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Abstract: In this paper, a failure theory for the multidirectional fiber-reinforced composite laminate
with a circular hole is developed. In this theory, the finite fracture mechanics method is combined
with the improved Puck’s failure theory including the in situ strength effect. It can predict the
notched strength by only basic material properties of unidirectional laminas, geometries and stacking
sequence of the laminate. In advance mechanical properties of the laminate are unnecessary. The
notched laminates with different material types and stacking sequences are taken as examples to
verify this failure theory, and predicted results are in good agreement with experiments. Based on the
developed failure theory, importance measurement of uncertain material properties to the notched
strength is analysed. Results show that notched strength increases with increasing longitudinal tensile
strength and in-plane shear modulus for the laminate with an arbitrary hole diameter. However, it
decreases with increasing transverse modulus.

Keywords: fiber-reinforced composite laminate; hole; failure; notched strength; importance measure-
ment; uncertainty

1. Introduction

The composite laminate with open holes is a common structure for connection in the
aerospace industry, and the hole may weaken structural integrity and then cause stress
concentration. Therefore, a method which can predict failure strength accurately and fast is
necessary for structural design. Although various non-linear finite element (FE) approaches
coupling with progressive failure models are accurate enough [1,2], these methods are still
not acceptable for preliminary sizing because they are time consuming [3].

The most widely used design method suitable for preliminary sizing of notched com-
posite laminates is the average stress or point stress criterion developed by Whitney and
Nuismer [4]. It is assumed that failure takes place when the average stress over a distance or
stress at a point with a given distance from the hole boundary (the ‘characteristic distance’)
reaches the unnotched strength of the laminate. The characteristic distance in both average
stress and point stress criteria is obtained from a test of a notched laminate. Research
has shown that the characteristic distance is not an inherent material property, it is also
related to stacking sequence and geometry [5]. Thus, many expensive experiments should
be carried out to identify the characteristic distance of the notched laminate with different
materials, stacking sequences and geometries. In order to avoid determining the charac-
teristic distance by large experimental programmes, the finite fracture mechanics (FFMs)
model is developed from the concept of finite fracture mechanics originally proposed by
Leguillon [6]. FFMs model assumes that failure occurs when a stress-based criterion and
an energy-based criterion are fulfilled simultaneously [3,7]: average stress criterion, energy
for crack propagating a finite distance reaching the fracture toughness. There are also some
variations of FFMs model proposed by Felger et al. [8] and Reinoso et al. [9].
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Among FFMs models, mechanical information of the unnotched laminate should be
known in advance. The unnotched tensile strength is one of prior and important physical
quantities, and can be obtained by experiment [3] or failure criterion [10]. However,
experiments are always expensive and time consuming. In contrast, high-precision failure
criteria are less time consuming, i.e., fast. As for failure criteria, Puck’s theory considering
fiber failure and inter-fiber failure is proved effective on unnotched strength analysis of
multidirectional composite laminates in world wide failure exercise-I, II [11,12]. However,
predicted initial strength from Puck’s theory is smaller than experimental data. To overcome
this, Dong et al. proposed the improved Puck’s theory with the in situ strength effect
which considers the influence of both the lamina itself and its neighbouring laminae [13].
Li and Ma introduced the improved Puck’s theory with the in situ strength effect into
strength analysis of multidirectional intact composite laminate with uncertain material
properties [14]. In this paper, a new failure theory for notched fiber-reinforced composite
laminates will be developed, by combining the FFMs model with the improved Puck’s
theory with in situ strength effect. In the developed failure theory, only basic material
properties of unidirectional laminas, geometries and stacking sequence of the laminate
are needed.

Besides accurate and fast strength prediction models, uncertainty of the fiber-reinforced
composite laminate is also an important problem to discuss. The uncertainties result from
various forms of defects [15], manufacturing process [16] and experimental measurement.
All these uncertainties cause uncertain material properties [17–19]. Material properties
are always as input variables in the strength prediction model, and uncertain material
properties may cause the predicted failure strength deviating from the average value.
Therefore, importance measurement analysis of the material properties is significant. Many
related researches have been studied, such as in-plane failure probability of composite
laminates with random strength parameters of unidirectional lamina [20], uncertainties of
unidirectional [17] and multidirectional [10] composite strength, the influence of random
geometry on notched tensile strength [21] and so on. However, to the authors’ knowledge,
the importance measurement of unidirectional laminas’ material properties to the notched
strength of a fibre-reinforced composite laminate is yet to be investigated.

