. The model did not employ the RD material properties as the input parameters but
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directly used the characteristics of the sheet metal’s indentation response with the input
layer to 15 neurons and the output layer to 4 neurons.

Table 4. Relevant properties of TRIP1180 and the indenter.

Load–Depth Curve Residual Indentation Mark
Properties of the

RD Stress–Strain Curve
(Only Works on the First Model)

1. Max depth, hm
2. Max load, Pu
3. Elastic area, We
4. Plastic area, Wp
5. Total area, Wt
6. Plastic area ratio, Wp/Wt
7. Loading slope, C1

8. Initial unloading slope, dPu
dh

∣∣∣
hm

9. Final depth, hr

1. Height of the RD, hRD
2. Height of the other one direction, hn
3. Height ratio, hn/hRD
4. Length of the RD, LRD
5. Length of the other one direction, Ln
6. Length ratio, Ln/LRD

1. Young’s modulus, E
2. RD yield strength, σy_RD
3. Hardness strength, n

For 1000 training datasets, one thousand elastoplastic parameter conditions commonly
found in pure and alloyed engineering metals [20] were set as the FE model’s material
properties to construct a large simulation, as shown in Table 5. The load–depth correspond-
ing to each set of parameters and the profiles of all the residual indentation marks were
extracted for constituting the dataset with the predicted material properties. For preventing
the overfitting problem, one thousand datasets were divided into training datasets and
test datasets with no overlap, at the ratio of 0.8:0.2. Figure 16 describes the procedure for
constructing the datasets and training the ANN model.

Figure 16. Flow chart for obtaining the training dataset for the ANN model.
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Table 5. Range of elastoplastic parameter conditions commonly found in pure and alloyed engineer-
ing materials.

Properties Range

Young’s modulus (E) 5~210 GPa
Yield strength (σy) 30~3000 MPa

Hardness exponent (n) 0~0.5
Yield strength ratio (m) 0.1~2

3. Results

Two kinds of ANN prediction models proposed were applied for predicting the
anisotropy properties of five materials, with the one test closest to the result obtained from
the corresponding FE indentation model selected in five repeated indentation tests. To
evaluate the quality of the ANN, we used correlations (R-squared) that represented the
statistical relationship between the target and predicted variables. Figure 17 and Table 6
show the correlation result of the validation dataset, which was not included in the training
dataset of the prediction models, in the first prediction model and second prediction model.
The correlation of the first model was higher than 0.997, and the second model was higher
than 0.989, which indicates that the proposed prediction models have an excellent ability to
predict the target value.

Figure 17. Correlation of two prediction models: (a) First model, (b) Second model.

Table 6. Correlation (R-squared) and loss (MAE) of the proposed prediction models.

First Model Yield Strength Ratio (m)

Correlation (R-squared) 99.764%
Loss (MAE) 0.285%

Second model Young’s modulus (E) Yield strength (σy) Hardness exponent (n) Yield strength ratio(m)

Correlation (R-squared) 99.004% 99.079% 98.231% 99.400%
Loss (MAE) 1.161% 1.509% 2.506% 0.913%

The first prediction model was verified by predicting the material properties of dif-
ferent orientations of the TRIP1180, AA6063-T6, and Zn-Cu-Ti alloy sheets. We compared
the prediction results with the uniaxial tensile test flow curves to evaluate the prediction
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model’s performance. Figure 18 and Table 7 show the stress–strain flow curve predicted by
the first model for the three materials (symbol line) and the curves from the uniaxial tensile
testing (solid line). The deviation between the predicted flow curve area and the actual
experimental flow curve area was used to judge the quality of the prediction result. For
TRIP1180, which had higher strength than the other test materials, the deviation between
the 45◦ and 90◦ flow curve prediction results and the actual experimental result was less
than 1%. However, even for the AL6063-T6 and Zn-Cu-Ti alloy materials, which had larger
anisotropy and lower strength than the TRIP1180 steel, the biggest deviation in the flow
curve area was not more than 3.4%. In addition, the Lankford coefficient was estimated
through the prediction model, as shown in Figure 19. It is clear that the predictions and
experimental results showed consistent trends and extremely high accuracy.

Figure 18. Cont.
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Figure 18. Stress–strain flow curves predicted by the first ANN model: (a) TRIP1180, (b) AA6063-T6,
(c) Zn-Cu-Ti alloy.

Figure 19. Lankford coefficient (r-value) predicted by the first ANN model: (a) TRIP1180, (b) AA6063-
T6, (c) Zn-Cu-Ti alloy.
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Figure 20 depicts the flow curves predicted by the second ANN prediction model,
showing the 45◦ and 90◦ results for TRIP1180 and 15◦ intervals from 0◦ to 90◦ for the
AL6063-T6 and Zn-Cu-Ti alloy based on the 0◦ direction, the specific predicted data are
shown in Table 8. The predicted flow curve deviations for the TRIP1180, AA6063-T6, and
Zn-Cu-Ti alloys using this prediction model were less than 5%. Therefore, regardless of
the magnitude of the yield strength, hardness exponent, or yield strength ratio of these
three materials, the predicted results were in good agreement with the actual experimental
results. Furthermore, although the predicted Young’s modulus values for the AA6063-T6
and Zn-Cu-Ti alloy, which have relatively small Young’s modulus values, had sizeable
numerical deviations, the prediction error for TRIP1180, which had a relatively large
Young’s modulus, was less than 1%.

