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Abstract: In order to improve the forming quality of extruded thread, finite element analysis and 

experimental research are combined to reduce the two keys that affect thread quality in the ma-

chining process—extrusion torque and extrusion temperature. The effects of different processing 

parameters on the extrusion torque and temperature are obtained by numerical simulation, in-

cluding the bottom hole diameter of the workpiece, the machine tool speed, and the lubrication 

medium. For the purpose of reducing extrusion torque and temperature, the process parameters 

for internal thread forming are further optimized by orthogonal design. It is determined that when 

machining the M22 × 2 internal thread on the connecting rod of the marine diesel engine made of 

42CrMo4 steel, the bottom hole diameter of the workpiece should be ∅21.20 mm, the speed of the 

machine tool should be 40 RPM, and the lubricating medium should be PDMS polydime-

thylsiloxane coolant. Compared to before optimization, the maximum extrusion torque and the 

maximum extrusion temperature are reduced by 19.27% and 15.07%, respectively. On the premise 

of ensuring the thread connection strength, the height of the thread tooth is reduced by 0.052 mm, 

and the surface condition of the thread is improved. The surface microhardness at the root, top, 

and side of the thread increases by about 5 HV0.2, and the depth of the hardened layer increases by 

0.05 mm. The results show that the quality of the optimized thread is higher. 

Keywords: internal thread; thread forming; numerical simulation; physical test; parameter opti-

mization 

 

1. Introduction 

With the rise of our country’s shipbuilding industry, the manufacturing require-

ments of machinery and equipment are developing in the direction of high strength, high 

precision, and long life. Threaded parts are a very important structural part and fas-

tening connection in mechanical equipment, which can realize the connection and fixa-

tion between the parts [1]. According to statistics, more than 60% of the fastening con-

nections are threaded connections, which can bear large radial, axial, and shear loads 

when the mechanical equipment is running; so, thread performance is directly related to 

the service life of aircraft, high-speed trains, ships, and so on [2,3]. Therefore, the de-

signed thread parts need to meet the following characteristics: reliable performance, long 

service life, simple structure, and lightweight; this introduces higher and higher re-

quirements for the machining of thread parts. 

As a traditional thread machining method, many scholars have studied the thread 

cutting technology. Ma et al. [4] studied the dynamic problems in the tapping process by 
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establishing a coupling model between transverse vibration, axial vibration, and dy-

namic cutting force on the tapping path and proved that the influence of transverse vi-

bration and axial vibration on dynamic cutting force is decoupled. Faur et al. [5,6] re-

duced the production of chips during tapping by modifying the geometry of the spiral 

groove of the cutting tap, thus reducing the cutting torque and extending the service life 

of the tap. Matsui et al. [7] calculated the radial force of the thread through a 

four-component piezoelectric dynamometer and tapped the thread by the method of 

screw interpolation motion of the screw machine, so as to improve the accuracy of the 

formed thread. Monka et al. [8] monitored the wear of taps during cutting through an 

online vibration detection system, and the relationship between the helix angle and the 

forming quality of screw thread was studied. In order to reduce the torque during tap-

ping and prolong the service life of tap, Golovkin et al. [9–11] introduced the ultrasonic 

wave into the cutting process. Miroslav et al. [12] studied the relationship between cut-

ting temperature, cutting efficiency, thread quality, and material properties of the work-

piece through experiments. In order to improve the torsional stiffness of tap and improve 

the cutting efficiency, Yin et al. [13] introduced vibration in the tapping process. Piska et 

al. [14–17] increased the cutting performance and reduced the wear of tap by coating the 

surface of the tap. Popovi et al. [18] analyzed the geometric structure of the cutting tool 

and established the prediction model of the tapping force and torque by defining the di-

rection matrix of tap coordinate system; they then verified the accuracy of the model 

through experiments. Tanaka et al. [19] designed a method to measure the blade tem-

perature in the tapping process based on a two-color pyrometer with optical fiber, and 

then used this method to study the relationship between the workpiece material and 

cutting temperature. Xu et al. [20,21] proposed a tap wear monitoring and prediction 

model system based on deep learning, then collected vibration signals and tap wear 

through a tapping test to verify the accuracy of the system. 

Considering that the internal thread cut on the marine diesel engine connecting rod 

of 42CrMo4 steel may not meet the quality requirements of the enterprise, it is necessary 

to replace the cutting with cold extrusion, which has higher material utilization and bet-

ter machining quality [22–25]. However, most of current research results on extruded 

thread are for specified metal and specific specification thread. When the processing en-

vironment such as tap structure, material property, type, and specification of thread 

changes, the forming result will also change [26–29]. For the M22 × 2 internal thread of 

42CrMo4 steel, the existing processing parameters of thread in enterprises mostly rely on 

the production experience of workers, which means a lack of theoretical and experi-

mental guidance. Therefore, the influence of process parameters on thread forming is 

analyzed by the method of numerical simulation and experiment, and the best processing 

parameters are selected. 