The main goals of this paper are to develop an accurate and fast (i.e., less time
consuming) failure model for notched composite laminate, and to analyse sensitivity of the
uncertain materials on notched strength. The paper is organized as follows: In Section 2,
we will present the developed failure model derived from FFMs method combined with the
improved Puck’s failure theory including the in situ strength effect. The description of the
four factors (stress distribution, stress intensity factors, unnotched strength, mode I fracture
toughness) in the model is shown in detail. In Section 3, the Sobol’s global sensitivity indices
are introduced to indicate the sensitivity of the uncertain materials on notched strength
reliability of the composite laminate. Section 4 reports the predicted notched strength, and
sensitivity analysis of material properties to notched strength. Finally, Section 5 concludes
the paper with major work and highlights.

2. The Failure Model of the Notched Laminate

A composite laminate with a central circular hole is shown in Figure 1, and the laminate
is under tensile loading in the x-direction.

Figure 1. The model of a notched laminate under tensile loading.
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The laminate is with width W, and the hole is with radius R. It is assumed that the
macro-crack leading to final failure is along the y-direction. The coupled FFMs criterion
considering both the average stress model and energy balance during crack propagation is
used in this paper, and the detail of this criterion is [3,6,7]

1
l

∫ R+l

R
σxx(0, y)dy = XL

T

1
l

∫ R+l

R
K2

I (a)da = K2
IC

, (1)

where XL
T and KIC represent the unnotched strength and mode I fracture toughness of the

laminate, respectively. l represents the crack extension at failure. KI represents the stress
intensity factor of the crack emanating from the hole, and σxx(0, y) represents the stress
distribution along the y-axis. Instead of experiments, the theoretical expressions of the four
physical quantities (σxx, KI, XL

T , KIC) obtained by the basic properties of the lamina and
stacking sequence of the laminate will be used in this paper, which makes the new failure
model more general. After getting the expressions of these four physical quantities, l and
the notched strength will be obtained from (1).

2.1. Description of the Stress Distribution σxx

The stress distribution along the y-direction, σxx(0, y), is expressed as [22]

σxx(0, y) = σ∞ · Rk
2
·
[
2 + ξ2 + 3ξ4 − (K∞

T − 3)
(

5ξ6 − 7ξ8
)]

, ξ =
R
y

(2)

where σ∞ is the remote stress. K∞
T denotes the stress concentration factor (SCF) at the hole

edge of an infinite laminate, and is defined as [22]

K∞
T = 1 +

√√√√ 2
A22

(√
A11 A22 − A12 +

A11 A22 − A2
12

2A66

)
, (3)

where Aij(i, j = 1, 2, 6) are the effective laminate stiffness. Rk denotes the finite width
correction factor, which is the ratio of SCF of a finite-width laminate (KT) to SCF of an
infinite laminate (K∞

T ). It is defined as [22]

Rk =
KT

K∞
T

=
1

3(1− 2R
W )

2+(1− 2R
W )

3 +
1
2

(
2R
W M

)6
·
(
K∞

T − 3
)
·
[

1−
(

2R
W M

)2
] , (4)

where M2 =

√
1−8

[
3(1−2R/W)

2+(1−2R/W)3
−1
]
−1

2(2R/W)2 .

2.2. Description of the Stress Intensity Factor KI

KI is the stress intensity factor of the symmetric cracks emanating from the hole edge
of an anisotropic plate, and is expressed as [23]

KI(a) = σ∞ ·Y(ρ) · F
( a

W

)
·
√

πa, (5)

where Y is the correction factor for an anisotropic laminate, F is the shape function, a is the
crack size.

Y is defined as [23]

Y(ρ) = 1 + 0.1(ρ− 1)− 0.016(ρ− 1)2 + 0.002(ρ− 1)3, (6)
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where ρ =

√
ExEy

2Gxy
−√νxyνyx. Note that (6) and ρ are originally derived for orthotropic

materials. However, they can be also used for general anisotropic laminates if the coupling
effect is ignored. Furthermore, for isotropic laminates, Y = 1 and ρ = 1.

