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Abstract: The magnetic response of a frustrated K2Cr3As3 sample having triangular arrays of twisted
tubes has been studied by means of dc magnetization measurements as a function of the magnetic
field (H) at different temperatures ranging from 5 K up to 300 K. Looking at the magnetic hysteresis
loops m(H), a diamagnetic behavior of the sample was inferred at temperatures higher than 60 K,
whereas at lower temperatures the sample showed a hysteresis loop compatible with the presence
of ferrimagnetism. Moreover, spike-like magnetization jumps, both positive and negative, were
observed in a narrow range of the magnetic field around 800 Oe, regardless of the temperature
considered and they were compared with the theoretical predictions on frustrated systems. The field
position of the magnetization jumps was studied at different temperatures, and their distribution can
be described by a Lorentzian curve. The analogies between the expected features and the experimental
observations suggest that the jumps could be attributed to the magnetic frustration arising from the
twisted triangular tubes present in the crystal lattice of this compound.

Keywords: Cr-based material; K2Cr3As3; DC magnetic characterization; magnetic hysteresis loops;
magnetic instabilities; magnetic frustration

1. Introduction

In the last few years, the quasi-one-dimensional chromium-based superconductor
K2Cr3As3 [1] has been extensively studied. Indeed, it exhibits many interesting properties,
regarding the interplay between magnetism, structural properties, superconductivity and
quasi-one-dimensionality, shared with other compounds of the family A2Cr3As3 (where
A=Na [2], Rb [3], and Cs [4], as opposed to K) and with related compounds belonging
to the series ACr3As3 [5,6]. For completeness, we mention that compounds having the
same crystal structure but based on molybdenum A2Mo3As3 [7–10] have been discovered
and other Cr-based superconductors, such as the CrAs, have recently been intensively
studied [11–16]. Regarding the magnetic properties of K2Cr3As3 and similar materials,
both theoretical [17,18] and experimental [1] studies suggest that the ground state is non-
magnetic. Theoretically, the nonmagnetic ground state of K2Cr3As3 was attributed to
the triangular configuration of the chains composed of chromium atoms which leads to
frustration. Experimentally, it has been found that these systems are paramagnetic with
small hysteresis loops at low temperature (T ≈ 10 K), attributed to defects or magnetic
impurities [4], probably due to the presence of KCr3As3, which instead is magnetic and
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presents a cluster spin-glass state [5]. The magnetic frustration arises from the presence of
twisted triangular tubes with Cr atoms at the vertex of the triangle. Nevertheless, there are
theoretical speculations that show that K2Cr3As3 possesses strong magnetic fluctuations
and is close to a non-collinear magnetic ground state in–out [19]. Additionally, nuclear
quadrupole resonance indicates that moving along the series A = Na, Na0.75K0.25, K, Rb, the
system tends to approach a possible ferromagnetic quantum critical point [20]. However,
neutron scattering measurements have established the presence of phonon instabilities
related to structural distortions in K2Cr3As3 [21]. These distortions from the triangular
structure make the system no longer frustrated. Very recently, we have shown that there is
a strong interplay between the structural distortions and magnetism, and we have found
that, for the distorted structure, a collinear intrachain ferrimagnetic ground state for the
KCr3As3 and an instability towards the same collinear intrachain ferrimagnetic phase for
K2Cr3As3 [22,23]. Assuming intrachain ferrimagnetism, the system could exhibit long-
range ferrimagnetism or spin-glass phase depending on the interchain magnetic coupling.
Our results predict that K2Cr3As3 is nonmagnetic but close to a long-range ferrimagnetic
phase, while the KCr3As3 goes in a spin-glass phase. Interestingly, when the K2Cr3As3 is
considered, the application of a strain can drive the compound from one phase to another,
since the non-magnetic phase and the ferrimagnetic one are close in energy [23].

Here, we study a Cr-based quasi-one-dimensional sample containing K2Cr3As3 by
means of dc magnetization measurements as a function of magnetic field H at different tem-
peratures, ranging from 5 K up to 300 K. Looking at the magnetic hysteresis, we find that at
low temperatures the sample shows a ferrimagnetic behavior while at temperatures higher
than 60 K a diamagnetic behavior is induced. Since we know that magnetization jumps
are theoretically predicted in frustrated quantum spin lattices when the magnetic field is
ramped, we have directed our attention to verifying the presence of such magnetization
jumps in our sample. In this framework, several spike-like magnetization jumps have been
found in a range of −1000 Oe < H < 1000 Oe, and this can be explained as due to magnetic
instabilities. This paper is organized as follows: in the next section, the experimental results
are presented, Section 3 is devoted to the results and discussion whereas the last one
contains the conclusions.