In this work, the forming mechanism of the internal thread is first studied by the 

method of theoretical analysis. The changes of torque and temperature in the thread 

forming process are measured by experiment. The morphology, microstructure, and 

hardness of the thread are analyzed by means of the shape measurement laser micro-

scope system and automatic micro-Vickers hardness measurement system. Then, the 

thread forming process is numerically simulated by finite element software 

DEEORM-3D. The effects of bottom hole diameter, machine tool speed, and lubricating 

medium on extrusion torque and temperature are studied by setting different parameters 

in the numerical simulation. In order to reduce the torque and temperature in the extru-

sion process, the processing parameters are optimized. Finally, the extrusion experiment 

is carried out with the optimized parameters and the extrusion torque and temperature 

before and after optimization are compared. The tooth height, surface microhardness, 

and hardened layer of the thread before and after optimization are also measured to 

evaluate the quality of thread. 
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2. Forming Mechanism and Experiment of Extrusion Thread 

2.1. Forming Mechanism of Extruded Thread 

The essence of internal thread forming is the process in which the plastic defor-

mation of the workpiece occurs under the action of the extrusion tap and finally forms 

the thread. Figure 1a is a schematic diagram of the workpiece machined by an extruded 

tap. When the extrusion tap is spun into the workpiece at a certain speed, the inner wall 

of the workpiece is in contact with the first tooth, A, of the extrusion cone. Because the 

hardness of the tap is much higher than that of the workpiece, tooth A will extrude a 

shallow dent on the workpiece surface. The metal of the workpiece is plastically de-

formed by the extrusion of tooth A, which flows along both sides of tooth A and forms a 

bulge on both sides of the top of it. As the tap rotates once during the working process, 

the tap moves forward by a distance of pitch, and tooth B enters the indentation extruded 

by tooth A. Because there is a certain cone angle in the extrusion cone of the tap, the 

depth of tooth b is deeper than that of tooth A. On the basis of tooth A squeezing into the 

dent, tooth B further deepens the depth of the dent, increases the degree of plastic de-

formation of the workpiece, and increases the height of the bulge formed on both sides of 

tooth B’s tip. At this time, the metal between teeth A and B will show protrusion on both 

sides and flatness in the middle. With tooth C being squeezed into the workpiece, the 

dent left by tooth B is further extruded, and the amount of metal material flowing into the 

groove between teeth B and further increases. At this time, there will be a preliminary 

outline of the thread between teeth B and C. As the last tooth, D, of the extrusion cone is 

extruded into the workpiece, the degree of plastic deformation of the workpiece further 

increases, and the amount of metal material extruded between the two teeth further in-

creases. At this point, a thread with high integrity and that is close to the qualified size 

will be formed between teeth C and D. The forming process of the thread under the ac-

tion of the tap extrusion taper is shown in Figure 1b. 

As the extrusion tap continues to move forward, the calibration part of the tap be-

gins to extrude the workpiece. There is no cone angle in the calibration part. The function 

of the calibration part is to modify the shape and size of the thread formed by the extru-

sion cone. Until the workpiece is completely extruded by the edges of calibration part, a 

thread that meets the size requirements will be formed on the workpiece surface. The 

extruded thread is shown in Figure 1c. Because the flow velocity of metal on both sides of 

the tooth top is greater than that in middle, the thread after extrusion will be higher on 

both sides of the tooth top and concave in middle. This phenomenon is called lack of 

meat. It is inevitable that there will be more or less insufficiency of meat in the top part of 

the thread machined by the extruding tap. In addition, the lines in figure are represented 

as metal fiber tissue. The metal of the workpiece flows from the tooth root to the tooth top 

under the extrusion of the tap, and the surface fiber structure of metal is still continuous. 

Among the three parts of the thread, the plastic deformation range of the metal material 

at the tooth root is the largest, so the distribution of metal fiber is densest. The plastic 

deformation degree of metal at the tooth top is the smallest, so the distribution of metal 

fiber is most sparse. The degree of deformation on the tooth side is between the tooth root 

and tooth top, so the density of metal fiber tissue on the tooth side is also between the 

two. 
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Figure 1. Schematic diagram of thread machining process. 

2.2. Experimental Setup 

2.2.1. Extruded Tap and Workpiece 

The taps used in the enterprise are M22 × 2 Wagner octagonal taps, which are com-

posed of the working part and clamping part. The geometric parameters of the working 

part are obtained based on computer vision technology. The length of extrusion cone �� 

is 8 mm, the length of correction part �� is 18 mm, and the angle of extrusion cone � is 

4.5°, as shown in Figure 2. The workpiece used in the experiment is 42CrMO4 steel 

square with a round through hole. The size is 50 mm × 50 mm × 20 mm, and the diameter 

of the bottom hole is ∅21.15 mm, as shown in Figure 3. 