Figure 20. Cont.
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Figure 20. Cont.
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Figure 20. Stress–strain flow curves predicted by the second ANN model: (a) TRIP1180, (b) AA6063-
T6, (c) Zn-Cu-Ti alloy.

Moreover, we compared the results of yield strength ratio and Lankford coefficient
of the two ANN prediction models, which are depicted in Figures 21 and 22. The figures
clearly show that the prediction accuracy of the first prediction model was higher than
that of the second model due to the additional RD properties as input parameters and
a small number of prediction targets with the less difficult for prediction. However, the
second model comprehensively showed that the properties of the material, including the
elastoplastic properties and anisotropy properties of the material, can be estimated through
the indentation test. Therefore, when the experimental data in the RD direction can be
obtained, the first prediction model can be used to accurately predict the yield strength
ratio and the Lankford coefficient of the material. If there is no condition to obtain the
attributes in the RD direction, the second prediction model can be used for comprehensive
attribute prediction.
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Table 7. Predicted properties of the stress–strain curve.

Direction

Yield Strength (σy)

Tensile Test Result
(MPa)

ANN Prediction Result
(MPa) Deviation Deviation in the Flow

Curve Area

TRIP1180
45◦ 948.023 942.603 0.572% 0.499%
90◦ 939.164 944.000 0.515% 0.433%

AA6063-T6

15◦ 204.497 204.404 0.042% 0.042%
30◦ 198.227 192.956 2.578% 2.445%
45◦ 203.815 203.807 0.004% 0.003%
60◦ 207.376 207.478 0.050% 0.045%
75◦ 209.392 210.239 0.408% 0.372%
90◦ 212.856 212.612 0.117% 0.105%

Zn-Cu-Ti alloy

15◦ 58.859 61.238 4.042% 2.787%
30◦ 60.291 63.221 4.860% 3.347%
45◦ 63.528 66.586 4.814% 3.331%
60◦ 73.177 70.79 3.262% 2.274%
75◦ 75.169 75.707 0.716% 0.496%
90◦ 76.602 77.306 0.919% 0.637%

Table 8. Predicted properties of TRIP1180 (1.2 t), AA6063-T6, and Zn-Cu-Ti alloy.

Material Properties Direction Tensile Test Result ANN Prediction Result

TRIP1180

Young’s modulus (E) 0◦–45◦ 161,994 163,075
0◦–90◦ 161,994 163,266

Yield strength (σy) 0◦–45◦ 1005/948.023 1019.760/948.614
0◦–90◦ 1005/939.164 1012.740/943.840

Hardness exponent (n) 0◦–45◦ 0.130 0.129
0◦–90◦ 0.130 0.130

Yield strength ratio (m) 0◦–45◦ 1.060 1.075
0◦–90◦ 1.070 1.073

Deviation of the flow curve area
0◦–45◦ 1.172%/0.045%
0◦–90◦ 0.924%/0.695%

AA6063-T6

Young’s modulus (E)

0◦–15◦ 50,000 25,509
0◦–30◦ 50,000 27,065
0◦–45◦ 50,000 25,587
0◦–60◦ 50,000 23,739
0◦–75◦ 50,000 23,354
0◦–90◦ 50,000 23,193

Yield strength (σy)

0◦–15◦ 219.520
/204.497

230.893
/205.238

0◦–30◦ 219.520
/198.227

235.867
/198.374

0◦–45◦ 219.520
/203.815

231.663
/205.375

0◦–60◦ 219.520
/207.376

230.116
/215.263

0◦–75◦ 219.520
/209.392

227.903
/218.089

0◦–90◦ 219.520
/212.856

228.652
/221.134
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Table 8. Cont.

