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X-ray reflectometry results 

 

 

The XRR measurements were performed using an additional vertical slit limiting incident 

X-ray radiation to 1.5 mm across the metal wedge which corresponds to a change in metal 

thickness by 0.75 nm. The determined thickness of YIG films ranges between 38.9 and 42.4 

nm pointing to good stability of deposition conditions. The roughness of YIG layers grown on 

metal spacers is increased to 1.0-1.5 nm in comparison to the roughness of the YIG layer grown 

directly on the GGG substrate (0.7 nm). The determined critical angle of YIG films on top of 

metal spacers ranges from 0.602° to 0.640°, in congruence with 0.618° for a YIG/GGG 

reference measurement, and therefore suggests a consistent density of YIG layers. 

  



Gi-XRD measurements of YIG / Ir / GGG (111) 

 

 

 

 

Grazing incident X-ray diffraction for YIG / Ir / GGG (111) sample. The measurements 

were taken for incident angles �� between 0.35-1.00° and show the polycrystalline structure of 

both films. Dashed lines mark reflection positions for bulk YIG and Ir [42, 45]. Analyzing the 

width of the highest intensity reflection (024) for YIG with the Scherrer formula, the estimated 

crystallite size yields 16.9 ± 2.7 nm as averaged from these four scans. The determined lattice 

parameter of YIG is equal to 1.235 ± 0.004 nm in agreement with the bulk value (1.2375 nm) 

[42]. 

  



AFM additional data 

 

 

 

 

 

 

 

 

Estimation of crack width based on AFM surface imaging indicating a maximal separation distance between parts of the YIG 

film. Error bars denote the standard deviation of the mean represented by points. The statistics is based on 30 crack 

measurements for each sample. 

  



VNA-FMR basic data 

 

Kittel relation and linewidth dependence on frequency for: (a) YIG/Pt/GGG (111), (b) YIG/Pt/GGG (001), (c) YIG/Ir/GGG 

(111), and (d) YIG/Au/GGG (111) samples. 



 

(a) Kittel relation and (b) linewidth dependence on frequency for the epitaxial YIG grown on GGG substrate. The sample was 

prepared directly in the pulsed laser deposition chamber and have not been in any contact with the magnetron plasma. From 

the fittings we estimate the effective magnetization ���� =137.5 ± 0.1 kA/m, the Gilbert damping parameter � =(4.8 ± 

0.4)∙10−4, and the inhomogeneous linewidth broadening �	∆�	 =0.41 ± 0.05 mT. 

  



VNA spectroscopy results for YIG / Au / GGG (111) 

 

 

 

VNA spectroscopy results measured with lithographically patterned antennas for (a-c) YIG (40 nm) / Au (3.5 nm) / GGG (111), 

and (d-f) YIG (40 nm) / Au (4 nm) / GGG (111). (a,d) Color-coded reflection parameter S22 showing the FMR absorption. 

(b,e) Color-coded transmission parameter S12 for the magnetic field aligned parallel to the antennas (�
 = 90°). (c,f) Color-

coded angular dependence of S12 spectrum at �	� = 25 mT. Inset depicts in-plane magnetic field orientation with respect to 

the antenna geometry. In all figures, the real part of the scattering parameter Spq is plotted. 

  



Spin-wave packet evolution in a dispersive medium 

The wavefunction can be calculated using the inverse Fourier transformation: 

 ���, �� ∝ � ���������� ���!�"�#�# , (S1) 

where ���� is derived from  

 ���� ∝ � ���, � = 0������"�#�# , (S2) 

and the pulse at time � = 0 with carrier wavenumber �% and the spatial width &� has a form: 

 ���, � = 0� ∝ ���'(')�*
+,'* ���-�. (S3) 

Here, we truncate the dispersion relation to the second-order term �� − �%�/ in Taylor 

expansion 

 ���� = ���%� + �� − �%��1��%� + 2/ �� − �%�/�11��%�, (S4) 

and find that the integral in Eq. (S1) yields 

 ���, �� ∝ 2
324� 55��-�!/7/8'*9 �� :'(')(;5�<-�=*,�=� >*��?��,!�, (S5) 

 ���, �� = �%� − ���%�� +  55��-�!/ 55*��-�!*4@8'+ �� − �	 − �1��%���/, (S6) 

 &/��� = &�/ + A 55��-�/8' �B/
. (S7) 

The ��?��,!� component of the solution describes only wave oscillations. It is however worth 

noting that �11��%� ≠ 0 in Eq. S6 is responsible for an additional modulation of the oscillations. 

By taking the absolute value |���, ��| we can identify the signal envelope and better read 

off the temporal evolution of the wave packet: 

 |���, ��| ∝ E 8'8�!� ��F* :'(')(;5�<-�=,�=� >*
. (S8) 

The exponent in Eq. (S8) shows that the wave packet travels at the group velocity �1��%� and 

it broadens in time. Concurrently, the amplitude G&� &���⁄  of the signal decreases. As can be 

inferred from &��� (Eq. (S7)), both the pulse broadening and the amplitude drop result from 

�11��%� ≠ 0. Hence, it is important to extend the analysis to account for intrinsic magnetic 

losses related to the choice of a spin-wave medium. 