2. Materials and Methods

A needle-shaped K2Cr3As3 single crystal with a length and thickness equal to 2.5 mm
and 0.1 mm, respectively, was analyzed. The fabrication details are reported elsewhere [1,24].
The composition of our sample is K1.81Cr3.57As3. Therefore, the ratio between potassium
and chromium is 0.507, which is almost halfway between 0.333 (ratio of the KCr3As3) and
0.666 (ratio of the K2Cr3As3). So, we can assume that the sample is composed of sizeable
parts of both KCr3As3 and K2Cr3As3, as already reported in the literature [25], which are
both superconducting with a Tc = 5 K and Tc = 6.1 K, respectively [1,6].

The sample was characterized in a dc magnetic field applied perpendicularly to its
length. In particular, the dc magnetic moment as a function of the field m(H) was measured
using a Quantum Design PPMS-9T equipped with a VSM option. To avoid the effect on
the sample response due to the residual trapped field inside the PPMS dc magnet [26], this
field was reduced to below 1·10−4 T [27]. For what concerns the m(H) measurements, the
sample was first cooled down to the measurement temperature (5 K, 15 K, 30 K, 55 K, 60 K,
100 K, and 300 K) in zero field and thermally stabilized for at least 20 min [28,29]. Then,
the field was ramped up to +9 T, then back to −9 T, and finally to +9 T again to acquire the
complete hysteresis loop [30,31].

3. Results and Discussion

In order to study the magnetic response of the sample, the magnetic moment m was
measured as a function of the magnetic field H in a temperature range from 5 K up to 300 K.
In Figure 1, some of the measured m(H) curves are reported.
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Figure 1. m(H) curves at different temperatures.

It can be noted that up to 55 K the m(H) curves show a magnetic behavior that could
be associated with the paramagnetism, ferromagnetism or ferrimagnetism phenomenology.
The presence of a superconducting phase is not visible because the measurement at the
lowest temperature (T = 5 K) is very close to the nominal Tc of both phases and the
applied field can be high enough to suppress the superconducting state. For T = 60 K, the
sample is in a diamagnetic state as reported in Figure 2. This suggests a magnetic transition
temperature at the 55 K < T* < 60 K.
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Figure 2. m(H) curves at T = 55 K and T = 60 K.

In Figure 3, the m(H) at T = 30 K is reported, focusing on the region near-zero field for
evaluating the possible existence of coercivity. It is well visible how the coercive field is
different from zero (Hc ≈ 100 Oe), highlighting that there is no possibility of a paramagnetic
behavior. It is worth noting that Hc 6= 0 Oe was obtained for all the temperatures below
60 K (see also Figure 4). Since for T ≥ 60 K the sample is diamagnetic, a coexistence of two
sublattices characterized by two opposite magnetic orderings is plausible. This situation
is not in contrast with a ferrimagnetic behavior, in agreement with the results reported in
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Refs. [22,23]. We point out that our measurements are bulk ones, so the results obtained are
not due to surface effects.
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Figure 4. m(H) curves in the range−1000 Oe < H < +1000 Oe. Several spike-like magnetization jumps
(indicated by open red circles) can be observed at different fields for all the reported temperatures.

An interesting feature of the m(H) curves reported in Figure 1 is visible by focusing
on the magnetic response of the sample in the field range −1000 Oe < H < +1000 Oe. In
fact, several spike-like magnetization jumps, both positive and negative, were observed
in different fields, regardless of the temperature considered (see Figure 4). The red cir-
cles drawn in the panels of Figure 4 individuate the field position of the magnetization
jumps. It is important to highlight that the magnetization jumps are visible for all the
reported temperatures independently of the magnetic state that characterizes the sample
and independently of the positive or negative values of the applied magnetic field.