 

Figure 2. Structure of extrusion tap. 
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Figure 3. Structure of workpiece. 

2.2.2. Measurement of Extrusion Torque and Temperature 

The thread forming experiment is carried out on the horizontal machining center. 

The workpiece is placed vertically on the worktable and fixed between the pressing plate 

and worktable by tightening the nut. The tap is clamped by an automatic chuck and the 

machine tool spindle is used to drive the rotation of the tap so as to process the thread on 

the inner wall of the workpiece. The extrusion torque is measured by the SPIKE force 

measuring tool handle, and the extrusion temperature is measured by a high precision 

thermometer. In order to reduce the error of the measured temperature, it is necessary to 

make the thermocouple and the deformation area of the workpiece as close as possible, 

so a hole is drilled at 1/3 of the wall surface of the workpiece. The diameter of the hole is 

slightly larger than that of the thermocouple, which is 3.2 mm in diameter and 12.5 mm 

in depth. When measuring, the front end of the K-type thermocouple is inserted into the 

hole, and the other end is connected to a thermometer to record the data of extrusion 

temperature. The overall experiment is shown in Figure 4. 

 

Figure 4. Experiment of thread machining. 

2.3. Experimental Results 

2.3.1. Extrusion Torque and Temperature 

The experiment of the tapping process is carried out under the condition that the 

diameter of the bottom hole is ∅21.15 mm, the machine speed is 50 RPM, and the friction 

coefficient is 10# engine oil. The measured extrusion torque and temperature are shown 

in Figures 5 and 6. It can be seen from figure that the extrusion torque and temperature 

increase at first and then decrease with the passage of time. The forming process of the 
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internal thread can be divided into three main stages: Ⅰ extrusion stage, Ⅱ extrusion and 

correction stage, and Ⅲ correction stage. In Stage I, with the continuous extrusion of ta-

pered teeth on the workpiece, the metal plastic deformation of the workpiece continues 

to occur. Due to the existence of friction force and friction torque in the extrusion process, 

the torque of the whole stage continues to increase from 0 N∙m. In Stage Ⅱ, there is both 

extrusion and correction effects, and the number of edges involved in extrusion and 

correction is increasing, so the extrusion torque is increased. Because there is no taper 

angle in the tap calibration part, the degree of metal plastic deformation of workpiece is 

smaller than that of Stage I, so the increase in extrusion torque is small at this stage. 

Furthermore, the maximum torque of the whole extrusion process also occurs in this 

stage; the maximum extrusion torque is 100.65 N∙m. In Stage Ⅲ, with the extrusion of the 

tap, the number of extrusion edges involved in the correction decreases continuously. 

When the tap is completely detached from workpiece, the extrusion torque drops to 0 

N∙m. The extrusion temperature also increases with the increase in tap depth, and then 

decreases when the tap gradually withdraws from the workpiece. The highest extrusion 

temperature in this process is 57.37 °C. 
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Figure 5. Extrusion torque. 
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Figure 6. Extrusion temperature. 

2.3.2. Thread Profile and Measurement of Threaded Tooth Height 

The tooth height of thread will directly affect the connection strength of thread, so it 

is necessary to measure the thread height. The preparation process of the thread testing 

sample is as follows: first, a small piece of the sample is cut along the normal direction of 

thread at the through hole of the workpiece by wire cutting equipment. Then, the sample 

is cleaned and polished, as shown in Figure 7. The tooth height of the thread sample is 

measured by the shape measurement laser microscope system, as shown in Figure 8. 
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Figure 7. Thread sample to be measured. 

 

Figure 8. Laser microscopic system for shape measurement. 

Figure 9 shows the morphology of the machined thread. It can be seen from the 

figure that there is a lack of meat at the tooth top. The forming mechanism of the thread 

in Section 2.1 explains that this is due to the fact that the metal of the workpiece is not 

fully filled with the groove of the tap under the extrusion of the tap. Although there is a 

lack of meat at the tooth top, the tooth height is 1.131 mm and the tooth height rate is 

74.65%, which meets the requirements of thread connection. Therefore, under the condi-

tion of ensuring the thread connection strength, the appropriate gap between the tap and 

the workpiece can reduce the friction between the two. It can also reduce the torque and 

temperature in the machining process, so as to improve the forming quality of the thread. 

 

Figure 9. Morphology of machined thread. 

2.3.3. Analysis of Microstructure for Thread 

The essence of extruded thread forming is the plastic deformation of the workpiece 

under the action of the tap; the metal material flows to the tap groove and fills gradually. 