For a notched laminate with two symmetric cracks at the hole edge, F is defined as [24]

F
( a

W

)
= FhFw, (7)

where 

fn = 1 + 0.358λ + 1.425λ2 − 1.578λ3 + 2.156λ4, λ =
R
a

Fh =

√
1− R

a
fn

Fw =

√
sec
(

πR
W

)
sec
(πa

W

) . (8)

2.3. Description of the Unnotched Strength of the Laminate XL
T

The unnotched strength of the laminate can be obtained by the progressive damage
analysis method instead of expensive experiments, which contains two main parts: (I) con-
stitutive relations for strains and stresses in the laminate and each lamina; (II) a failure
criterion with the initial failure criteria and the final failure criteria. In this paper, the
linear classical laminate theory (CLT) is used to get strains and stresses in the laminate and
each lamina during the progressive damage process. The improved Puck’s failure theory
including the in situ strength effect is used for failure analysis [13]. It has been verified that
the improved Puck’s failure theory is suitable for laminated composites [10,13]. This failure
theory contains the fiber failures and inter-fiber failures, and a brief review of theses two
failure types will be shown below.

As to fiber failures, there are two different failure modes defined as [13]
σ1

Xt
− ν12

σ2

Xt
+ ν f 12

E1

E f 1
·mσ f ·

σ2

Xt
= 1, σ1 > 0∣∣∣∣∣ σ1

Xc
− ν12

σ2

Xc
+ ν f 12

E1

E f 1
·mσ f ·

σ2

Xc

∣∣∣∣∣+ (10γ12)
2 = 1, σ1 < 0

, (9)

where {Xt, Xc} are the tensile and compressive strengths of the lamina in the fiber direction,
{E1, E f 1} are the longitudinal moduli of the lamina and the fiber, {ν12, ν f 12} are the Poisson
ratios of the lamina and the fiber. {σ1, σ2} are the longitudinal and transverse normal
stresses of the lamina, {γ12} is the in-plane shear strain of the lamina. mσ f is the ’stress
magnification effect’ because of the mismatch between the moduli of fibers and matrix. It
is noted that these two fiber failure modes denote final failure.

The inter-fiber failures include three different modes defined by [13]

Mode A:

√√√√( τ12

SI
12

)2

+

(
1− p(+)

⊥||
Y I

t
SI

12

)2(
σ2

Y I
t

)2
+ p(+)

⊥||
σ2

SI
12

= 1−
∣∣∣∣ σ1

σ1D

∣∣∣∣, σ2 > 0

Mode B:

√
τ2

12 +
(

p(−)⊥|| σ2

)2
+ p(−)⊥|| σ2

SI
12

= 1−
∣∣∣∣ σ1

σ1D

∣∣∣∣, σ2 < 0 and 0 6

∣∣∣∣ σ2

τ12

∣∣∣∣ 6 RA
⊥⊥

τ12c

Mode C:


 τ12

2
(

1+p(−)⊥⊥
)

SI
12

2

+

(
σ2

Yc

)2
 Yc

−σ2
=1−

∣∣∣∣ σ1

σ1D

∣∣∣∣, σ2<0 and 06
∣∣∣∣τ12

σ2

∣∣∣∣6 τ12c

RA
⊥⊥

, (10)

where {Y I
t , SI

12} are the transverse tensile and in-plane shear strengths of the lamina em-
bedded in the laminate with in situ effect, Yc is the transverse compressive strength of the
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isolated lamina, σ1
σ1D

denotes the degradation of the fracture resistance because of single

fiber failure, {p(+)
⊥|| , p(−)⊥|| , p(−)⊥⊥} are constants related to the material of the laminate. The

expressions of the parameters mentioned above have been shown in detail in the work
of Wang [13]. If the initial or intermediate failure occurs based on the inter-fiber failure
criteria, the stiffness {E2, G12, µ12} is gradually reduced by a degradation factor η, i.e.,{

Mode A: {E2, G12, ν12} → {ηE2, ηG12, ην12}
Mode B and Mode C: {E2, G12, ν12} → {E2, ηG12, ν12}

, (11)

where η = 1/ fE( fE > 1) and fE denotes the left hand terms of (10). Furthermore, the final
failure will occur when the angle of the fracture plane in Mode C (θC

f p) satisfies tan θC
f p > 3µ,

where µ denotes the coefficient of friction.