Such jumps can arise for different reasons. One possibility is a first-order transition
between different ground states such as the spin flop transition in classical magnets or in
strongly anisotropic quantum chains [32]. Another possibility is related to a macroscopically
large degeneracy in the exact ground states of the full quantum system, for some values of
the applied magnetic field [33–35]. This last option is a quite general phenomenon emerging
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in highly frustrated systems. Interestingly, it has theoretically been reported that the jumps
may occur just below saturation and should be observable in magnetization experiments
if the coupling constants are small enough to make the saturating field accessible [33].
Therefore, as the lattice structure of the material here investigated contains twisted tubes
triangularly arranged [22,23], we are confident that the jumps observed in our samples
originate from the geometrical frustration of the crystal structure of K2Cr3As3. However,
in our compound, we have an additional dynamical effect that makes the magnetic state
after the jump energetically unstable. As a result, we have spikes in magnetization. These
jumps in magnetization were calculated to be of the order of 0.003 Bohr magneton per Cr
atom; therefore, they are relatively small compared to the magnetic moments that the Cr
atoms can reach. Theoretical calculations [22] predict K2Cr3As3 to be nonmagnetic but on
the verge of magnetism, sustaining interchain ferromagnetic spin fluctuations while the
intrachain spin fluctuations are antiferromagnetic. In this regime, the magnetic moment
of the Cr ion is strongly suppressed compared to the bare Cr magnetic moment. In our
material, the Cr atom is expected to have a magnetic dipole moment equal to 3.3 Bohr
magnetons [23], so the found value of 0.003 Bohr magneton suggests that only a fraction
of about one-thousandth of all the Cr atoms participate in the magnetization jump. It is
also worth pointing out that the presence of the same magnetization jumps was verified
on other samples of the same batch obtaining the same results, and several tests were
performed in order to exclude the presence of artifacts due to the experimental apparatus
(see Supporting Material file). The field positions of the magnetization jumps (Hjump) were
extracted from all the panels of Figure 4 and a histogram was constructed by setting the
frequency expressed as a percentage (%) on the y axis and the Hjump values (taken as the
absolute value) on the x axis. The result is reported in Figure 5. Each bin has a width
of 50 Oe with the highest one ranging between 800 Oe and 850 Oe and showing a 30%
presence with respect to the total values.
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Figure 5. Distribution of the Hjump values. The blue curves represent the fit of the data with a Lorentz
distribution curve. The event at approximately Hjump = 320 Oe is an outlier of the distribution and is
present only in the measurement at lowest temperature.

It is important to note that the interval ranging between 700 Oe and 900 Oe contains
more than the 85% of the total values, indicating a narrow field region where most of the
magnetization jumps occur. This suggests the presence of magnetic processes activating
in correspondence with a specific magnetic energy, allowing the magnetization to jump
from a magnetic state to another one. The magnetic energy associated with the measured
magnetization jump was evaluated starting from the hypothesis that, as mentioned before,
just approximately one-thousandth of all the Cr atoms present in the sample participate in
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the phenomenon. As a result, we obtained magnetic energy values at Hjump which are com-
parable with the thermal energy ones calculated in the temperature range considered for
our measurements. The distribution reported in Figure 5 can be well fitted by a Lorentzian
curve (peak average ≈820 Oe), which usually characterizes the behavior observed in the
absorption spectra.

4. Conclusions

To study the magnetic response of a K2Cr3As3 sample, dc magnetization measure-
ments were performed as a function of the magnetic field at different temperatures ranging
from 5 K up to 300 K. By analyzing the magnetic hysteresis loops m(H), we found a mag-
netic transition at T ≈ 60 K from a diamagnetic state (T ≥ 60 K) to a paramagnetic response
(T < 60 K) compatible with the overall ferrimagnetic behavior of the sample. Moreover, fo-
cusing on the magnetic response of the sample in the field range−1000 Oe < H < +1000 Oe,
we found magnetization jumps in a narrow range of magnetic fields. These jumps, theoret-
ically predicted in step-like form, in our case were observed experimentally in the form
of spikes, and this behavior is compatible with the presence of magnetic frustrations in
quantum spin lattices. The field positions of the magnetization jumps were extracted at
different temperatures, reported in a histogram, and then fitted by a Lorentzian distribu-
tion curve. We found that more than 85% of the values were included in the field range
700 Oe ≤ H ≤ 900 Oe, suggesting that the lattice needs a specific magnetic energy to allow
the magnetization to jump from a magnetic state to another one. Further investigations on
the dynamical effect that makes the observed jumps unstable are necessary to fully address
these new findings.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ma15062292/s1, Figure S1: Spike-like magnetization jumps; Figure S2:
Artifacts due to experimental apparatus.
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