In the thread forming process, when the metal is extruded by the tap, it will flow in the 

direction of the least resistance, so the degree of plastic deformation in different parts of 

the thread is also different. In order to study the microstructure of the thread, the 

1.
13
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m
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threaded sample was eroded with an erosion solution suitable for 42CrMo4, that is, 4% 

nitric acid alcohol solution. The microstructure of the thread surface is observed by the 

shape measurement laser microscope system in Section 2.3.2. The microstructure of the 

thread is shown in Figure 10. 

  

(a) Microstructure of thread            (b) Microstructure of tooth root 

  

(c) Microstructure of tooth side         (d) Microstructure of tooth top 

 

(e) Microstructure of original material 

Figure 10. Microstructure of extruded thread. 

It can be seen from Figure 10a that the microstructure of the thread after extrusion 

has changed significantly. Compared with the part without extrusion, the degree of grain 

refinement and the density of fiber structure are significantly improved. When the thread 

is extruded by the tap, the metal of the workpiece flows in the groove between the two 

teeth of the tap. The grains are twisted and stretched along the direction of metal flow. 

With the increase in the amount for extrusion, the surface structure is compressed to fi-

brous. The method of extrusion does not block the flow of fiber tissue, and fiber tissue 

from the tooth root to tooth top is still continuous. 

In the process of tap processing, the extrusion pressure on different parts of the 

thread is different, so the microstructure of tooth root, tooth side, and tooth top is dif-

ferent. The tooth root is directly under the action of the tapered tooth, so the tooth root is 

subjected to the greatest extrusion pressure, which results in the highest degree of plastic 

deformation and grain refinement in the tooth root. The metal fiber structure at the tooth 

root is pressed to such an extent that it is difficult to distinguish the grains, and it forms a 

curved streamline, as shown in Figure 10b. The extrusion pressure on the tooth side is 

less than that on the tooth root, so the plastic deformation and grain refinement are re-
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duced. The density of metal fibers at the tooth side is also less than that at the tooth root, 

and the flow is similar to a straight line, as shown in Figure 10c. The extrusion pressure at 

the tooth top is the least, so the degree of plastic deformation and grain refinement is the 

lowest, and the metal fiber is relatively sparse, as shown in Figure 10d. When gradually 

moving away from the tooth root, the metal can hardly be affected by extrusion pressure, 

so the degree of plastic deformation and grain density do not increase. The metallo-

graphic structure is basically the same and there is no obvious deformation, showing the 

state of the original material, as shown in Figure 10e. Therefore, the processing by extru-

sion can improve the grain refinement and fiber structure density of metal materials, so 

as to improve the quality of the thread. 

2.3.4. Measurement of Hardness and Hardened Layer for Thread 

As can be seen from the analysis of Section 2.3.3, the plastic deformation of the 

workpiece occurs under the extrusion of the tap, and the grains in the metal microstruc-

ture are elongated and fibrotic. In order to analyze the relationship between the micro-

structure and mechanical properties, the hardness and hardening layer of threads in 

different parts were measured by the automatic micro-Vickers hardness measurement 

system, as shown in Figure 11. The distance between measuring points is 0.05 mm. When 

measuring, the load of hardness tester is set to 200 g and the time to keep the load is set to 

15 s. Because the tooth surface area of the internal thread is small and the shape is com-

plex, the measuring point closest to the surface on the normal section of the internal 

thread is used as the evaluation basis of thread hardness. Figure 12 shows the hardness 

evaluation point at the tooth root. 

 

Figure 11. Automatic micro-Vickers hardness measuring system. 

 

Figure 12. Hardness evaluation point of thread root. 
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The hardness changes of three parts along the layer depth are shown in Figure 13. 

As can be seen from the figure, there is a large difference in hardness between the tooth 

root, tooth top, and tooth side. The hardness at the tooth root is the highest, which is 

358.87 HV0.2. The hardness at the tooth side is less than that at the tooth root, which is 

337.45 HV0.2. The hardness at the tooth top is the smallest, which is 302.13 HV0.2. This can 

be seen from the analysis of the microstructure of the thread in Section 2.3.3. The degree 

of grain refinement and the density of metal fibers at the tooth root are greater than those 

at the tooth side. The degree of grain refinement and the density of metal fibers at the 

tooth side are greater than those at the tooth top. Therefore, the degree of grain refine-

ment and the density of the rheological structure directly determine the strengthening 

degree of metal. The denser the rheological structure is, the higher the strengthening 

degree of metal is, and the hardness of metal will be improved. With the increase in the 

degree of plastic deformation, the depth of the hardened layer will also increase. The 

degree of plastic deformation at the tooth root is the largest, so the depth of the hardened 

layer is the deepest, which is 0.35 mm. The degree of plastic deformation at the tooth top 

is the smallest, so the depth of the hardened layer is the shallowest, which is 0.15 mm. 