By introducing a decay term ��IJKK ���! into Eq. (S1), where ���� is the effective damping 

parameter and repeating the calculations, we find: 

 |���, ��| ∝ E 8'G8*�!�4IJKK  55��-�! ��/IJKK  ��-�!��F* :'(')(;5�<-�=,�=� >*
. (S9) 

Hence, we can calculate the decay length of propagating spin-wave packet by numerically 

solving the following equation: 

 
2L = 3 8'G8*�M�4IJKK  55��-�M ��IJKK  ��-�M, (S10) 

with relaxation time N = OP/�1��%�. The decay length OP is defined here as the distance at 

which the amplitude of the wave packet has been reduced by a factor of �. 

 

Calculation of the effective damping parameter 

The relation between the relaxation time τ and the spectral width Δω can be found using 

the Fourier transform of a damped oscillator: 

 TU��� = � T������ !#	 "�, (S11) 

 T��� = ��=V �� )!. (S12) 

Calculating integral in Eq. S11, one obtains the real part of TU��� as a Lorentz function: 

 ReYTU���Z = FVAFVB*4� � )�* , (S13) 

so that the relation between τ and Δω is given by: 

 
2M = [ / . (S14) 

Hence, the relaxation term in Eq. S12 can be written in terms of an effective damping parameter 

����: 
 ��=V = ��IJKK !, (S15) 

by using 

 ���� = [ / . (S16) 



As can be seen from Eq. S16, the frequency-swept FMR experiment, in which \� = 2]\^, 

provides, therefore, direct information on relaxation process and can be used for evaluation of 

the effective damping straightforwardly. However, in the field-swept ferromagnetic resonance, 

the FWHM linewidth ∆� is described with the Heinrich formula: 

 �	∆� = /I_ � + �	∆�	, (S17) 

where � is the intrinsic Gilbert damping parameter, and ∆�	 is the inhomogeneous linewidth 

broadening. The required transition to the frequency domain can be well approximated with: 

 \� = ` `
 ∆�. (S18) 

Combining equations S16-S18, the effective damping parameter now yields: 

 ���� = A� + _a)∆
)/ B 2_a)
` `
. (S19) 

An explicit form of Eq. S19 can be found calculating the derivative 
` `
 from Kittel equations. 

For an in-plane applied magnetic field �bc, for which 

 � = �	dG�bc��bc + �����, (S20) 

and � = 2]^, one obtains: 

 ����bc = A� + _a)∆
)efg B 31 + A_a)iJKKefg B/
, (S21) 

which provides accurate numerical estimates for ^ > 1 GHz. For the out-of-plane applied field 

�nc, when 

 � = �	d��nc − �����, (S22) 

one finds: 

 ����nc = � + _a)∆
)efg . (S23) 

Both equations S21 and S23 clearly show the relevance of ∆�	 parameter on magnetization 

relaxation. 

  



Spin wave dispersion relations 

 

For the calculations presented in Fig. 3 (a-c) the following spin-wave dispersion relations 

have been used [60, 61]:  

 surface spin-waves (SSW), film magnetized in-plane, �o⃗ ⏊�oo⃗ : 

 ���� = d3��	� + r�s�/���	� + r�s�/ + �	�t� + A2/ �	�tB/ �1 − ��/�P�, (S24) 

 

 backward volume spin-waves (BVSW), film magnetized in-plane, �o⃗  || �oo⃗ : 

 ���� = d3��	� + r�s�/� A�	� + r�s�/ + �	�t 2�L(<u
�P B, (S25) 

 

 forward volume spin-waves (FVSW), film magnetized out-of-plane, �o⃗ ⏊�oo⃗ : 

 ���� = d3��	� + r�s�/ − �	�t� A�	� + r�s�/ − �	�t 2�L(<u
�P B, (S26) 

 

where � = 2]^ is the angular frequency, d is the gyromagnetic ratio, �	 is the vacuum 

permeability, � is the wavenumber, � is the bias magnetic field, �t is the saturation 

magnetization, r�s is the exchange stiffness, " is the film thickness. Within Eq. S24-S26, the 

group velocity �1��� = ` `�  and the second derivative �11��� = `* `�*  have been calculated. 

  



Fourier transform of the magnetic pulse and the spin-wave packet 

 

(a) Gaussian-enveloped sinusoidal magnetic pulse (z-component, ℎw) used for spin-wave packet excitation and (b) its Fourier 

transform FT yℎwz. (c) Propagating spin-wave packet (z-component, {w) and (d) its Fourier transform FT y{wz. 

 

Basic material properties of bulk Ir, Pt, Au, YIG and GGG 

 

Material Atomic 

number 

Melting point 

(°C) 

Thermal 

expansion 

coefficient 

(×10−6 K−1) 

Tensile 

strength 

(MPa) 

Plasticity 

Iridium 77 2450 6.4 500-1000 Brittle 

Platinum 78 1770 8.8 117 Ductile 

Gold 79 1060 14.2 138 Ductile 

YIG ‒ 1555 9.9-11.4 ‒ Brittle 

GGG ‒ 1800 8.3-8.7 ‒ Brittle 

 

Data was taken from Ref. [48, 63-66].  

 


