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Abstract: A multi-fidelity (MF) surrogate involving Gaussian processes (GPs) is used for designing
temporal process maps in laser directed energy deposition (L-DED) additive manufacturing (AM).
Process maps are used to establish relationships between the melt pool properties (e.g., melt pool
depth) and process parameters (e.g., laser power and scan velocity). The MFGP surrogate involves
a high-fidelity (HF) and a low-fidelity (LF) model. The Autodesk Netfabbr finite element model
(FEM) is selected as the HF model, while an analytical model developed by Eagar-Tsai is chosen
as the LF one. The results show that the MFGP surrogate is capable of successfully blending the
information present in different fidelity models for designing the temporal forward process maps
(e.g., given a set of process parameters for which the true depth is not known, what would be the
melt pool depth?). To expand the newly-developed formulation for establishing the temporal inverse
process maps (e.g., to achieve the desired melt pool depth for which the true process parameters are
not known, what would be the optimal prediction of the process parameters as a function of time?), a
case study is performed by coupling the MFGP surrogate with Bayesian Optimization (BO) under
computational budget constraints. The results demonstrate that MFGP-BO can significantly improve
the optimization solution quality compared to the single-fidelity (SF) GP-BO, along with incurring
a lower computational budget. As opposed to the existing methods that are limited to developing
steady-state forward process maps, the current work successfully demonstrates the realization of
temporal forward and inverse process maps in L-DED incorporating uncertainty quantification (UQ).

Keywords: laser-directed energy deposition; melt pool; process maps; multi-fidelity Gaussian process;
Bayesian Optimization; uncertainty quantification

1. Introduction

Laser-directed energy deposition (L-DED) offers tremendous opportunities in manu-
facturing metallic components because of its ability to fabricate three-dimensional near-net-
shape parts with location-specific materials and microstructures [1]. Additionally, L-DED
has been used to repair components made of different metallic materials such as steel [2],
nickel [3], and titanium [4] alloys. In L-DED, powder or wire feedstocks are delivered at
the desired location. The feedstock is melted by a high-power laser heat source as shown
in Figure 1a. Process parameters such as the laser power, laser/substrate relative velocity
(traverse speed or scan speed), and feedstock feed rate can be varied to achieve the desired
deposit quality. The melt pool (as shown in Figure 1b,c), formed by the high-power laser
source, plays a critical role in controlling the final microstructure of the L-DED part [5]. For
example, investigations have revealed that high energy density produced larger melt pools
in L-DED [6].

Materials 2022, 15, 2902. https://doi.org/10.3390/ma15082902 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15082902
https://doi.org/10.3390/ma15082902
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-8701-0436
https://orcid.org/0000-0003-3295-6296
https://orcid.org/0000-0002-6053-0092
https://doi.org/10.3390/ma15082902
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15082902?type=check_update&version=1


Materials 2022, 15, 2902 2 of 27

Figure 1. (a) A schematic of the L-DED process. (b) The melt pool evolution during the L-DED process
for a representative power, P = 1000 W, and scan velocity, v = 1 mm/s showing a near-symmetric
melt pool. (c) A second representative melt pool evolution at P = 1000 W, v = 25 mm/s showing
the capability of Netfabb® in capturing an asymmetric melt pool evolution. The melt pool reaches
steady-state much earlier in (c) than (b) due to higher v.

The melt pool shape and sizes are also affected by environmental conditions and part
geometry in L-DED. For example, both simulations and experiments have proven that the
presence of surfactants was a critical factor in dictating the shape of the melt pool as the
surfactants were found to affect the surface tension [7]. The scan pattern was also found
to affect the shape and size of the melt pool due to heat transfer across adjacent tracks
and/or layers. Due to these parameters, the melt pool size may vary both in time and space
during the L-DED process. Such a variation can detrimentally affect microstructures and,
therefore, the mechanical properties of the part. Hence, the impact of toolpath on the melt
pool geometry was also investigated [8].

Experimental investigation for evaluating the impact of these different process param-
eters on the melt pool properties is rather expensive. Moreover, since the thermophysical
properties of the metallic materials are drastically different from one another, such an
investigation has to be performed for each material of interest. Computational modeling
can provide a much-required alternative for estimating the process parameters in L-DED.
However, the process parameter development would still require a thorough exploration
of the parameter space involving a design-of-experiment (DoE) approach. Computational
investigation of such a DoE can be expensive if high-fidelity models are used for predicting
the melt pool properties. Hence, it is critical to develop efficient methods for generating
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process maps that would efficiently estimate the melt pool properties as a function of the
process parameters.

Despite recent advances in computational modeling-based process mapping of L-DED
additive manufacturing (AM) processes, much of the existing work is focused on develop-
ing forward maps, i.e., estimating and predicting the steady-state melt pool characteristics
(e.g., melt pool depth and width) as functions of process parameters (e.g., energy density,
power, scan speed, and scan pattern, amongst others) or dimensionless numbers [9]. While
such studies are extremely useful in understanding the impact of processing parameters on
the melt pool properties, they suffer from four critical drawbacks:

• They are computationally expensive when high-fidelity (HF) models are used and less
capable when low-fidelity (LF) models are used [10].

• They are deterministic and cannot define the prediction uncertainties when the simu-
lation data is not available for the process parameters of interest [11].

• They are typically used to generate steady-state forward maps although the evolution
of melt pool is a transient phenomenon as depicted in Figure 1b,c.

• They are seldom combined with computationally efficient optimization routines to-
ward solving the inverse problem.

To address these limitations, one possibility is to blend the information obtained
from the HF and LF simulation models using machine learning tools to develop a multi-
fidelity (MF) [12] surrogate. The MF surrogate, thereafter, can be used as a proxy for
the prediction of the melt pool properties as a function of process parameters at discrete
time instants facilitating the design of temporal process maps. MF surrogates have been
demonstrated to efficiently incorporate the information present in a hierarchy of varied
fidelity models [13,14] to develop inexpensive estimates of the properties of interest. Such
surrogates have been used frequently within the framework of co-kriging [15], where an LF
model output acts as an auxiliary data source to enhance the prediction of an HF model [16].
This method is particularly useful when the HF model is computationally very expensive
and difficult to evaluate. A modification of this approach, known as recursive co-kriging
has been recently developed by Le Gratiet et al. [17,18]. This approach has eventually been
used by Perdikaris et al. [19] to tackle the ’curse of dimensionality’ while dealing with
large datasets. One of the advantages of using MF surrogates is that they can be utilized
as black box optimizers. Such optimizers have been used in a wide variety of engineering
design problems [20–23]. However, such strategies have sparsely been explored in AM,
particularly for optimizing the melt pool geometry.

