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Abstract: Miscible blends composed of bisphenol-A polycarbonate (PC) and poly(methyl methacry-
late) (PMMA), in which one of them has low molecular weight, were employed to study the surface
segregation behavior during flow. The blend samples showed typical rheological behaviors, such
as simple polymer melts without a long-time relaxation mechanism ascribed to phase separation,
demonstrating that they were miscible. After injection molding, the amounts of a low molecular
weight component on the blend surface were found to be larger than the actual blend ratio. Because
the injection-molded products were transparent despite a huge difference in refractive indices be-
tween PC and PMMA, they showed no phase separation. This result demonstrated that surface
segregation of a low molecular weight component occurred under flow field, which expands the
material design such as tough plastics with good scratch resistance and optical fibers with tapered
refractive index.

Keywords: polymer blends; viscoelastic properties; injection molding; segregation; polycarbonate;
poly(methyl methacrylate)

1. Introduction

Bisphenol-A polycarbonate (PC) and poly(methyl methacrylate) (PMMA) are widely
used as plastic glasses because they are both highly transparent. However, their properties
are significantly different. For example, PC has a low surface hardness and poor scratch
resistance, excellent mechanical toughness, good heat resistance, poor weatherability,
and a high refractive index with large birefringence. In contrast, PMMA has a high
surface hardness and excellent scratch resistance, poor toughness, poor heat resistance,
good weatherability, and a low refractive index with little birefringence. Therefore, it
is desirable to compensate for the defects of one polymer by adding a different one. In
general, however, blends of PC and PMMA exhibit phase separation and consequent loss of
transparency due to the huge difference in the refractive indices of the components (PC 1.57
and PMMA 1.49) [1–7]. Although this makes it easier to study the miscibility of PC/PMMA
blends, the industrial application is greatly restricted. When either component has low
molecular weight, however, they are miscible [2,3,5,8–10]. This is attributed to a low positive
value of Flory–Huggins interaction parameter [6]. The blend system has a phase diagram
with a lower critical solution temperature (LCST). Furthermore, segregation behavior,
i.e., a concentration gradient, has been detected without phase separation in miscible
blends comprising PC and low molecular weight PMMA under a velocity gradient [8]
and under a temperature gradient [9]. Although there have been numerous papers on the
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flow-induced phase mixing and/or demixing of polymer blends [10–15], to the best of
our knowledge, only a few researchers have reported the segregation of miscible blends
under flow field [8,9,16,17]. The surface segregation behavior was also detected on blend
samples exposed to air atmosphere, in which surface free energy plays an important
role [18–22]. Moreover, the segregation occurred in the amorphous region of miscible
blends during crystallization of one component [23–25], which must be different from the
flow-induced segregation.

PC/PMMA blends with a concentration gradient are attractive because PC and PMMA
have significantly different properties, as mentioned. Therefore, various material designs
can be proposed without losing transparency. In particular, the effect of flow fields on
segregation behavior is quite important because they are readily created in conventional
processing machines. For example, a tough injection-molded product with good scratch
resistance can be obtained from a PC/PMMA blend when the core is rich in PC and the
surface is rich in PMMA [26,27]. An optical fiber with a refractive index gradient produced
by extrusion is another example because it can reduce light loss [28,29].

In the present study, the surface segregation behavior of injection-molded products
comprising PC and PMMA, in which one component is of low molecular weight, was studied.

2. Materials and Methods
2.1. Materials

Two types of PC and two types of PMMA with different molecular weights were
used. H and L in the sample codes represent high and low molecular weights, respectively.
For example, PMMA-H represents the poly(methyl methacrylate) sample with the higher
molecular weight. PC-H, PC-L, and PMMA-H are commercially available polymers, and
PMMA-L was prepared by Mitsubishi Chemical Corporation in Tokyo, Japan. The number-
average (Mn) and weight-average (Mw) molecular weights, evaluated by size exclusion
chromatography (HLC-8020; Tosoh, Tokyo, Japan) using a polystyrene standard, are sum-
marized in Table 1. The viscoelastic properties of PC-H and PMMA-H have been described
elsewhere [8,9,30].