Material Properties Direction Tensile Test Result ANN Prediction Result

AA6063-T6

Hardness exponent (n)

0◦–15◦ 0.0712 0.0755
0◦–30◦ 0.0712 0.0733
0◦–45◦ 0.0712 0.0744
0◦–60◦ 0.0712 0.0735
0◦–75◦ 0.0712 0.0784
0◦–90◦ 0.0712 0.077

Yield strength ratio (m)

0◦–15◦ 1.073469 1.125
0◦–30◦ 1.107423 1.189
0◦–45◦ 1.077061 1.128
0◦–60◦ 1.058566 1.069
0◦–75◦ 1.048374 1.045
0◦–90◦ 1.031311 1.034

Deviation of the flow curve area

0◦–15◦ 0.483%/4.504%
0◦–30◦ 1.604%/4.629%
0◦–45◦ 0.388%/4.361%
0◦–60◦ 1.848%/2.667%
0◦–75◦ 1.930%/1.622%
0◦–90◦ 2.027%/2.214%

Zn-Cu-Ti alloy

Young’s modulus (E)

0◦–15◦ 127,700 185,697
0◦–30◦ 127,700 180,248
0◦–45◦ 127,700 170,498
0◦–60◦ 127,700 167,321
0◦–75◦ 127,700 138,878
0◦–90◦ 127,700 138,642

Yield strength (σy)

0◦–15◦ 58.477
/58.859

63.538
/65.843

0◦–30◦ 58.477
/60.291

61.618
/66.114

0◦–45◦ 58.477
/63.528

59.194
/66.361

0◦–60◦ 58.477
/73.177

58.143
/66.298

0◦–75◦ 58.477
/75.169

54.336
/66.752

0◦–90◦ 58.477
/76.602

54.514
/66.807

Hardness exponent (n)

0◦–15◦ 0.306 0.271
0◦–30◦ 0.306 0.278
0◦–45◦ 0.306 0.288
0◦–60◦ 0.306 0.297
0◦–75◦ 0.306 0.311
0◦–90◦ 0.306 0.311

Yield strength ratio (m)

0◦–15◦ 0.993 0.965
0◦–30◦ 0.969 0.932
0◦–45◦ 0.920 0.892
0◦–60◦ 0.799 0.877
0◦–75◦ 0.778 0.814
0◦–90◦ 0.763 0.816

Deviation of the flow curve area

0◦–15◦ 1.244%/0.867%
0◦–30◦ 0.417%/2.576%
0◦–45◦ 0.326%/2.760%
0◦–60◦ 3.284%/3.049%
0◦–75◦ 0.120%/3.285%
0◦–90◦ 0.013%/4.597%
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Figure 21. Comparison of yield strength by two prediction models: (a) TRIP1180, (b) AA6063-T6,
(c) Zn-Cu-Ti alloy.
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Figure 22. Comparison of Lankford coefficient by two prediction models for TRIP1180, AA6063-T6,
and Zn-Cu-Ti alloy.

4. Conclusions

This paper proposed two kinds of ANN models for predicting the anisotropy proper-
ties with different materials based on the load–depth curve and residual indentation mark
derived from the spherical indentation test, which measures the mechanical anisotropy
more simply than a tensile test. For obtaining a dataset with a large number with high effi-
ciency and low cost for training the ANN prediction model, this paper newly constructed
the FE spherical indentation model with the compliance, which was consistent with the
actual indentation test to perform a large simulation with the material in a range of pure
and alloyed metal materials. The compliance of the experimental device and mounting
was determined by using the load–depth curve from actual experiments. Moreover, in
order to verify the performance of the two proposed ANN models, we compared the ANN
prediction results with the experiment results of the uniaxial tensile tests in TRIP1180,
AA6063-T6, and Zn-Cu-Ti alloy. To gain reliable values about the indentation marks in the
experiment, the machine vision system was adopted since this system can reduce the errors
caused by manual operations. Under these circumstances, final conclusions can be drawn.

1. An ANN model for predicting anisotropic properties of materials was constructed,
and this model can replace the conventional dimensionless analysis with complex
procedures to derive the analysis function.

2. The proposed two types of artificial neural network models can predict the anisotropic
properties of materials, where the first prediction model, with RD characteristics as
input parameters, can predict the yield strength ratio and the Lankford coefficient
well. On the other hand, in cases without RD characteristics as input parameters,
the second model provides a comprehensive prediction of the material’s properties,
including its elastic–plastic and anisotropic properties.

3. The predicted yield strength ratios using the first model of TRIP1180, AA6063-T6, and
Zn-Cu-Ti alloy had a maximum deviation from the experimental results of 0.6%, 2.6%,
and 4.9%, respectively. At the same time, the Lankford coefficient predicted by our
model was consistent with the experimental results. The deviations in the predicted
stress–strain flow curves were all less than 5%. Furthermore, the flow curve predicted
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for each material using the improved ANN model showed a maximum deviation
from the tensile test of 4.7%.

4. In future work, the deeper prediction ANN model for the anisotropy of Young’s
modulus and hardness exponent can be constructed to comprehensively predict
the anisotropy properties of materials with larger Young’s modulus and hardness
exponent. Furthermore, it is possible to improve the ANN model, which can predict
the anisotropy properties by utilizing the Chaboche model after undergoing the
complex stress state.

The proposed method, which uses the spherical indentation test with the ANN model,
showed excellent predictions on the anisotropy of yield strength and Lankford coefficient
in different directions. This paper is a great advance in material property prediction. It also
heralds that the data networks can be used widely for the prediction of various properties
of materials.
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