Inspired by the existing research gap, this paper starts by implementing a multi-fidelity
Gaussian process (MFGP) surrogate to design the forward process maps for the L-DED AM
process at several discrete time instants of the simulation, thereby enabling the design of
temporal process maps. Two different melt pool evolution models, namely, the Autodesk
Netfabbr finite element model (FEM) [24] and the Eagar-Tsai [25] analytical model are
chosen as the HF and LF ones, respectively. The MFGP surrogate predicts the melt pool
depths with uncertainty for process parameters when the true depth is not known. The
results demonstrate that the surrogate is capable of predicting the melt pool depth in
L-DED at a level of accuracy comparable to a representative HF model, but at a fraction
of its computational cost. Once the forward map is designed, the MFGP surrogate is inte-
grated with a Bayesian Optimization (BO) algorithm to design an inverse process map. To
demonstrate the efficacy of the inverse map, a case study is performed to obtain the desired
melt pool depth under computational budget constraints. The optimal process parameters
are found using an approach based on active learning (AL) [26]. Being a Bayesian machine
learning framework, the posterior predictions are probabilistic, and are described by an
output distribution (as opposed to single-valued estimates obtained from conventional
deterministic regression models), which offers a principled methodology of uncertainty
quantification (UQ) [27]. The performance of multi-fidelity Bayesian Optimization (MFGP-
BO) is compared with single-fidelity Bayesian Optimization (SFGP-BO). SFGP-BO utilizes
the HF model as the sole information source. The results demonstrate that MFGP-BO
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can not only find the optimal process parameters faster than SFGP-BO but also with an
improved quality (defined as the percent deviation from the desired melt pool depth).

The paper is arranged in four sections, including the present one. The methodology
section outlines the thermal models for melt pool prediction, MF surrogate development,
and Bayesian Optimization. The next section presents the results, followed by a conclusion
section outlining the applications and future perspective of the research. All simulations
reported in this paper are conducted on an Intel® Xeon® Gold 6230 CPU processor with
128 GB of RAM.

2. Methods
2.1. Thermal Models for Melt Pool Predictions

Several different simulation models are available in the open literature for the pre-
diction of melt pool properties in L-DED. Eagar and Tsai [25] improved Rosenthal’s [28]
analytical model by replacing the point heat-source with a Gaussian distribution. The
Eagar-Tsai model has been widely employed to conduct rapid simulations for a wide range
of materials. An analytical model involving metal fluid flow and mass transfer in addition
to heat transfer in L-DED was developed by Gan et al. [29]. The solidus and liquidus
thermal properties were considered, thereby, capturing the Marangoni convection which
showed a strong influence on the melt pool shape [30]. This model was experimentally
validated for single-layer IN718 deposits on AISI 1045 carbon steel [31]. Huang et al. [32] de-
veloped a comprehensive analytical model, from Rosenthal’s 3D temperature distribution,
by coupling both mass and energy flows. This model accommodated for the attenuation of
laser power due to the change in clad geometry and powder-gas stream interactions. The
model was experimentally validated for single-layer depositions of IN625. The effect of
Marangoni flow was incorporated by using a modified thermal conductivity parameter.

While analytical models for L-DED provide valuable melt pool-related information,
they include several simplifications. Computational capabilities using finite element models
(FEMs) can address these simplifications. Anderson et al. [33] simulated L-DED of nickel-
base superalloy CMSX-4® using a model developed by DebRoy [34]. However, it did not
consider the variation of material properties with temperature. Kamara et al. [35] used
a commercial FEM suite, Ansys Fluent to simulate the transient evolution of melt pool
for IN718 powder-fed L-DED. Other commercial software are also available. Autodesk’s
Netfabbr [24] is a software application tailored for AM that has reduced the computation
time significantly through adaptive meshing-based FEM techniques [36]. Netfabbr uses
a nonlinear Newton–Raphson-based code and solves for the transient behavior of the
L-DED process.

MF surrogates are developed, in this paper, to supplement the available HF predictions
with inexpensive LF predictions. Combining data from multiple sources naively may result
in biased predictions which do not accurately reflect the physics. Hence, the construction
of a reliable MF surrogate depends on the careful selection of its constituent HF and LF
models. Based on the existing literature [9], an analytical model (e.g., Eagar-Tsai), due to its
many simplifications, shows lower computational cost. On the contrary, an FEM model
(e.g., Netfabb®), shows higher computational expense but incorporates several modeling
parameters (e.g., temperature-dependent thermophysical properties). These two models
can define the hierarchical fidelity levels since they are defined by the same governing
equations that explain the underlying physical phenomenon, provided they are numerically
comparable in their discretized domains (i.e, both models have similar grid sizes). This
observation forms the basis for selecting the Eagar-Tsai and Netfabb® models as LF and
HF models, respectively, in this paper.

2.1.1. Eagar-Tsai’s Model

The LF model used in this paper is the analytical model developed by Eagar and
Tsai [25] which solves for the three-dimensional temperature distribution produced by a
traveling distributed heat source moving on a semi-infinite plate. This model is a modi-
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fication of the Rosenthal’s model where a Gaussian heat distribution is used instead of a
point source. Figure 2 explains the coordinate system used in the Eagar-Tsai model. The
heat source is traveling with a uniform speed of v in the x-direction, and is assumed to be a
2D surface Gaussian. The temperature T(xc, yc, zc, t), at a particular location (xc, yc, zc) and
time t is calculated as:

T(xc, yc, zc, t)− T0 =
αLP

πρpcp(4πap)1/2

∫ t

0

dt′(t− t′)−1/2

2ap(t− t′) + σL2 e
− (xc−vt′)2+y2

c
4ap(t−t′)+2σL

2−
z2
c

4ap(t−t′) (1)

Here, T0 is the initial temperature of the substrate, αL is the absorptivity of the laser
beam, P is the power, ρp, kp, and cp are the density, thermal conductivity, and specific

heat capacity of the material, respectively, ap ,
kp

ρpcp
is the thermal diffusivity of the

material, t′ is the dummy integration variable, σL is the distribution parameters, and v is
the scan velocity. Similar to Rosenthal’s equation, the Eagar-Tsai model also makes several
assumptions: (i) absence of heat transfer due to convection and radiation; (ii) constant
thermal properties for the material; (iii) quasi-steady state semi-infinite medium, and
absence of any phase change.

Figure 2. Schematic illustrating the coordinate system of the analytical model. The figure is
reproduced from [37] under the terms of the Creative Commons Attribution 4.0 License from
http://creativecommons.org/licenses/by/4.0/ (accessed on 9 April 2022).

A reasonable agreement between the theoretical and experimental data for steel,
titanium and aluminum is demonstrated by Eager and Tsai [25]. This model has been widely
used by researchers and has been incorporated with experimental studies for evaluating
the melt pool evolution in L-DED processes to develop process mapping strategies.

2.1.2. Autodesk Netfabb® Model

Netfabb® model by Autodesk, a non-linear decoupled 3D transient FEM solver, is used
as the HF model [36,38]. The underlying methodology of Netfabb® rests on the decoupled
or weakly coupled modeling assumption that the relationship between the thermal and
mechanical behaviors are unidirectional so that the thermal history affects the mechanical
behavior, but the vice-versa does not hold. The Netfabb® model includes Marangoni
convection, convection and radiation heat losses, and the temperature-dependent thermo-
physical properties omitted by the Eagar-Tsai model.