Table 1. Molecular weights of the polymers.

Sample Code Mn Mw

PC-H 28,000 46,000 Panlite L-1225Y, Teijin, Japan

PC-L 3100 8700 Iupilon AL-071, Mitsubishi
Engineering-Plastics, Japan

PMMA-H 58,000 120,000 Acrypet VH, Mitsubishi Chemical, Japan
PMMA-L 8900 15,000 Produced by Mitsubishi Chemical, Japan

2.2. Sample Preparation

Prior to melt blending, the polymers were dried at 80 ◦C for 4 h under vacuum. The
samples were melt-mixed using a co-rotating twin-screw extruder (ULT15TWnano; Tech-
novel, Osaka, Japan). The temperature was maintained at 250 ◦C, and the screw rotation
speed was 30 rpm. The blend ratios of the samples were 90/10 and 80/20 (wt/wt), in
which the low molecular weight components constituted 10 and 20 wt.%. For compar-
ison, PC-H/PMMA-H (90/10) and PMMA-H/PC-H (90/10) were also prepared by the
same procedure.

Compression molding was performed at 250 ◦C and 10 MPa. This was followed
by quenching at 25 ◦C to obtain 500-µm-thick films. Injection molding was carried out
using an injection molding machine (HM7; Nissei Plastic Industrial, Hanishina, Japan).
The nozzle/barrel and mold temperatures were maintained at 250 and 70 ◦C, respectively.
Injection-molded bars with the following dimensions were produced: length, 70 mm;
width, 10 mm; and thickness, 2 mm. The molten polymer was injected from a square gate
measuring 1.5 mm × 1.5 mm.
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2.3. Measurements

The transparency was evaluated using a UV-vis spectrophotometer (Lamda25; Perkin-
Elmer, Waltham, MA, USA) at 589 nm. Compression-molded films (500-mm-thick) were used.

The temperature dependence of the oscillatory tensile modulus at 10 Hz was deter-
mined by raising the temperature from 30 to 180 ◦C at a rate of 2 ◦C/min using a dynamic
mechanical analyzer (E-4000; UBM, Muko, Japan).

The frequency dependence of the oscillatory shear modulus at 250 ◦C was measured
in a molten state using a cone-and-plate rheometer (AR2000ex; TA Instrument, New Castle,
DE, USA) under a nitrogen atmosphere. The cone diameter was 25 mm and the cone angle
was 4◦.

The blend compositions at the surfaces of injection-molded bars were determined by
obtaining attenuated total reflectance Fourier-transform infrared (ATR-IR) spectra (Spec-
trum 100 FT-IR spectrometer; Perkin-Elmer) at 25 ◦C using KRS-5 as an ATR crystal. The
blend samples of various compositions, prepared by compression molding, were also inves-
tigated to obtain a calibration curve to evaluate the PMMA content [9]. Figure 1 illustrates
the measurement points on an injection-molded bar with the gate position indicated.
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Figure 1. Measurement points used to obtain the attenuated total reflectance Fourier-transform
infrared (ATR-IR) spectra of an injection-molded bar.

3. Results and Discussion
3.1. Viscoelastic Properties and Miscibility

Miscibility between PC and PMMA has been evaluated by light scattering [1–10]. There
is a possibility to show good transparency of phase-separated blends when the component
polymers show the same refractive indices [15,31]. However, the huge difference in the
refractive index between PC and PMMA always resulted in light scattering when phase
separation occurs. Therefore, it is highly difficult to obtain a transparent blend using
only conventional polymers with high molecular weight. Figure 2 shows the 500-µm-
thick films prepared by compression molding. The films containing PC-L or PMMA-L
were transparent, suggesting that they were miscible, at least at the compression-molding
temperature, i.e., 250 ◦C. According to our recent study using the PC/PMMA blends with
similar molecular weights to the present PC-H/PMMA-L, the LCST of the blend containing
20 wt.% of PMMA was 270 ◦C [10].
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Figure 2. Photographs of sample films prepared by compression molding. The numbers in the figure
represent the light transmittance at 589 nm.