2.4. Description of the Mode I Fracture Toughness of the Laminate KIC

In the work of Camanho et al. [3], it is noted that KIC obtained from Equation (1)
combined with experimental data of σ∞ and XL

T is close to that obtained from linear-elastic
fracture mechanics. It means that KIC in the FFMs model can be obtained by the fracture
toughness of the 0◦ lamina without producing significant errors [3], and the corresponding
relationship between them is as follows.

For an anisotropic composite laminate, Ω denotes the ratio of the failure stress of the
sublayer (labeled by a superscript (k)) to 0◦ layer [25], i.e.,

Ω(k)
0 =

σ̄(k)

σ̄0 , (12)

where σ̄0 and σ̄(k) are the remote stresses for 0◦ layer and the sublayer labeled k when final
failure occurs, and these two parameters can be obtained by the improved Puck’s failure
theory considering stress redistribution caused by matrix cracks mentioned in Section 2.3.
Based on Equation (5), the failure stresses of the sublayer and 0◦ layer are expressed as

σ̄(k) =
K(k)

IC

Y(k) · F
( a

W
)
·
√

πa

σ̄0 =
K0

IC
Y0 · F

( a
W
)
·
√

πa

. (13)

Substituting Equation (13) to Equation (12), K(k)
IC is obtained as

K(k)
IC =

Y(k)

Y0 ·Ω
(k)
0 · K

0
IC. (14)

According to the relationship between the fracture toughness and the energy release
rate, the energy release rate of the sublayer is [26]

G(k)
IC =

[
K(k)

IC

]2

E(k)
eq

, (15)

where the effective modulus E(k)
eq of the sublayer is

E(k)
eq =

√
2E(k)

y E(k)
x√√√√√ E(k)

y

E(k)
x

+
E(k)

y

2G(k)
xy
− ν

(k)
xy

. (16)
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The energy release rate of the whole composite laminate is

GL
IC =

∑N
k=1 G(k)

IC · t
(k)

tL , (17)

where N is the number of plies, tL is the total thickness of the laminate and t(k) is the
thickness of the sublayer.

Based on (15) and (17), the mode I fracture toughness of the laminate KIC is

KIC =
√

GL
IC · EL

eq, (18)

where EL
eq is the effective modulus of the laminate.

Until now, σxx(0, y), KI, XL
T and KIC in Equation (1) have been obtained by the basic

properties of the lamina and stacking sequence of the laminate. Substituting (2), (5), (18)
and the unnotched strength XL

T to (1), the crack extension at failure l is obtained from the
following equation:

4πl
∫ R+l

R (FhFw)
2ada

R2
k

{∫ R+l
R

[
2 + ξ2 + 3ξ4 −

(
K∞

T − 3
)
(5ξ6 − 7ξ8)

]
dy
}2 =

1
Y2

(
KIC

XL
T

)2

. (19)

From the analysis of Equation (19), the integral in the numerator of (19) can be solved
numerically by Simpson’s rule and that in the denominator can be solved analytically.
Once l is determined, the remote stress at failure or failure strength of the laminate can be
obtained by one of Equation (1).

3. Sensitivity Analysis of Uncertainties

The sensitivity analysis (SA) is of great importance in structural safety designing
considering uncertainties. SA can be classified into two types: local sensitivity analysis
and global sensitivity analysis. Among these two methods, global sensitivity analysis is
the most widely used because it can measure the influence of uncertain input variables on
output variables in the whole distribution area. In this paper, the sensitivity of the uncertain
materials on notched strength reliability of the composite laminate is assessed by Sobol’s
global sensitivity indices [27,28]. A brief introduction of this method will be shown next.