The model domain is determined based on the scan velocity range so that the domain
is large enough in the scan direction such that the melt pool reaches a steady-state. For

http://creativecommons.org/licenses/by/4.0/
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thermal investigations, the energy balance is the governing equation, which is converted to
a weak formulation using the Galerkin approach [39]. The distribution of heat through the
part is described by the Fourier’s conduction equation. The model uses a 3D volumetric
heat source. The thermal boundary losses include thermal radiation, free convection, and
forced convection. The total heat loss flux from the model is thus given by,

q = heff(Ts − T∞) (2)

heff = hfree + hforced + hradiation (3)

Here, Ts is the surface temperature, T∞ is the ambient temperature, heff is the effective
heat transfer coefficient which is a summation of the free convection (hfree), forced convec-
tion (hforced), and radiation (hradiation). Free convection arises due to the thermal gradients
developed during the L-DED process while forced convection arises from the shielding gas
and powder flowing over the melt pool. This model has been experimentally validated
for L-DED processes for a popular nickel-base superalloy, IN625 [39] showing excellent
agreement between the simulation and experimental data.

2.2. Surrogate Development

This subsection briefly presents the mathematical fundamentals of the GP and MF
surrogate that integrates the LF and HF thermal models [40,41].

2.2.1. Gaussian Process (GP) Surrogate

The surrogate development strategy is based on a class of stochastic processes called
’GPs’ that assume any finite collection of random variables to follow a multivariate jointly
Gaussian distribution. For a finite collection of inputs, x, the corresponding function
outputs, y are assumed to have a multivariate jointly Gaussian distribution,

y ∼ N (µ(x) , k(x, x’)) (4)

Here, N implies a Gaussian distribution. The underlying GP is completely charac-
terized by a mean function: µ(x) , E[y], and a covariance function: k(x, x′) , E[y −
µ(x))(y′ − µ(x′))] [27]. Here, E[y] denotes the expectation of y. x′ and y′ denote an input
other than x and the corresponding functional output of it, respectively. In the context of
the melt pool prediction, each input point comprises of different (P, v) combinations. The
melt pool depths (d) corresponding to the (P, v) combinations are jointly Gaussian. The
training data-set comprises of xtrn , (Ptrn, vtrn) as the inputs and the known melt pool
depths, ytrn , dtrn as the outputs. The test data-set comprises of xtst , (Ptst, vtst) as the
inputs for which the melt pool depths are unknown. The conditional distribution of the
outputs at the test locations is given by:

ytst|ytrn, xtrn, xtst ∼ N (µtst, Σtst) (5)

Here,

µtst = K(xtst, xtrn)[K(xtrn, xtrn) + σε
2I]−1ytrn (6)

Σtst = K(xtst, xtst)−K(xtst, xtrn)[K(xtrn, xtrn) + σε
2I]−1K(xtrn, xtst) (7)

Here, I is the identity matrix and K is the covariance matrix. Thus, the predicted
posterior distribution of the outputs at every test data point is also a Gaussian distribution,
characterized by the mean, µtst and covariance, Σtst. A detailed mathematical account of
GPs can be found in [27].
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2.2.2. Multi-Fidelity (MF) GP Surrogate

Often computational models present a hierarchy of fidelities for a given process. HF
models are generally more capable, but expensive. On the other hand, LF models are
typically less capable, but cheaper. To develop process maps, an extensive use of HF
models can be computationally infeasible. In such cases, it would be judicious to adopt
intelligent strategies that leverage the computational inexpensiveness of the LF models by
using them more frequently.

MF surrogate is a statistically-learned framework [12] that integrates the information
present in all fidelities to develop a ’proxy’ which can predict outputs with the accuracy
of HF models, but with significantly inexpensive computational overhead. The general
structure of MF information source is shown in Figure 3, which shows several levels of
fidelities in the models. Such a framework relies on data-driven learning of the correlation
among the different fidelities. Co-kriging approaches have been studied extensively for
performing the joint estimation of the outputs from correlated variables [12–14]. The co-
kriging approach employed in this work is based on the autoregressive formulation of
Keneddy and O’Hagan [15]. MFGPs using co-kriging approaches rely on formulating
separate surrogates for each fidelity which are coupled together through an appropriate
covariance function in a GP setting.

Figure 3. Presence of a hierarchy of fidelities in modeling platforms. Statistical learning integrates
multi-fidelity (MF) information.

For an input set of process parameters, x, the autoregressive formulation for 2 fidelities
is given by:

y2 = ρy1 + δ(x) (8)

Here, y1 is the low-fidelity output and y2 is the high-fidelity output. ρ quantifies
the correlation between y2 and y1. The Gaussian process, δ(x) represents the discrepancy
between y1 and y2. These outputs, y1 and y2, take the jointly Gaussian distribution of
the form:

Y =

[
y1
y2

]
∼ N

0,

 k1(x1, x′1; θ1) + σ2
ε1

I ρk1(x1, x′2; θ1)
ρk1(x2, x′1; θ1) ρ2k1(x2, x′2; θ1)+

k2(x2, x′2; θ2) + σ2
ε2

I

 (9)

Here, k1 and k2 are the kernel functions, σ2
ε1

and σ2
ε2

are the noise levels, θ1 and θ2
are the hyperparameters, where the subscripts 1 and 2 correspond to LF and HF models,
respectively. The Negative Log Marginal Likelihood (NLML) in a two-fidelity setting is
given by:

− log p(Y|X, θ1, θ2, ρ, σ2
ε1

, σ2
ε2
) =

1
2

log|K|+ 1
2

YTK−1Y− NL + NH
2

log2π (10)

Here, X and Y are the combined observed inputs and their outputs from the LF and HF
models, respectively. NL and NH correspond to the number of observed input-output data
from LF and HF models, respectively. The MFGP methodology is outlined in Algorithm 1.
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Algorithm 1 Multi Fidelity Gaussian Process

Require: Low-fidelity input, x1; Low-fidelity output, y1; Hyperparameter of the low
fidelity kernel, θ1; High-fidelity input, x2; High-fidelity output, y2; Hyperparameter of
the high fidelity kernel, θ2; Kernel function, k (for simplicity, here k1 = k2); Test input,
xtst; Noise-level, σ2

ε (for simplicity, here σ2
ε1

= σ2
ε2

)

1: L = cholesky(K +σ2
ε I) . K as calculated from Equation (9)

2: Y = [y1 y2]
3: α = LT \ (L \ Y)
4: ψ1 = ρk(xtst, x1, θ1)
5: ψ2 = ρ2k(xtst, x2; θ1) + k(xtst, x2; θ2)
6: Ψ = [ψ1 ψ2]

7: f̂xtst = Ψ.α . predictive mean
8: β = LT \ (L \ΨT)
9: V[ fxtst ] = ρ2k(xtst, xtst, θ1) + k(xtst, xtst; θ2)−Ψβ . predictive variance

The kernel function at every fidelity level has its own hyperparameter. The choice of
the kernel function is a critical element for the success of a GP algorithm since it encodes
the correlation between the points in the feature space. Typically, squared exponential
kernels are best suited for interpolating smooth functional relationships. However, in this
paper, Matérn kernels, with shape parameters of 5/2, are used since their length-scales
are less prone to be affected by non-smooth regions, thereby improving performance in
these regions. [40,42]. The MFGP is learnt by optimizing the hyperparameters through
minimizing NLML using the Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-
BFGS) algorithm [43]. While the current formulation focuses on a two-fidelity setup, this
can be extended to higher fidelities by making appropriate modifications in the covariance
matrix which correlates different levels of fidelity [15].