Furthermore, the degree of plastic deformation on the tooth side is between the tooth root 

and tooth top, so the depth of the hardened layer is also between the two, at 0.2 mm. 

From the hardness curves of three parts, it can be found that the hardness of the 

tooth root and tooth side decreases gradually with the depth of the layer. This is due to 

the fact that the plastic deformation mainly occurs on the surface of the thread. With the 

increase in the depth from the thread surface, the degree of plastic deformation decreas-

es, which will lead to the decrease in work hardening, as shown by the change of hard-

ness at the tooth root and tooth side. While the hardness at the tooth top increases at first 

and then decreases with the increase in layer depth. This is because the point at the tooth 

top is close to the lack of meat, and the metal material in the lack of meat is insufficient, so 

the point near this position has lower hardness. 
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Figure 13. Measurement of thread hardness. 

3. Numerical Model and Validation 

3.1. Establishment of Machining Model for Internal Thread 

There are many combinations of different bottom hole diameter, machine tool 

speed, and lubricating medium used to improve the testing efficiency and avoid the 

production safety problems, such as tap fracture, caused by improper parameter selec-

tion. The influence of machining parameters on thread forming is analyzed by numerical 

simulation. According to the actual model of the tap and workpiece, the corresponding 

geometric model is established in 3D modeling software and imported into DE-

FORM-3D. The tap is set as a rigid body in the software, regardless of its deformation and 

wear [30,31]. The whole workpiece is meshed by the pre-processing function in the 
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software. It is divided into 34,257 nodes and 143,657 elements, and the minimum grid 

size is 0.26. In order to obtain a detailed thread shape, the weight factor is set to 1 for local 

mesh refinement. Through the frame selection function of the refinement module, the 

refinement range is set to a cylinder with a height of 22 mm and a diameter of 25.5 mm, 

which covers the deformation zone of the workpiece. Furthermore, in order to improve 

the accuracy of the thread obtained by numerical simulation, the size ratio of the inside 

and outside of the frame selection is set to 10,000:1. After refinement, the minimum mesh 

size is reduced to 0.059, the number of nodes is increased to 115,007, and the number of 

elements is increased to 529,281. The position of the workpiece is fixed, and according to 

the relationship among the tap pitch, feed speed, and machine tool speed, the feed speed 

of the tap is set to 1.667 mm/s and the tap speed is 50 RPM. Using the shear friction 

model, the friction coefficient between the tap and workpiece is set to 0.12. Using the 

Newton-Raphson iterative algorithm, the simulation forced stop condition is set to the 

movement distance of the tap reaching 48 mm. The run step is set to 600 and the step size 

is set to 0.08. The finite element model of the workpiece and tap is shown in Figure 14. 

 

Figure 14. Finite element model of workpiece and tap. 

3.2. Verification of Model 

(1) Extrusion torque and temperature. 

The curve of the extrusion torque obtained by numerical simulation and experiment 

is shown in Figure 15. As can be seen from the figure, the maximum extrusion torque 

obtained by experiment is 100.65 N∙m, while the maximum extrusion torque obtained by 

numerical simulation is 98.06 N∙m, with an error of only 2.57%. The maximum extrusion 

temperature measured by the thermometer is 57.37 °C, while the maximum extrusion 

temperature obtained by numerical simulation is 59.91 °C, with an error of 4.43%. This 

result verifies the accuracy of the numerical simulation. 
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    (a) Error of extrusion torque                               (b) Error of extrusion temperature 

Figure 15. Error between numerical simulation and experiment. 

(2) Thread profile. 

In order to verify the accuracy of the thread obtained by numerical simulation, the 

numerical simulation of thread machining is carried out by using the parameters con-

sistent with the experiment. The thread obtained by simulation is shown in Figure 16. 

Comparing Figure 16 with Figure 9, it can be found that the thread profile obtained by 

numerical simulation is similar to that obtained by experiment; both of them have the 

phenomenon of lack of meat at the tooth top. At the same time, the tooth height meas-

ured by the point tracking function in the numerical simulation is 1.162 mm and the ex-

perimental thread height is 1.131 mm. The error between the two is only 2.74%. This 

further verifies the reliability of the numerical simulation results. 

 

Figure 16. Thread morphology in numerical simulation. 