There are some input variables of which the total number is m. The input variables
can be expressed as

X = [X1, X2, · · · , Xm], (20)

and the response function is

Y = f (X) = f (X1, X2, · · · , Xm), f : Rm → R. (21)

Sobol proposed the variance-based importance measurement indices using ANOVA
decomposition [29]. It is noted that ANOVA decomposition is unique when the components
of X are independent of each other, and the components are orthogonal to each other. The
ANOVA-representation of response function is

f (X1, X2, · · · , Xm) = f0 + ∑
i

fi(Xi) + ∑
i

∑
j>i

fij(Xi, Xj) + · · ·+ f12···m, (22)

where the total number of summands is 2m. Furthermore, the expression of constant term is

f0 = E(Y) =
∫

f (X)
m

∏
i=1

[
gXi (xi)dxi

]
, (23)
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where gXi (xi) represents probability density function of Xi. The first order term is obtained
as the remain part when f0 is subtracted from the mathematical expectation of the response
function for other variables except Xi, i.e.,

fi(Xi) = E(Y|Xi)− E(Y) =
∫

f (X)
m

∏
j 6=i

[
gXj(xj)dxj

]
− f0. (24)

The second order term is

fij(Xi, Xj) = E(Y|Xi, Xj)− fi − f j − E(Y) =
∫

f (X)
m

∏
k 6=i,j

[
gXk (xk)dxk

]
− fi − f j − f0. (25)

and higher order terms can also be obtained by analogy method.
According to orthogonality of decomposition terms, the corresponding variance de-

composition of (22) is

V(Y) = ∑
i

Vi + ∑
i

∑
j>i

Vij + · · ·+ V12···m, (26)

where
Vi = V( fi(Xi)) = V(E(Y|Xi)), (27)

Vij = V( fij(Xi, Xj)) = V(E(Y|Xi, Xj))−V(E(Y|Xi))−V(E(Y|Xj)). (28)

and so on for higher orders. The total variance (unconditional variance) is obtained as

V(Y) =
∫

f 2(X)gX(x)dx− f 2
0 , (29)

where gX(x) is the joint probability density function of X.
The global sensitivity index based on variance is defined as the ratio of right side items

in (26) to total variance. Therefore, the total effect index of Xi is

STi = Si + ∑
j>i

Sij + · · ·+ S12···m =
Vi
V

+ ∑
j>i

Vij

V
+ · · ·+ V12···m

V
, (30)

and it means the contribution of Xi itself and interaction with other variables to output
response’s variance.

4. Results and Discussion
4.1. The Failure Strength of the Notched Laminate

In this section, we apply the developed failure model in Section 2 to multidirectional
fiber-reinforced composite laminates. Three kinds of materials (IM7-8552, AS4/3502, Hexcel
F593 epoxy system) are used to validate the new failure model for composite laminates
with arbitrary stacking sequences. Furthermore, the material properties of unidirectional
laminas are listed in Table 1.

The quasi-isotropic [90◦/0◦/± 45◦]3s notched laminates with IM7-8552 are chosen
as the first batch of examples. All the laminates are with a constant width-to-diameter
ratio ( W

2R ) which is equal to 6, and with five varying hole diameters: 2R = 2 mm, 4 mm,
6 mm, 8 mm, 10 mm. Figure 2 presents a comparison of the experimental results from
Ref. [3] and the predictions of our theory for the laminate under the uniaxial tension in the
x-direction. The figure shows that the predictions of our theory for notched strength agree
well with experiments, and the maximum error is 8.25%. It is noted that FFMs criterion is
also accurate. However, FFMs method used in Ref. [3] requires the static strength of the
laminate in advance imposing its limited application, whereas our predictions are only
based on the basic properties of the lamina and stacking sequence of the laminate.
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Table 1. Material properties.