2.3. Bayesian Optimization (BO)

This subsection briefly presents the mathematical fundamentals of the Bayesian Opti-
mization for single-fidelity (SF) and multi-fidelity (MF) surrogates [40,41].

2.3.1. Single-Fidelity Gaussian Process with Bayesian Optimization (SFGP-BO)

In this description, the term optimization is used to denote maximization of an objective
function. A minimization problem can be posed similarly by taking the negative of the
objective function. In a single-fidelity setting, there is a single objective function f . To
optimize f over its domain, the solver needs to find:

x̂ = argmax
x∈X∗

f (x) (11)

Here, ’argmax’ finds the argument that gives the maximum value from an objective
function, f . The functional form of f is typically unknown and, hence, a gradient-free or
black-box optimization is often utilized. BO is one such black-box optimization technique [44]
that leverages the predictions through a surrogate for sequential active learning to find the
global optima of the objective function. The AL strategies find a trade-off between explo-
ration and exploitation in possibly noisy settings [45–47], which facilitates a balance between
the global search and local optimization through acquisition functions. One commonly used
acquisition function in BO is Expected Improvement (EI). A detailed formulation of EI can
be found in the work of Mockus et al. [48] and Jones et al. [45].

The objective function, f (x) is often represented as a GP, which yields a posterior
predictive Gaussian distribution characterized by the mean µ(x) and standard deviation
σ(x) for x ∈ X∗, where X∗ is the search space of the optimization challenge. When the
optimization framework involves a single-fidelity GP, it is referred to as single fidelity GP
(SFGP)-based optimization. The optimization algorithm proceeds sequentially by sampling
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x̂ = argmaxxEI(x) at every step of the iteration process to add on to the dataset, after which
the GP surrogate is retrained with the new data set to predict the acquisition potential
for the next iterative step. This process continues until an optimum is reached, or the
computational budget is extinguished. Since the acquisition potential is predicted over
the entire search space by the surrogate, BO can achieve fast predictions without a lot of
function calls in the search space (i.e., without having to run the simulations to obtain the
objectives at all the search locations). This process otherwise, might be computationally
infeasible when the search space is high-dimensional and the simulations are expensive.

2.3.2. Multi-Fidelity Gaussian Process with Bayesian Optimization (MFGP-BO)

In the presence of multiple levels of fidelities, the recent work of Sarkar et al. [40]
presents a demonstration of choosing appropriate acquisition functions for the HF and
LF models to guide the search for optimum using MF surrogates. The HF predictions
are chosen using the constrained EI acquisition function, while the LF predictions are
selected using the GP-based Mutual Information Acquisition function (GP-MI) [49]. The
rationale behind employing GP-MI for LF selections is in its mathematical formulation:
GP-MI would preferentially promote exploration at the initial stages of optimization, and
gradually drive exploitation as the global prediction becomes progressively more accurate in
the subsequent iterations. Since a majority of engineering applications involves expensive
and possibly limited HF evaluations, GP-MI fits the requirements of being exploratory at
the initial stages where inexpensive LF evaluations can be leveraged to learn the process
parameter space [40]. The algorithm implemented for MFGP-BO methodology is outlined
in Algorithm 2.

Algorithm 2 MFGP—Bayesian Optimization

Require: Search space for optimization, X∗; MFGP prior with mean function, µ(x) and
kernel function, k(x, x’); objective function, J(t, P, v); number of optimization steps
allowed, Nopt; NH , NL, accepted tolerance for the melt pool depth, ε

1: for i← 1 to Nopt do
2: if |d(t, P, v)− d∗| < ε then
3: Perform HF simulations at x̂ = argmaxxEI(x)
4: Augment data with HF predictions, update MFGP
5: Perform LF simulations at x̂ = argmaxxGP−MI(x)
6: Augment data with LF predictions, update MFGP
7: else
8: break
9: end if

10: end for

3. Results and Discussion
3.1. Melt Pool Predictions from Thermal Models

Single crystal nickel-based superalloys have been increasingly deployed in gas turbines
owing to their excellent high-temperature properties. CMSX-4® is one such popular second-
generation ultra high-strength superalloy that is selected as the candidate alloy in this
paper [50]. The life-cycle of these expensive parts comprising CMSX-4® is often limited
by blade tip wear and crack, thereby requiring a feasible method of repair that ensures
directional solidification in the repaired zones. L-DED has proved to be successful in
achieving this objective [51]. A major determinant of the growth of SX epitaxial layers
during L-DED is the laser process parameters. A lower laser power can increase the thermal
gradient and promote epitaxial growth. A higher laser scanning velocity yields a shallow
melt pool and stimulates epitaxial growth [52]. This outlines a critical need to propose
processing windows for the manufacture and/or repair by L-DED. This section summarizes
the results obtained from the low- and high-fidelity thermal models used to simulated the
single scan deposits of CMSX-4®.
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3.1.1. Predictions from LF Eagar-Tsai Model

The thermo-physical properties of CMSX-4r chosen for the LF model are those re-
ported by Gäumann et al. [51]: kp = 22 W/(m·K), ρp = 8700 kg/m3, cp = 690 J/(kg·K), and
the liquidus temperature TL = 1660 K. Other modeling parameters and their selected values
are: T∞ = 25 ◦C and αL = 0.35. The laser beam radius is maintained at 0.39 mm.

Figure 4 shows the two-dimensional melt pool at different time instants illustrating the
temporal nature of the melt pool evolution for laser power, P = 1000 W and scan velocity,
v = 1 mm/s. The results are also reported in Table 1. The melt pool reaches a steady-state
after t = 20 s. Similar behavior is observed for other P and v combinations as well.

Figure 4. Temporal variation of the (a) melt pool depth and (b) melt pool length and width, for
P = 1000 W and v = 1 mm/s.

Table 1. Melt pool dimensions calculated using Eagar-Tsai for P = 1000 W and v = 1 mm/s.

Time (s) Melt Pool
Depth (mm)

Melt Pool
Width (mm)

Melt Pool
Length (mm)

2 1.238 2.751 2.792
4 1.334 2.934 2.994
6 1.375 3.012 3.083
8 1.397 3.056 3.133
10 1.410 3.083 3.164

3.1.2. Predictions from HF Netfabb® Model

Single-track single-layer simulations are performed using the Netfabb® model. The
simulation domain is shown in Figure 5. The laser parameters, i.e., laser radius and
absorptivity, and the ambient temperature are kept identical to the Eagar-Tsai model. The
effective heat transfer coefficient is set as heff = 25 W/m2C [53]. The temperature of the
substrate plate is kept at 25 ◦C. The laser vector file containing the laser power, laser vector,
start and end positions of the laser, laser radius, scan speed, and start time, is fed into
the Netfabb® model before creating the simulation domain. The temperature-dependent
properties for CMSX-4® are obtained from JMatPro® [54] and shown in Table 2.