The light transmittance values of the films were determined using a UV spectropho-
tometer, and are included in the figure. The values of the films containing PC-L or PMMA-L
(86–89%) were almost the same as those of pure PC-H (86%) and PMMA-H (89%). The
small difference between the PC-H blends and the PMMA-H blends must be attributed to
the surface reflectance, which can be calculated by Equation (1) [32]. Because approximately
10% of the light was reflected at both surfaces [31], almost no light scattering occurred in
the films. In contrast, PC-H/PMMA-H (90/10) and PMMA-H/PC-H (90/10) were opaque
owing to light scattering by the phase-separated structure.

R0 =

(
n f ilm − nair

n f ilm + nair

)2

(1)

where R0 is the reflectivity and nfilm and nair are the refractive indices of a film and air (≈1).
Miscibility between PC and PMMA has been also studied by dynamic mechanical

analysis, because the glass-to-rubber transition is clearly detected for the system. Figure 3
shows the temperature dependencies of the tensile storage modulus E′ and the loss modulus
E′ ′ of PC-H, PC-H/PMMA-L (90/10), and PC-H/PMMA-L (80/20). The samples were
prepared by compression molding. Glass-to-rubber transition was obvious in all the
samples. A single peak was detected in the E′ ′ curve, suggesting that the systems were
miscible. It corresponded with Figure 2. The peak temperature, i.e., the glass transition
temperature Tg, decreased with increasing PMMA-L content; 163 ◦C for PC-H, 155 ◦C
for PC-H/PMMA-L (90/10), and 145 ◦C for PC-H/PMMA-L (80/20). Therefore, it can
be concluded that the system is fully miscible, which agrees with previous studies using
PC/PMMA blends in which molecular weight of one component was low [2,8–10]. It is
well known that Tg of a miscible blend follows the Fox equation [33], shown in Equation (2):

1
Tg−blend

=
wA

Tg−A
+

wB
Tg−B

(2)

where Tg-i and wi are the Tg and weight fraction of i-th component, respectively.
Although Tg of PMMA-L was not detected by the measurement due to the brittle

fracture of the film, Equation (2) predicted that it was 86 ◦C. The Tg value was lower than
that of a conventional PMMA [30,31], which is attributed to the low molecular weight as
described in detail later. In the case of PC-H/PMMA-H (90/10), i.e., the opaque blend,
double peaks were detected in the E” curve (but not presented here).
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Figure 3. Temperature dependence of (closed symbols) tensile storage modulus E′ and (open symbols)
loss modulus E′ ′ at 10 Hz; (circles) PC-H, (diamonds) PC-H/PMMA-L (90/10), and (triangles) PC-
H/PMMA-L (80/20).

Furthermore, the E′ values in the glassy region increased following the addition of
PMMA-L, indicating that PMMA-L acted as an anti-plasticizer for PC-H. Various materials
are known to act as anti-plasticizers for conventional PC samples; they reduce thermal
expansion and modify the birefringence [30,34]. Modulus enhancement would also be
desirable for PC [30,35–37]. The E′ ′ values in the glassy region increased with PMMA-L
content. This can be attributed to the b-dispersion of PMMA [37–40].