Material IM7-8552 AS4/3502 Hexcel F593epoxy System

Longitudinal modulus E1 (GPa) 171.4 [5] 140 [22] 120 [30]
Transverse modulus E2 (GPa) 9.1 [5] 10.3 [22] 9 [30]

In-plane shear modulus G12 (GPa) 5.3 [5] 5.7 [22] 4.7 [30]
In-plane Poisson ratio ν12 0.3 [5] 0.3 [22] 0.35 [30]

Longitudinal tensile strength Xt (MPa) 2326 [5] 1862 [22] 1451 [30]
Longitudinal compressive strength Xc (MPa) 1200 [5] 1483 [22] 1306 [30]

Transverse tensile strength Yt (MPa) 62 [5] 51.7 [22] 98 [30]
Transverse compressive strength Yc (MPa) 199.9 [5] 206.9 [22] 215 [30]

In-plane shear strength S12 (MPa) 92.3 [5] 81 [22] 40 [30]
Fracture toughness of the 0◦ plies K0

IC
(
MPa
√

m
)

85.2 [26] 80.2 1 157.4 2

1 Derived from fracture toughness of [0◦/90◦/±45◦]s laminate [22] and Equations (14)–(18). 2 Derived from
notched strength from tests of [45◦/0◦2 /−45◦/0◦2 /45◦/0◦2 /−45◦/90◦]s laminate [30] and Equations (14)–(18).

For a fixed width-to-diameter ratio ( W
2R =6), the crack extension at failure l increases

and tends to be stable with increasing hole size when hole diameter is larger than 0.5 mm
as shown in Figure 3.

The quasi-isotropic [0◦/90◦/± 45◦]s notched laminates with AS4/3502 are chosen
as the second batch of examples. All the laminates are with a constant plate width (W)
equal to 152.4 mm, and with different hole diameters: 2R = 0.4572 mm, 2.54 mm, 6.35 mm,
7.62 mm, 10.414 mm, 15.494 mm. Figure 4 presents a comparison of the experimental
results from Ref. [22] and the predictions of our theory for the uniaxial tensile strength
in the x-direction. The figure shows that the predicted notched strength decreases with
increasing hole diameter. The predicted results agree well with the experiments, and the
maximum error is 8.1%.

0 2 4 6 8 10
200

400

600

800

1000

IM7/8552  
[90°/0°/±45°]3S

W/(2R)=6

N
ot

ch
ed

 st
re

ng
th

 s
 

/M
Pa

2R/mm

 Experiments
 Our theory
 FFMs 

Figure 2. The uniaxial tensile strength of [90◦/0◦/± 45◦]3s IM7-8552 notched laminates with varying
hole diameters.
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0 2 4 6 8 10
0.8

1.0

1.2

1.4

1.6

1.8

2.0

l/m
m

2R/mm

IM7/8552  
[90°/0°/±45°]3S
W/(2R)=6

Figure 3. The crack extension at failure of [90◦/0◦/± 45◦]3s IM7-8552 notched laminates with varying
hole diameters.

0 5 10 15
200

400

600

800
   AS4/3502  
[0°/90°/±45°]S

N
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ed

 st
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ng
th

 s
 

/M
Pa

2R/mm

 Experiments
 Our theory

Figure 4. The uniaxial tensile strength of [0◦/90◦/± 45◦]s AS4/3502 notched laminates with varying
hole diameters.

For a fixed plate width (W = 152.4 mm), the crack extension at failure l decreases with
increase of the hole size as shown in Figure 5.
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Figure 5. The crack extension at failure of [0◦/90◦/± 45◦]s AS4/3502 notched laminates with varying
hole diameters.

The symmetrical balanced laminates with material of Hexcel F593 epoxy system are
chosen as the third batch of examples. All the laminates are with a constant plate width
(W) and hole diameter (2R) equal to 32 mm and 6.35 mm, respectively. Table 2 presents a
comparison of the experimental results from Ref. [30] and the predictions of our theory for
the uniaxial tensile strength in the x-direction when 2R

W = 0.2. The predicted results agree
well with the experiments, and the maximum error is 10.7% when the laminate stiffness
ratio of effective stiffness in the x-direction to y-direction is 1.55.

Table 2. The notched tensile strength of symmetrical balanced laminates with material of Hexcel F593
epoxy system.