The L-DED-specific mesh features are varied to implement adaptive meshing which
reduces the number of mesh elements [55] away from the melt pool as shown in Figure 6a.
These features are (i) the number of elements per heat source radius, (ii) the number of
fine layers below the heat source, and (iii) the number of mesh adaptivity levels. A mesh
convergence test is conducted by varying the quality of the mesh for the simulation domain
described in Figure 5. The difference between the melt pool depths calculated from the
model having the finest mesh (340,400 elements) and the selected model (119,392 elements)
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is 0.54%, which is lesser than the minimum of 5% specified by Netfabb® for a good mesh
convergence [53]. Figure 6b shows the results obtained from the mesh convergence study.

Figure 5. Simulation domain with boundary conditions.

Table 2. Temperature dependent properties for CMSX-4®.

T ◦C Density (g/cm3)
Thermal

Conductivity
(W/(m.K))

Specific Heat
(J/(g.K))

27 8.592 11.902 0.426
127 8.552 12.655 0.454
327 8.49 14.794 0.53
527 8.41 16.875 0.542
727 8.318 19.274 0.589
927 8.211 22.226 0.652

1127 8.079 26.922 0.795
1327 7.921 35.331 0.62
1527 7.396 35.395 0.693
1727 7.208 38.915 0.698

Figure 6. (a) Adaptive meshing applied to the simulation domain. (b) The variation of the melt pool
depth and the simulation time with the number of mesh elements.
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The melt pool properties are obtained from the Netfabbr model using ParaView
[56], an open-source, multi-platform data analysis and visualization application. The
thermal models are post processed to extract an isovolume corresponding to the melt pool
that is defined by the liquidus temperature of the material i.e., TL= 1660 K for CMSX-4r.
Figure 7 shows the evolution of melt pool at four different time instants for P = 1000 W and
v = 1 mm/s with the corresponding three-dimensional melt pool volume extracted. The
results obtained from the Netfabbr model also reinstate the temporal nature of the melt
pool necessitating the requirement of temporal process maps.

Figure 7. ZX cross section of the model simulations and the corresponding extracted isovolume to its
right, showing the temporal variation of melt pool dimensions P of 1000 W and scan velocity v of
1 mm/s.

3.1.3. Comparison of Melt Pool Properties—Eagar-Tsai vs. Netfabb®

While in practice, the ranges of P and v depend on the experimental apparatus, a
higher scan velocity will require a larger domain in the scan direction to ensure that the melt
pool has reached a steady-state, which, consequently, will increase the cost of simulation of
the Netfabb® model. The relationships between the the melt pool geometry (e.g., length,
depth, and length to depth ratio) and the scan velocity over a wide range of power is shown
in Figure 8a. The steady state melt pool length and depth are calculated using Netfabb®

for CMSX-4®. This near-linear behavior indicates that the conclusions obtained from the
current study will be applicable to other domain sizes as well. It is found that the simulation
domain size of 22 mm × 6 mm × 4 mm accommodates the P range of (300 W–1300 W) and
v range of (0.1 mm/s–1.5 mm/s) selected for the process parameter space, Xspace.

The LF Eager-Tsai model rapidly conducts simulations over the process parameter
space compared to the HF Netfabb® model. Figure 8b shows the time taken by each LF and
HF model, and the ratio of time taken by the HF model to the LF model for each discrete
time instants of the melt pool simulation. In this study, the cost of the Eagar-Tsai model
is the time taken to solve the temperature over a three-dimensional domain that has been
divided into 100 equal divisions in each direction. The cost of the Netfabb® model pertains
to the total simulation time for the final mesh selected after the mesh convergence study.
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Figure 8. (a) The length to depth ratio of the melt pool for different combinations of laser power
and velocity. Similar relationships are also observed for the melt pool length and depth and, hence,
not shown here for brevity. (b) Variation of the cost ratio of HF to LF model at several discrete time
instants of the melt pool simulation. Here tLF is the time taken by LF simulations and tHF is the time
taken by HF simulations.

3.2. Design of Forward Process Maps

The overall methodology for developing the forward process maps is shown in
Figure 9. The first step toward developing a process map is to perform an Latin Hy-
percube Sampling (LHS) [57] in the input data space, Xspace. Each input data point is a
combination of (P, v) values. Each output data point is the corresponding melt pool depths,
dH (depth obtained from HF model) and dL (depth obtained from LF model).

Figure 9. Framework followed for developing the forward process maps at discrete time instants
using SFGP/MFGP. The solid green line indicates the path of the MFGP regression while the dashed
magenta line indicates the path of the SFGP regression.

The MFGP surrogate is, thereafter, formulated as follows:

• LHS is employed to select NL input data points in Xspace for which the LF model is
used to obtain the steady-state melt pool depths.

• Similarly, NH input data points are selected in Xspace through a separate LHS, for
which the melt pool depths are obtained from the HF model.

• Using NL LF input-output data points and NH HF input-output data points, the MFGP
surrogate is trained using the maximum likelihood estimation [12] at each discrete
time instants of simulation.
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LHS is adopted in this work because it is one of the most commonly used statistical
methods for DoE [57], which, by virtue of its high sampling efficiency, is capable of
generating a good spread of the initial input data points over the process parameter
space within a limited number of iterations. The prediction performance of the trained
MFGP surrogate is carried out on a set of N test input points (Xtest) in the process parameter
space (i.e., Xtest ∈ Xspace). The predicted values are, then, compared with the true melt
pool depths (dtrue) which refer to the outputs from the HF Autodesk Netfabbr model at
Xtest. When the number of LF simulations is 0, the MFGP surrogate essentially becomes
an SFGP.

3.2.1. Performance Metrics

To investigate the performance of GP surrogates, the following evaluation metrics
are used:

• Root Mean Square Error, RMSE ,
√

1
N ∑N

i=1 |dpredµ
(i)− dtrue(i)|2. Here, dpredµ

(i)
denotes the mean of the posterior predictive Gaussian distribution at a test input
indexed i in Xtest. dtrue(i) denotes the true melt pool depth at the same test input and
N is the number of test inputs. Additionally, RMSEavg , RMSE/50, when 50 different
DoE initializations are used.

• Total σ of prediction = ∑N
i=1 σpred(i)/50. Here, σpred(i) is the standard deviation of the

posterior predictive Gaussian distribution at a test input indexed with i in Xtest.

3.2.2. Effect of Adding LF Predictions

Each initialization of the MFGP and SFGP surrogates involves a unique choice of the
HF and LF input-output data points for the surrogate formulation. This is achieved through
the generation of unique input data points for each fidelity model using LHS.

Since HF models are typically computationally expensive, it is of critical interest to
investigate if adding more LF simulations to an MFGP surrogate with a limited number
of HF simulations can improve the prediction performance. Figure 10 shows the effect of
adding LF simulations to an MFGP surrogate for which the number of HF simulations
(NH) is constant. Since, in practice, the predictions are often dependent on the training
data choice [58], the regression performance of the MFGP and SFGP surrogates reported in
Figure 10 are based on the average performance over multiple initializations of the initial
DoE of the respective surrogates. An intentional choice of low NH values is adopted since
it is challenging to fit a reasonably good MFGP surrogate when NH is low [40].