Figure 4 shows the dynamic tensile moduli of PMMA-H, PMMA-H/PC-L (90/10),
and PMMA-H/PC-L (80/20). The blends produced a single peak in the E′ ′ curve. The
peak temperatures were lower than that of pure PMMA-H. This can be attributed to low
Tg of PC-L. As demonstrated by the Fox–Ferry equation [41], Tg is a function of molecular
weight. Because the present sample, PC-L, had a very low molecular weight, Tg was
much lower than that of conventional PC samples. Furthermore, the E′ values in the
glassy region decreased with PC-L content, in contrast to the anti-plasticized system, i.e.,
PC-H/PMMA-L.
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The miscibility of the blend was also investigated by determining its viscoelastic
properties in the molten state. Figure 5 shows the dependence on the angular frequency
w of the oscillatory shear moduli, i.e., the storage modulus G′ and the loss modulus G′ ′.
A rheological terminal zone was detected in all the samples. It should be noted that the
G′ values of the blends were lower than those of PC-H and PMMA-H. Furthermore, the
gradients of the slopes were close to 2. Therefore, it can be concluded that the blend
samples showed typical rheological behaviors as simple polymer melts without a long-time
relaxation mechanism ascribed to phase separation, demonstrating that they were miscible.
The corresponding Han’s plot [42], i.e., G′ plotted against G”, is shown in Figure 6. The
straight lines were confirmed in the plot for both blends with a slightly low position as
compared with the lines of the pure materials. These results also suggest that they were
miscible at 250 ◦C.
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Figure 5. Angular frequency w dependence of the oscillatory shear moduli, i.e., the storage modulus
G′ and the loss modulus G′ ′, at 250 ◦C of (left) PC-H and PC-H/PMMA-L (90/10) and (right)
PMMA-H and PMMA-H/PC-L (90/10).
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Figure 6. Han’s plot, i.e., the storage modulus G′ plotted as a function of the loss modulus G′ ′,
at 250 ◦C of (left) PC-H and PC-H/PMMA-L (90/10) and (right) PMMA-H and PMMA-H/PC-L
(90/10).

The zero-shear viscosities η0 at 250 ◦C were determined from Equation (3), because
the slopes of the G′ ′ curves were 1 for all samples.

η0 = lim
ω→0

G′′

ω
(3)
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The values were 3000 (Pa s) for PC-H and 1950 (Pa s) for PC-H/PMMA-L (90/10).
Therefore, the addition of 10 wt.% PMMA-L decreased the η0 by approximately 35%. The
η0 of case of PMMA-H was 3100 (Pa s), whereas that of PMMA-H/PC-L (90/10) was 1950
(Pa s), i.e., a 37% decrease.

The η0 values of PMMA-L and PC-L were 3.4 (Pa s) and 2.5 (Pa s), respectively,
although the results are not shown in the figures.

Because the systems were miscible, PC-L and PMMA-L acted as plasticizers at 250 ◦C.
According to the Berry–Fox formula [43], presented in Equation (4), η0 is determined by
the volume fraction of the polymer, i.e., PMMA-H or PC-H.

η0(φ) ∝ ζ0φ3.6 (4)

where z0 is the monomeric frictional coefficient and f is the volume fraction of the polymer.
Assuming that the melt density of PMMA is the same as that of PC with a constant z0,

the η0 of the blend must decrease by 32%. This did not differ greatly from the experimental
values of PC-H/PMMA-L (90/10) and PMMA-H/PC-L (90/10).

3.2. Segregation Behavior during Injection Molding

Sample bars of PC-H/PMMA-L (90/10) and PMMA-H/PC-L (90/10) were prepared
by injection molding. Both samples were transparent, as shown in Figure 7, suggesting that
the miscibility did not change (phase separation did not take place).
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Figure 7. Injection-molded bars of PMMA-H/PC-L (90/10) and PC-H/PMMA-L (90/10).

The compositions of the blends at the surfaces of the samples were determined by
obtaining their ATR-IR spectra and focusing on the intensities of the peaks attributable to
carbonyl stretching vibrations, i.e., 1720–1730 cm−1 for PMMA and 1770–1780 cm−1 for PC.
Prior to the measurements, the peak intensity ratios were determined using compression-
molded films with various blend ratios to obtain a calibration curve. Because KRS-5 was
used for the ATR crystal, the penetration depth (dP) of the IR beam, calculated using
Equation (5) [44,45], was approximately 1 mm.

dP =
λ/n1

2π

√
sin2 θ − (n2/n1)

2
(5)

where l is the wavelength of the infrared beam, n1 and n2 are the refractive indices of the
sample and the ATR crystal, respectively, and q is the incident angle of the IR.