4. Effect of Process Parameters on Thread Extrusion Process 

4.1. Analysis of Bottom Hole Diameter 

In order to determine the appropriate diameter of the prefabricated bottom hole, the 

numerical simulation was carried out under the condition that the diameter of the bottom 

hole was ∅21.05 mm, ∅21.10 mm, ∅21.15 mm, and ∅21.20 mm, respectively. Then, the 

optimal bottom hole diameter was selected according to the torque and temperature. The 

variation curves of extrusion torque and temperature under four diameters are shown in 



Materials 2022, 15, 3160 13 of 22 
 

 

Figures 17 and 18. It can be seen from the figure that with the decrease in the bottom hole 

diameter, the extrusion torque and temperature increase and the degree of lack of meat at 

the tooth top is decreasing. When the diameter of the bottom hole is ∅21.20 mm, the ex-

trusion torque and temperature are lower because the tap needs to extrude less metal 

material. The maximum extrusion torque is 88.30 N∙m and maximum extrusion temper-

ature is 50.09 °C. At this time, the tooth top has an obvious lack of meat due to the insuf-

ficient amount of material flowing into the tapered tooth groove in the extrusion process. 

When the diameter of the bottom hole decreases to ∅21.05 mm, the amount of material 

extruded by the tap increases. So, the friction between the tap and workpiece increases 

sharply. The maximum extrusion torque increases to 118.72 N∙m and maximum extru-

sion temperature increases to 72 °C. At this time, the lack of meat at the tooth top is small, 

which is due to the fact that a large amount of metal material flows into the grooves be-

tween tapered teeth during extrusion, and the excess metal material can gradually fill the 

grooves. 

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

E
x

tr
u

si
o

n 
to

rq
ue

 (
N

·m
)

Time (s)

 F21.05mm    F21.15mm

 F21.10mm    F21.20mm

21.20mm 21.15mm 21.10mm 21.05mm

 

Figure 17. Influence of bottom hole diameter on torque. 
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Figure 18. Influence of bottom hole diameter on temperature. 

4.2. Analysis of Machine Tool Speed 

In order to determine the appropriate machine tool speed, the numerical simulation 

was carried out under the condition that the machine tool speed was 30 RPM, 40 RPM, 50 

RPM, and 60 RPM, respectively. The influence of rotation speed on extrusion torque and 

temperature was studied, and the optimal speed was selected. The variation curves of 

extrusion torque and temperature at four rotational speeds are shown in Figures 19 and 

20. It can be seen from the figure that the extrusion temperature increases with the in-

crease in the machine tool speed, while the extrusion torque decreases first and then in-

creases with the increase in rotational speed. When the machine speed is 30 RPM, the 

maximum extrusion torque is 92.17 N∙m and the maximum extrusion temperature is 
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45.53 °C. When the machine speed increases to 40 RPM, the maximum extrusion torque 

decreases to 84.13 N∙m, and the maximum extrusion temperature increases to 50.34 °C. 

When the machine speed increases to 60 RPM, the maximum extrusion torque increases 

to 109.59 N∙m, and the maximum extrusion temperature increases to 57.25 °C. This is due 

to the fact that when the machine tool speed is in a high range, with the increase in the 

machine tool speed, the plastic deformation of the workpiece increases in unit time, and 

the friction between the workpiece and tap gradually increases. So, it will lead to the in-

crease in extrusion temperature and extrusion torque. 
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Figure 19. Influence of machine tool speed on torque. 

 

Figure 20. Influence of machine tool speed on temperature. 

4.3. Analysis of Lubricating Medium 

In order to determine the suitable lubricating medium, choose from PDMS polydi-

methylsiloxane coolant, 10# engine oil, 20# engine oil, and 30# engine oil according to the 

extrusion torque and temperature. The different lubricating media in the numerical sim-

ulation are reflected in the different friction coefficients between the extruded tap and the 

workpiece. The setting of the friction coefficient in relation to different lubricating media 

in the numerical simulation is shown in Table 1. The variation curves of extrusion torque 

and temperature under four kinds of lubricating media are shown in Figures 21 and 22. It 

can be seen from the figure that the greater the friction coefficient of lubricating medium 

used, the higher the torque and temperature in the extrusion process. When the lubri-

cating medium is 30# engine oil, the maximum extrusion torque is 121.51 N∙m and the 

maximum extrusion temperature is 71.49 °C. When the lubricating medium was replaced 

by PDMS polydimethylsiloxane coolant, the extrusion torque and temperature decreased 

due to the decrease in the friction coefficient, the maximum extrusion torque decreased to 

88.42 N∙m, and the maximum extrusion temperature decreased to 46.86 °C. In the ex-
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periment, it is shown that PDMS polydimethylsiloxane coolant reduces the direct contact 

between the edge teeth of the extruded tap and the metal material in the deformation 

zone of the workpiece. This is so that the relative slip shearing process between two 

surfaces is carried out in the interior of the lubricating layer. As a result, the energy 

consumption caused by friction in the extrusion process is greatly reduced, and then it 

reduces the torque and temperature. 

Table 1. Viscosity of different lubricating media and friction coefficients in numerical simulation. 