Adding data from the LF model results in the reduction of both RMSEavg and total σ
of the prediction. A reduction in RMSEavg corresponds to more accurate predictions of the
melt pool depth, while a reduction in σ indicates higher confidence in the MFGP surrogate
predictions [40]. For NH = 20, Figure 10c shows a 55% reduction in RMSEavg, and 61%
reduction in total σ for NL/NH = 6, as compared to the SFGP surrogate (NL/NH = 0).

A similar trend is also observed for the other two cases of fixed NH data. The highest
reduction in RMSEavg and σ occurs for NH = 20 as NL is increased. This is due to the
presence of a larger amount of HF data in the corresponding MFGP surrogate which
is expected to reduce RMSEavg. But, even for the case with NH = 5, the reductions in
RMSEavg and total σ are found to be 35% and 71%, respectively. This demonstrates the
capability of the MFGP surrogate to efficiently incorporate MF information to improve
the predictive performance as well as to achieve higher confidence in the predictions in a
Bayesian setting, without increasing the total simulation cost significantly.
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Figure 10. Parity plots for (a) SFGP with NH = 20 and (b) MFGP with NH = 20, NL = 120. Variation
of RMSEavg and Total σ as a function of NL by keeping NH fixed at (c) 5 (d) 10, and (e) 20. NL/NH has
been varied from 0 to 6. The performance of MFGP in predicting the melt pool depth is evaluated on a
test set, Xtest of 100 randomly sampled points from Xspace. The results reported are the corresponding
averages of RMSE and σ over 50 different initializations of the MFGP.

3.2.3. Effect of Adding HF Predictions

The effect of adding HF data to MFGP surrogates is shown in Figure 11. NL is kept
fixed at 80 for all MFGPs. The error probability distribution indicates a significant increase
in prediction accuracy as NH is increased from 20 to 40, with almost 60% of the predictions
falling in the bin corresponding to the smallest absolute prediction error for NH = 40.
This probability is calculated as p[0 mm ≤ |dpredµ

− dtrue| ≤ 0.025 mm]. The probability
shows a slight increase with NH = 60, but the overall mean prediction performance appears
to saturate after NH = 40, when a coefficient of determination, R2 = 0.99 and RMSE of
0.029 are achieved. Adding more HF data shows little effect in the mean prediction, as
evinced by the respective R2 and RMSE scores. The uncertainty in prediction, as expected,
progressively decreases with the addition of HF data.
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Figure 11. Effects of adding HF data to MFGP surrogates. (a,d,g,j) Variation of the absolute error
|dpredµ

− dtrue| over Xtest as a function of NH . NH is varied from 20 to 80, in steps of 20, while
keeping NL constant at 80. Each circle on the figure indicates the error at a test input data point
in Xtest. (b,e,h,k) Histograms approximating the probability distribution of the absolute errors in
the prediction over Xtest. The bin probabilities indicate the fraction of points in the test set for
which the absolute values of the prediction error lie within the respective bin limits. (c,f,i,l) Parity
plots comparing the true depths at Xtest (sorted in an increasing order of magnitude) with the
corresponding depths predicted by the respective MFGPs, along with the RMSEs of prediction. The
predicted depth, being probabilistic, is represented by a filled circle indicating the mean (µ), and
vertical bars indicating the associated uncertainty in prediction (µ± 1.0σpred). The individual figure
captions also include the coefficient of determination, R2 in the predicted mean melt pool depths for
the respective MFGP surrogates.

Figure 12 shows the predicted melt pool depths at Xtest along with the prediction error
% and the standard deviation associated with it obtained via an MFGP with NH = 40 and
NL = 80 that results in the high R2 and low RMSE values reported for the same case in
Figure 11f. The results show that a maximum number of 40 HF input-output data points
and 80 LF input-output data points is enough to develop a robust MFGP surrogate to
predict the melt pool properties (e.g., melt pool depth) for the case studied in this work.
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Figure 12. Comparison of (a) the mean predicted melt pool depth with (b) % error calculated as(
dpredµ−dtrue

dtrue

)
× 100%, and (c) standard deviation, σpred associated with each prediction, for MFGP

with NH = 40 and NL = 80 on Xtest of 100 randomly sampled input data points from XSpace.

NLML is minimized using the L-BFGS optimization scheme. Figure 13 shows the
NLML convergence curves for SFGP and MFGP for each case of NH where the MFGP
surrogate is augmented with 80 LF points. The SFGP surrogate is found to be optimized
with a lower number of iterations compared to the MFGP surrogate, for all cases of NH .
However, the MFGP surrogate converges to a better optimum for cases with a lower
number of HF predictions, i.e, NH = 20, 40, and 60. A lower value of NLML corresponds
to a better optimum and, hence, an improved prediction by the surrogate. The MFGP
convergence curves are less susceptible to variations in the number of HF predictions,
unlike SFGP where large disparities in the optimum values are observed with a change in
NH . Naturally, SFGP converges to a better optimum for NH = 80 since it is being trained
with more HF predictions, that are closer to the true values, without any influence from
the less accurate LF predictions. The results bolster the robustness and reliability of MFGP
especially in the data-scarce regime.
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Figure 13. Comparison of convergence of NLML: (a) SFGP for 20, 40, 60, and 80 HF points and
(b) MFGP for 20, 40, 60, and 80 HF points integrated with 80 LF points.

3.3. Design of Inverse Process Maps

While the forward process maps including UQ are extremely critical in identifying
the effects of process parameters on the melt pool depths, it is not sufficient for intelligent
process planning. AM is a spatio-temporally evolving process because of which the thermal
conditions continuously change as a part is built-in layers [37]. This can cause significant
disparities in the microstructures and properties of the first and the last layers [59]. The
melt pool depths vary across different layers and tracks due to the progressive addition
of thermal energy to the part during the build process. Non-uniform melt pool depths in
AM are widely reported in the open literature involving experimental [60,61] as well as
numerical [37,62] investigations. The development of inverse process maps is, therefore, a
critical requirement for achieving a consistent melt pool depth throughout the build process,
even when the thermal conditions change continuously [63]. The inverse process maps
are developed by solving an optimization problem that searches for process parameters
to maintain the melt pool depth at the desired value during a single-layer single-track
L-DED process. Since an integration of the HF model with an optimization tool will be
computationally expensive, this paper proposes to develop the inverse process maps in
an MF setting, whereby the MFGP surrogates are used to solve an optimization problem
under a limited (pre-defined) computational budget.

The MFGP approach described in the previous subsection is extended in the setting of
BO to minimize an objective function: J(t, P, v) , |d(t,P,v)−d∗ |

|d∗ | , where d(t, P, v) is the melt
pool depth obtained at discrete time instants during a representative build process for a
given choice of process parameters (P, v), and d∗ is the desired melt pool depth. The total
duration of the build process is discretized into time intervals ∆t, during which the process
parameters are kept constant at the optimized values of the previous time step. Making the
∆t finer would potentially allow for a smoother variation of process parameters during the
build process. It is easily understood that J(t, P, v) is minimized when d(t, P, v) = d∗ at all
time instants under consideration, and hence, solving the optimization problem amounts
to finding process parameters (P, v) that maintain the melt pool depth close to d∗.