Label Stacking Sequence Stiffness Ratio (Exp.) σ∞ (MPa) (Exp.) σ∞ (MPa) (Pre.) Error

1
[
−45◦/90◦4/45◦/90◦4/0◦

]
s 0.22 211 199 −5.7%

2
[
−45◦/90◦2/45◦/90◦2/
−45◦/90◦2/45◦/0◦

]
s

0.35 244 243 −0.4%

3
[
−45◦/90◦2/45◦/0◦

]
2s 0.65 337 355 5.3%

4 [45◦/0◦/− 45◦/90◦]3s 1.00 378 417 10.3%
5

[
45◦/0◦2/− 45◦/90◦

]
2s 1.55 486 538 10.7%

4.2. Importance Measurement Analysis of Material Properties to Notched Tensile Strength

In this section, we apply the importance measurement analysis of input variables in
Section 3 to notched composite laminates. The statistical information for AS4/3501-6 of
unidirectional laminas is listed in Table 3. It is assumed that the distribution type is log-
normal, and the coefficient of variation for moduli and Poisson ratio is 0.1. The laminates
are with a constant plate width (W) equal to 38.1 mm.
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Table 3. Statistical information for AS4/3501-6.

Random Variables Mean Value Standard Deviation Distribution Type

Longitudinal modulus E1 (GPa) 138 [26] 13.8 Log-Normal
Transverse modulus E2 (GPa) 9.65 [26] 0.965 Log-Normal

In-plane shear modulus G12 (GPa) 5.24 [26] 0.524 Log-Normal
In-plane Poisson ratio ν12 0.3 [26] 0.03 Log-Normal

Longitudinal tensile strength Xt (MPa) 1969 [19] 196.9 [19] Log-Normal
Longitudinal compressive strength Xc (MPa) 1480 [19] 177.6 [19] Log-Normal

Transverse tensile strength Yt (MPa) 48 [19] 2.88 [19] Log-Normal
Transverse compressive strength Yc (MPa) 200 [19] 16 [19] Log-Normal

In-plane shear strength S12 (MPa) 79 [19] 8.69 [19] Log-Normal
Fracture toughness of the 0◦ plies K0

IC
(
MPa
√

m
)

82.8 [26] - -

Firstly, the [45◦/0◦/− 45◦/90◦]2s notched laminate under tension is taken as an
example to analyse the influence of uncertain material properties on notched strength.
The influence of hole diameters on importance measurement of material is also studied.
The laminates are with different hole diameters: 2R = 2 mm, 3.81 mm, 6.35 mm. The total
effect indices of material properties for the laminate with various hole diameters are shown
in Table 4. It shows that longitudinal tensile strength Xt has the greatest influence on the
failure strength of the notched laminate with a fixed hole diameter, which means fiber
rupture is the final damage mode. The notched strength is also affected by transverse
modulus E2 and in-plane shear modulus G12. As to notched laminates with different hole
diameters, the influence of material properties is almost unchanged with hole sizes. It
means the influence of hole size on importance measurement of material is small.

Secondly, a notched laminate with one fixed hole diameter (2R = 3.81 mm) is chosen to
analyse the influence of uncertain material properties on notched strength. The influence of
stacking sequences on importance measurement of material is also studied. The laminates
are with different stacking sequences:

[
−45◦/90◦4/45◦/90◦4/0◦

]
s, [−45◦/90◦2/45◦/0◦]2s,

[45◦/0◦/− 45◦/90◦]2s, [45◦/0◦2/− 45◦/90◦]2s. Table 5 shows total effect indices of ma-
terial properties for the laminate with different stacking sequences. Results show that
Xt has the greatest influence on notched strength, and it increases with increasing stiff-
ness ratio. However, the second important factor is different for notched laminates with
different stacking sequences or stiffness ratios. For

[
−45◦/90◦4/45◦/90◦4/0◦

]
s notched

laminate, G12 has the second largest influence on notched strength which means shear
failure is dominant. G12 decreases as stiffness ratio increases. For [−45◦/90◦2/45◦/0◦]2s and
[45◦/0◦/− 45◦/90◦]2s notched laminates, E2 has the second largest influence which means
matrix failure is dominant, and it decreases with increasing stiffness ratio. However, E1
has the second largest influence for [45◦/0◦2/− 45◦/90◦]2s notched laminate. The different
influence of material properties means that the progressive failure processes are different
for laminates with diverse stacking sequences.

Table 4. Importance factors regarding material properties for [45◦/0◦/− 45◦/90◦]2s notched
laminate (%).