Lubricating Medium 
Kinematic Viscosity at 

40 °C (mm2/s) 

Friction Coefficient in Numer-

ical Simulation 

PDMS polydimethylsilox-

ane coolant 
10 0.08 

10# engine oil 12 0.12 

20# engine oil 23 0.2 

30# engine oil 32 0.25 
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Figure 21. Influence of lubricating medium on torque. 

 

Figure 22. Influence of lubricating medium on temperature. 

5. Optimization Design 

5.1. Design of Orthogonal Test Table 

The key factors affecting the forming quality of the internal thread are extrusion 

torque and extrusion temperature. For the purpose of improving the quality of the 

thread, it starts by reducing the torque and temperature in the machining process. The 

selection of the bottom hole diameter, machine tool speed, and lubricating medium is 
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optimized by the method of orthogonal test. According to the selected process parame-

ters, a three-factor and four-level table was made; as shown in Table 2, a total of 16 ex-

periments were carried out. According to the comprehensive balance method, the extru-

sion torque and extrusion temperature are analyzed, respectively, to obtain their respec-

tive optimal horizontal combination. Then, the optimized horizontal combinations under 

each index are synthesized, and finally the optimal horizontal combination is obtained. 

The orthogonal table designed according to the orthogonal test is shown in Table 3. 

Table 2. Factor level. 

Level 

A 

Diameter of Bottom Hole 

(mm) 

B 

Machine Tool Speed 

(RPM) 

C 

Lubricating Medium 

1 21.05 30 
PDMS polydimethylsiloxane cool-

ant 

2 21.10 40 10# engine oil 

3 21.15 50 20# engine oil 

4 21.20 60 30# engine oil 

Table 3. Orthogonal design of processing parameters. 

Number 
Diameter of Bottom Hole 

(mm) 

Machine Tool Speed 

(RPM) 
Lubricating Medium 

Torque 

(N·m) 

Temperature 

(°C) 

1 21.05 30 PDMS 115.79 62.25 

2 21.05 40 10# 113.56 67.59 

3 21.05 50 20# 126.58 77.15 

4 21.05 60 30# 134.13 83.17 

5 21.10 30 10# 107.28 57.72 

6 21.10 40 PDMS 101.57 54.17 

7 21.10 50 30# 119.24 70.28 

8 21.10 60 20# 123.14 68.55 

9 21.15 30 20# 98.52 59.12 

10 21.15 40 30# 90.54 67.74 

11 21.15 50 PDMS 94.42 50.86 

12 21.15 60 10# 109.59 57.25 

13 21.20 30 30# 92.56 61.89 

14 21.20 40 20# 82.13 54.12 

15 21.20 50 10# 88.30 50.09 

16 21.20 60 PDMS 101.17 48.23 

5.2. Data Analysis of Orthogonal Test 

The range analysis obtained from the orthogonal test is shown in Table 4. According 

to the K value in the table, the effect curve of extrusion torque and extrusion temperature 

is drawn; this is also shown in Figures 23 and 24. The figure shows the values of extrusion 

torque and temperature obtained when each factor takes different levels, which reflects 

the influence of various parameters on the torque and temperature in the forming pro-

cess. 
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Table 4. Range analysis. 

Test Index Factors K1 K2 K3 K4 Range Value R 

Extrusion torque 

(N∙m) 

A 122.52 112.81 98.27 91.04 31.48 

B 103.54 96.95 107.14 117.01 20.06 

C 103.24 104.68 107.59 109.12 5.88 

Extrusion tem-

perature (°C) 

A 72.54 62.68 58.74 53.58 18.96 

B 60.25 60.91 62.10 64.30 4.06 

C 53.88 58.16 64.74 70.77 16.89 

21.05mm 21.10mm 21.15mm 21.20mm 30RPM 40RPM 50RPM 60RPM PDMS 10# 20# 30#

90

100

110

120

E
x

tr
u

si
o

n
 t

o
rq

u
e 

(N
·m

)

Factor A Factor B Factor C  

Figure 23. Effect curve of extrusion torque. 

21.05mm 21.10mm 21.15mm 21.20mm 30RPM 40RPM 50RPM 60RPM PDMS 10# 20# 30#
50

55

60

65

70

75

（
）

E
xt

ru
si

on
 t

em
pe

ra
tu

re
℃

Factor A Factor B Factor C  

Figure 24. Effect curve of extrusion temperature. 

When taking extrusion torque as the optimization goal, it can be seen from Figure 23 

that the extrusion torque in the thread machining process decreases gradually with the 

increase in the bottom hole diameter. When the diameter of the bottom hole is ∅21.20 

mm, the extrusion torque in the extrusion process is at a minimum of 91.04 N∙m. With the 

increase in the machine tool speed, the extrusion torque decreases at first and then in-

creases. When the machine tool speed is 40 RPM, the extrusion torque is at a minimum of 

96.95 N∙m. The extrusion torque increases with the increase in the friction coefficient of 

the lubricating medium. When the lubricant is PDMS polydimethylsiloxane coolant, the 

extrusion torque is at a minimum of 103.24 N∙m. According to the range analysis in Table 

4, three factors have an influence on the extrusion torque in the forming process; the or-

der of influence is: bottom hole diameter > machine tool speed > lubrication medium. 