The MFGP-BO optimization algorithm is schematically shown in Figure14 and formu-
lated as follows:

1. First, an initial MFGP surrogate is learned with NH number of HF input-output data
points and NL number of LF input-output data points. LHS is employed to select NL
input data points in the process parameter space, Xspace, for which the LF model is
used to obtain the melt pool depths. Similarly, NH input data points are selected in
the process parameter space, X∗ ∈ Xspace, through a separate LHS, for which the melt
pool depths are obtained from the HF model. It is to be noted that NH << NL.
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2. A prospective HF input data point is selected from the search space Xspace, using the
EI acquisition function [48], and the corresponding output data point is obtained from
the HF model. This input-output data is added to the initial MFGP surrogate.

3. The MFGP surrogate is then retrained, and a prospective LF input data point is
selected from X∗ using the GP-MI acquisition function [49], and the corresponding
output data point obtained from the LF model. Thereafter, this input-output data is
added to the MFGP surrogate, followed by another step of surrogate retraining.

4. This sequential selection of new HF and LF data, followed by surrogate retraining
(Steps 2 and 3) is performed until the optimization budget expires. The optimization
budget limitation is manifested by a maximum allowable Nopt, denoting the number
of sequential optimization steps that are allowed to be performed, and is a user-
defined parameter.

Figure 14. Framework of the MFGP and the SFGP Bayesian Optimization routines. The solid green
line indicates the path of MFGP-BO and the dashed magenta line indicates the path of SFGP-BO.

The optimization framework involving the SFGP surrogate is similar, albeit it only
involves the HF model as the sole fidelity level. Hence, the SFGP optimization algorithm
starts with NH number of HF data for training the surrogate. LHS is employed to select
NH input data points in the process parameter space, Xspace, for which the HF model is
used to obtain the melt pool depths. The selection of new HF input data in X∗ ∈ Xspace is
performed using the EI acquisition function in BO. The output data is obtained from the
HF model. Thereafter, the input-output data is added back to the initial SFGP surrogate for
retraining it, and the sequence continues till the optimization budget expires. Similar to
the regression studies, the optimizations are also carried out over 50 initializations, and
the results reported are the average over these initializations. Since the MFGP surrogate
is used for optimization, analyzing its performance over multiple initializations ensures
that the performance metrics do not reflect a bias inadvertently introduced by the choice
of the initial MFGP surrogate. For example, if an initial MFGP caters to a local cluster in
the search space of process parameters, the surrogate would likely be poor in other areas
of the input domain. One way to counter that problem is to have an initial input-output
training data set that is well spread out, e.g., using separate LHSs for selecting NH and NL
input points from Xspace. However, if the initial MFGP surrogate contains input points that
are close to the true optimal point, there may be a tendency for the optimization routine to
converge quickly to the global optima.

3.3.1. Performance Metrics

The MFGP optimization framework is compared with its SFGP counterpart with
respect to computational savings and the quality of the optimized process parameters. The
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optimization performance of both are based on the average performance over multiple
initializations of the initial DoE to avoid any bias arising from the choice of training data.The
optimization routine is executed only if the initial MFGP/ SFGP surrogate has no (P, v)
input for which the melt pool depth is within (d∗ ± ε) for a pre-defined ε > 0. This ensures
that no optimization routine gets accidentally fortunate with an initial LHS input data point
yielding close to the desired melt pool depth. The performance metrics are: (1) Fraction of
optimization budget consumption (χbudget) and (2) Quality Improvement (QI). The metrics
are defined as follows:

1. χbudget =
N∗/NT

Nopt
, where N∗ = ∑NT

i=1 Ndi∼d∗ . Here, Ndi∼d∗ indicates the optimization
iteration number at which the obtained depth di is closest to d∗ in absolute norm,
NT = number of initializations out of 50 for which the optimization routine is executed,
according to the ε criterion described above. Hence, N∗/NT indicates the average
number of optimization steps required to obtain the process parameters for which the
melt pool depth is closest to the desired value. Normalizing N∗/NT with Nopt, thus,
reflects the fraction of the optimization budget that is consumed.

2. QI = RMSESFGP−RMSEMFGP
RMSESFGP

× 100% where, RMSEMFGP/SFGP =
√

Σ(di−d∗)2

NT
where di is the melt pool depth (mm) closest to d∗ in absolute norm obtained within
Nopt iterations for each initialization, d∗ is the desired depth (mm). The subscripted
MFGP/SFGP denote the RMSE obtained from the MFGP/SFGP surrogates respec-
tively. QI is a measure of comparing the process parameter combinations obtained
from MFGP-BO and SFGP-BO with respect to the closeness of the respective melt pool
depths to the desired depth.

3.3.2. Optimization Performance—SFGP-BO vs. MFGP-BO

The comparison of QIs among different surrogates (Figure 15) shows that the quality
of the optimized design points obtained from MFGP tends to be better than those obtained
from SFGP. QI is the highest with NH = 5 and the lowest with NH = 20 for all time steps.
This is expected since adding HF data points in the initial DoE allows the SFGP surrogate
to learn the response surface better in the input-output space, which results in better
predictions from the SFGP optimization. This analysis shows that MFGP surrogates can
significantly improve the optimization performance particularly in the scarce-data regime.

Figure 16 shows the comparison of the optimization performance between MFGP
and SFGP. Low values of initial NH (NH < 40) are selected for this comparison, since it is
previously observed from Figure 11 that NH = 40 points result in a highly accurate fit in
the input-output space under consideration, and, hence, is expected to perform well in the
optimization phase. The true potential of the optimization algorithm is, therefore, tested
when the initial HF information is not significant enough to start with a good response
surface of the objective function. Such a scarcity of data is a much closer representation
of the real-world design optimization tasks when dealing with very expensive process
models. From Figure 16a–c, it is observed that the MFGP surrogate results in lower χbudget
for all NH selections at several discrete time instants. This indicates, on an average, around
12% reduction in the consumption of the optimization budget is observed for the cases
investigated in this paper. This indicates the benefit of integrating LF information through
MFGP surrogates to identify optimal points faster than SFGP surrogates that solely use the
HF information.
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Figure 15. Quality improvement (QI) compared for the three NH values. Nopt = 5 has been chosen
for all optimization exercises.

Figure 16. Optimization performance metrics for maintaining the melt pool depth at d∗ = 1 mm.
d∗ = 1 mm is selected based on the work by Toyserkani and Khajepour [61]. The search space,
X∗ consists of 1000 randomly sampled input data points from Xspace. For all MFGP surrogates,
NL/NH = 4 is maintained. The optimization is performed starting from t = 2 s till t = 8 s at every
2 s time interval. The maximum time is 8 s since the melt pool depth reaches a steady-state value
within 8 s for the selected geometry and the process parameter range. The optimization is performed
when there are no initial melt pool depth values in the initial MFGP surrogate within 1± 0.03 mm
(ε = 30 µm). A comparison of χbudget for MFGP and SFGP with (a) NH = 5 (b) NH = 10 and
(c) NH = 20. Nopt = 5 is chosen for all optimization exercises.
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4. Conclusions and Future Work

This paper has developed a methodology using MFGP and MFGP-BO for designing
forward and inverse temporal process maps in L-DED. The continuous changes in the
melt pool geometry are predicted by a low-cost MFGP surrogate developed by integrating
two melt pool simulation models. The LF model is based on the analytical Eagar-Tsai’s
model while the HF model is based on Autodesk Netfabb®’s FEM model. The uncertainties
associated with the predictions of the melt pool depths are quantified using GPs. It is
demonstrated that MFGP predictions are more accurate and have higher confidence than
SFGP. Once the temporal forward process maps are developed, MFGP and SFGP are
coupled with BO for developing the inverse process maps. These maps are used to estimate
the process parameters required to achieve the desired melt pool depth. The BO algorithm
minimizes an appropriate objective function that quantifies the deviation of the melt pool
depth from the desired value under computational budget constraints to yield the optimal
process parameters under varying thermal conditions.