Figure 8 compares the ATR-IR spectra of PMMA-H/PC-L (90/10) samples prepared
by injection molding and compression molding. The vertical axis was normalized by the
absorbance A of PMMA, i.e., APC/APMMA. The peak at 1770–1780 cm−1 for the injection-
molded sample, which was obtained at point 3 in Figure 1 and can be ascribed to PC, is
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pronounced. The PC-L content of the injection-molded bar was estimated to be 12 wt.%,
whereas that of the compression-molded film was 10 wt.%. These results suggest that sur-
face segregation of PC-L, not phase separation, occurred during injection molding. Because
of no phase separation (no interface to scatter the light), the product was transparent.
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Figure 9 shows the ATR-IR spectra produced by the PC-H/PMMA-L (90/10) samples.
The vertical axis was normalized to the absorbance A of PC, i.e., APMMA/APC. As in the
previous figure, the peak intensity ascribed to PMMA-L differed between the injection-
molded and compression-molded samples. The injection-molded bar had more PMMA-L
on its surface (estimated to be 14 wt.%). This also suggests that surface segregation of the
low molecular weight fraction occurred during injection molding.
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Because the difference in the peak intensities was obvious in PC-H/PMMA-L (90/10),
further ATR-IR measurements were performed at various positions using this sample. As
shown in Figure 10, the PMMA-L content was high near the gate, suggesting that the
segregation behavior was pronounced at high shear rates. At point 1, the PMMA-L content
was calculated to be approximately 17 wt.%. Considering the transparency, the product did
not show phase separation but had a concentration gradient as a function of the distance
from the surface.
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The detailed mechanism of the segregation behavior is unknown at present. However,
at least, it did not originate from the adhesive nature with the mold surface, which must be
determined by chemical structure, because a low molecular weight component, irrespective
of the polymer species, has a large content on the surface. Once the low molecular weight
fraction is segregated on the surface, i.e., the region with the highest shear rate, the shear
stress would be largely reduced, leading to less hydrodynamic resistance for flow. This
may be the origin of segregation, because the segregation was pronounced at high shear
rates. The hypothesis can be checked by further experiments using other low molecular
weight PMMA and/or PC samples having different molecular weight. On the other hand,
the relationship with flow-induced demixing (phase separation), i.e., thermodynamic
contribution, should be also considered. In this case, the degree of segregation must
be reduced when the molecular weight of a low molecular weight component becomes
low, because the mixing entropy is large. These experimental studies are currently being
performed and will be reported soon.

From the viewpoint of industrial applications, an increase in the PMMA content on
the surface is quite desirable because the surface hardness and scratch resistance will be
greatly improved. Furthermore, the segregation of a low viscous component at the surface
enhances the flowability, which is another desirable property of PC [15,46–49]. When
the segregation is pronounced without light scattering, the product behaves like a multi-
layered material such as plywood [50,51]. Such techniques will widen the material design
of PC/PMMA blends and various other polymeric materials processed at high shear rates.

4. Conclusions

The flow induced segregation behavior of PC/PMMA blends was studied using
samples with high and low molecular weights. Within the experimental range, the blends
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containing less than 20 wt.% PC-L and PMMA-L were miscible with PMMA-H and PC-H,
respectively, at 250 ◦C. We investigated the surface compositions of the samples by ATR-
IR spectroscopy using blend products prepared by injection molding and compression
molding. The PC-L content was greater on the surfaces of the injection-molded bars made
from the PMMA-H/PC-L (90/10) blends than on the surfaces of the compression-molded
films made from the same blends. Furthermore, there was more PMMA-L on the surfaces
of the injection-molded bars made from the PC-H/PMMA-L (90/10) blends than on the
surfaces of the compression-molded films made from the same blends. Moreover, the
segregation behavior of PMMA-L was most obvious near the gate, i.e., in the high shear
rate region. These results suggest that the low molecular weight fraction of the miscible
blends was segregated in the high shear rate region of the flow field. This will provide a
novel technique for modifying surface properties.
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