Random Variables 2R = 2 mm 2R = 3.81 mm 2R = 6.35 mm

Longitudinal modulus E1 0.11 0.36 0.33
Transverse modulus E2 0.72 1.74 1.77

In-plane shear modulus G12 0.64 0.73 0.73
In-plane Poisson ratio ν12 0.01 0.01 0.01

Longitudinal tensile strength Xt 98.65 96.59 96.85
Longitudinal compressive strength Xc 0 0 0

Transverse tensile strength Yt 0.06 0.07 0.07
Transverse compressive strength Yc 0 0 0

In-plane shear strength S12 0.04 0 0.05
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Table 5. Importance factors regarding material properties for notched laminate with 2R = 3.81 mm (%).

Random Variables [−45◦/90◦4 /45◦/90◦4 /0◦]s
(Stiffness Ratio 0.22)

[−45◦/90◦2 /45◦/0◦]2s
(Stiffness Ratio 0.65)

[45◦/0◦/ − 45◦/90◦]2s
(Stiffness Ratio 1)

[45◦/0◦2 / − 45◦/90◦]2s
(Stiffness Ratio 1.55)

Longitudinal modulus E1 4.06 0.19 0.36 1.48
Transverse modulus E2 3.85 3.05 1.74 0.79

In-plane shear modulus G12 15.08 2.29 0.73 0.14
In-plane Poisson ratio ν12 0.01 0.01 0.01 0.02

Longitudinal tensile strength Xt 68.2 92.59 96.59 99
Longitudinal compressive

strength Xc
0 0 0 0

Transverse tensile strength Yt 0.67 0.11 0.07 0.03
Transverse compressive

strength Yc
0 0 0 0

In-plane shear strength S12 0.06 0.04 0 0.02

In order to analyse the effect of one input variable on tendency of response variable,
it is assumed that one input variable is log-normal or normal distribution and other
input variables are fixed to the corresponding mean values. Here, we assume that Xt,
G12, E1 and E2 are log-normal, and the influence of theses four material properties on
the tendency of failure strength for [45◦/0◦/− 45◦/90◦]2s and

[
−45◦/90◦4/45◦/90◦4/0◦

]
s

notched laminates with 2R = 3.81 mm are shown in Figure 6 and Figure 7, respectively.
Both two figures show that the notched strength increases with increasing Xt and G12,
but with decreasing E2. With increasing E1, the notched strength of [45◦/0◦/− 45◦/90◦]2s
laminate increases, but that of

[
−45◦/90◦4/45◦/90◦4/0◦

]
s notched laminates decreases.
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Figure 6. The influence of material properties on the tendency of failure strength for notched laminate
with [45◦/0◦/− 45◦/90◦]2s and 2R = 3.81 mm: (a) Longitudinal tensile strength Xt. (b) In-plane
shear modulus G12. (c) Longitudinal modulus E1. (d) Transverse modulus E2.
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Figure 7. The influence of material properties on the tendency of failure strength for notched laminate
with

[
−45◦/90◦4/45◦/90◦4/0◦

]
s and 2R = 3.81 mm: (a) Longitudinal tensile strength Xt. (b) In-plane

shear modulus G12. (c) Longitudinal modulus E1. (d) Transverse modulus E2.

5. Conclusions

In summary, a developed failure theory and importance measurement of the material
properties are discussed in this paper. Firstly, a failure theory for fiber-reinforced composite
laminates with a circular hole is developed, by combining finite fracture mechanics criterion
with improved Puck’s failure theory. In this theory, only basic material properties of
unidirectional laminas are needed to predict notched strength of the laminate, without
in advance mechanical information of the laminate. The predicted results are also in
good agreement with experimental results. Secondly, importance measurement of the
uncertain material properties is analysed. Results show that longitudinal tensile strength
has the greatest influence on the notched strength, and increases with increasing stiffness
ratio. The second important factor is different for the notched laminate with different
stacking sequences. In-plane shear modulus has the second largest influence for notched
laminate with stiffness ratio 0.22, and decreases as stiffness ratio increases. Longitudinal
and transverse modulus are also important to notched strength. The notched strength
increases with increasing longitudinal tensile strength and in-plane shear modulus, but
with decreasing transverse modulus.
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