The reliability of the optimization algorithm, however, depends on the fundamental
physics addressed by the models. While the HF models are more capable in resolving the
fundamental physics, the computational cost involved in the optimization process can
be significantly high. For example, the cost of running a Netfabb® L-DED model for a
single-track and single-layer simulation as described in this paper is ∼10 times higher
than the Eagar-Tsai’s model at t = 2 s, and ∼150 times higher at t = 10 s. The MFGP-BO,
where the HF model is integrated with the LF model, thus fairs better than the SFGP-BO
by reducing the computational overhead by 12% percent without compromising on the
quality of the optimized process parameters. Such a benefit will continue to increase for
larger domain sizes having multi-layer multi-track depositions. Hence, this algorithm is
particularly conducive for process planning purposes in data-scarce regimes.

The demonstrations of MFGP and MFGP-BO are presented, in this paper, for designing
the forward and inverse temporal process maps, respectively, incorporating UQ for the
melt pool depth. However, the formulation is flexible to accommodate for other properties
such as the residual stress or the mean grain size as long as multiple process models
having different fidelities exist. The formulation can also incorporate more than two
levels of fidelity by appropriately modifying the covariance matrix which determines the
correlations among the different levels of fidelity [15]. The realization of such a formulation
has the potential to reduce the requirement for extensive computational investigation
toward the development of sophisticated model-based feedforward and feedback control
strategies [64] in and beyond L-DED AM. Additional investigations are also planned in the
future as summarized below:

1. Developing multi-dimensional process maps that include other process parameters
such as scan spacing, powder feed rate, and build plate temperature.

2. Augmenting the present two-fidelity surrogate by incorporating experimental data
that would serve as the highest-fidelity level (true values).

3. Using the MF surrogate for constrained optimization e.g., estimating the optimal
parameters for controlling the melt pool depth while being constrained to maintain
the desired microstructure (e.g., % of equiaxed or columnar grain morphology).

4. Formulating an MF framework that allows for the inclusion of heterogeneous input
spaces across different fidelities. For example, the HF model can take multiple process
parameters e.g., scan pattern, hatch spacing, etc. while the LF model can incorporate
only the primary process parameters, P and v. Optimization with such different input
parameter space needs special methods such as heterogeneous transfer learning [65]
to learn from a common subspace of the inputs.
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Abbreviations
The following abbreviations are used in this manuscript:

AL Active Learning
AM Additive Manufacturing
BO Bayesian Optimization
DoE Design of Experiments
EI Expected Improvement
FEM Finite Element Modeling
GP Gaussian Process
HF High Fidelity
L-BFGS Limited Memory Broyden-Fletcher-Goldfarb-Shanno
L-DED Laser-Directed Energy Deposition
LF Low Fidelity
LHS Latin Hypercube Sampling
MF Multi Fidelity
MFGP Multi Fidelity Gaussian Process
MFGP-BO Multi Fidelity Gaussian Process—Bayesian Optimization
MI Mutual Information
NLML Negative Log Marginal Likelihood
SF Single Fidelity
SFGP Single Fidelity Gaussian Process
SFGP-BO Single Fidelity Gaussian Process—Bayesian Optimization
UQ Uncertainty Quantification
Nomenclature
αL Absorptivity of laser beam
δ(x) Discrepancy function of x
ρ Correlation function
θ1, θ2 Hyperparameters of the covariance
q Heat flux
µ(x) Mean function of x
χbudget Fraction of the optimization budget that is consumed
cholesky(A) Cholesky decomposition: L is a lower triangular matrix

such that LLT = A
ρp Material density
ε Pre-defined tolerance in optimized value
σ(x) Variance function of x
σL Distribution parameter
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σpred Standard deviation of the posterior predictive Gaussian
distribution
of the melt pool depth

σε
2, σε1

2, σε2
2 Noise variance

ap Thermal diffusivity of material
cp Specific heat of material
d Melt pool depth
di Melt pool depth closest to desired depth at ith initialization

for which optimization routine is executed
d∗ Desired melt pool depth
dL, dH Predicted melt pool depth from LF and HF models, respectively
dtrue True melt pool depth
dpredµ Mean of the posterior predictive

Gaussian distribution of the melt pool depth
E(y) Expectation of y
f (x) Gaussian process function values, f = ( f (x1), . . . , f (xn))

fx∗ Gaussian process (posterior) prediction (random variable)
f̂x∗ Gaussian process posterior mean
heff Effective heat transfer coefficient
hforced Forced convection heat transfer coefficient
hfree Free convection heat transfer coefficient
hradiation Radiation convection heat transfer coefficient
J Objective function for BO
k, k(x, x′) Kernel functions of GPs
k2, k1 Kernel functions of HF and LF GPs
K Covariance matrix
kp Thermal conductivity of material
NL, NH Number of LF points, Number of HF points
Nopt Maximum allowable optimization iterations
NT Number of initializations for which the optimization

routine is executed
N∗ Sum of optimization iteration numbers at which the

obtained depth is closest to d∗ in absolute norm
Ndi∼d∗ Optimization iteration number at which

the obtained depth di is closest to d∗ in absolute norm
P Laser power
Ptrn, vtrn Training input data: Laser power, velocity
Ptst, vtst Test input data: Laser power, velocity
QI Quality Improvement
RMSE Root mean square error
RMSEavg RMSE averaged over all initializations
RMSEMFGP, RMSEMFGP RMSE calculated for MFGP-BO,RMSE calculated for MFGP-BO
R2 Coefficient of Determination
t Time
t′ Dummy integration variable
tLF, tHF Time taken by LF model (s), Time taken by HF model (s)
T0 Initial temperature
∆t Time step
Ts Surface temperature
T(xc, yc, zc, t) Temperature as a function of coordinates (xc, yc, zc) and time (t)
T∞ Ambient temperature
TL Liquidus temperature
v Laser scan velocity
Σtst Covariance of the posterior Gaussian distribution at test input
µtst Mean of the posterior Gaussian distribution at test input
x, x′ Input variables
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x̂ Value of x that maximizes an objective function
xtrn, xtst Training input, Test input
x2, x1 Inputs to HF and LF models
X Combined input to a GP consisting of x2, x1
XSpace Process parameter space
XTest Test space
X∗ Search space for optimization
y, y′ Output of a GP
Y Combined output of a GP consisting of y2, y1
y2, y1 Outputs from HF and LF models
ytrn, ytst Training output, Test output
V Variance
N Gaussian distribution
α, Ψ, ψ1 ψ2, β Intermediate parameters in Algorithm 1
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