Therefore, in order to obtain the minimum extrusion torque, the best processing param-

eters for the internal thread are: A4B2C1, that is, the diameter of bottom hole is ∅21.20 

mm, the machine tool speed is 40 RPM, and the lubricating medium is PDMS polydi-

methylsiloxane coolant. 

When taking extrusion temperature as the optimization goal, it can be seen from 

Figure 24 that the extrusion torque in the thread machining process decreases with the 

increase in bottom hole diameter. When the diameter of the bottom hole is ∅21.20 mm, 

the extrusion temperature is the lowest at 53.58 °C. The extrusion temperature increases 
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gradually with the increase in machine tool speed. When the machine speed is 30 RPM, 

the extrusion temperature is the lowest at 60.25 °C. The extrusion temperature increases 

with the increase in the friction coefficient of the lubricating medium. When the lubri-

cating medium is the PDMS polydimethylsiloxane coolant, the extrusion temperature is 

the lowest at 53.88 °C. According to the range analysis in Table 4, all three factors have an 

influence on the temperature in the thread forming process, and the influence order is as 

follows: bottom hole diameter > lubricating medium > machine tool speed. Therefore, in 

order to obtain the minimum extrusion temperature, the best processing parameters for 

the internal thread are as follows: A4B1C1, that is, the diameter of the bottom hole is 

∅21.20 mm, the machine tool speed is 30 RPM, and the lubricating medium is PDMS 

polydimethylsiloxane coolant. 

From the above analysis, we can see that when different results are taken as the op-

timization objectives, the optimization schemes obtained are not consistent. When extru-

sion torque and extrusion temperature are comprehensively considered, the diameter of 

the bottom hole and lubricating medium are the same. The diameter of the bottom hole is 

∅21.20 mm and lubricating medium is PDMS polydimethylsiloxane. However, the selec-

tion of the machine tool speed is different. When extrusion torque is taken as the opti-

mization index, the machine tool speed is selected to be 40 RPM, and the extrusion tem-

perature is 60.91 °C. When extrusion temperature is taken as the optimization index, the 

machine tool speed is chosen as 30 RPM, and the extrusion temperature is 60.25 °C. The 

temperature difference between two schemes is only 0.66 °C. It can be found from Figure 

24 that extrusion temperature increases with the acceleration of machine tool speed. 

However, when the rotational speed is at 30~50 RPM, the increase in extrusion temper-

ature is small, which has little effect on the extrusion temperature. Furthermore, the ex-

trusion temperature is not very high in the forming process and the influence of extrusion 

torque on the life of the tap and the quality of the thread is much higher than the extru-

sion temperature, so the machine speed of 40 RPM is chosen. Based on the above analy-

sis, the final optimal scheme is A4B2C1; that is, the diameter of the bottom hole is ∅21.20 

mm, the machine tool speed is 40 RPM, and the lubricating medium is PDMS polydi-

methylsiloxane coolant. 

5.3. Verification of Optimization Results 

5.3.1. Extrusion Torque and Temperature 

According to the optimized parameters obtained from the above analysis, the ex-

periment for internal thread forming is carried out. The variation curves of torque and 

temperature before and after optimization are shown in Figures 25 and 26, respectively. 

As can be seen from the figure, when the thread is extruded using the optimized pro-

cessing parameters, the maximum extrusion torque is 92.01 N∙m and the maximum ex-

trusion temperature is 51.96 °C. While the optimized parameters are used to extrude the 

thread, the maximum extrusion torque is 74.28 N∙m and the maximum extrusion tem-

perature is 44.13 °C. Compared with that before optimization, the maximum extrusion 

torque after optimization is reduced by 19.27%, and the maximum extrusion temperature 

is reduced by 15.07%. The results show that the optimized processing parameters can 

greatly reduce the extrusion torque and temperature, thus effectively improving the 

forming quality of the thread and the service life of the tap. 
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Figure 25. Optimization results of extrusion torque. 
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Figure 26. Optimization results of extrusion temperature. 

5.3.2. Threaded Tooth Height 

Figure 27 shows the connection strength of the thread before and after optimization. 

It can be seen that the tooth height of the thread before optimization is 1.131 mm, the 

tooth height rate is 74.65%, and thread connection strength is 99.39%. While the tooth 

height of the optimized thread is 1.079 mm, the tooth height rate is 71.22, and the thread 

connection strength is 98.77%. From the relationship between tooth height rate and 

thread connection strength, we can see that when the thread height rate reaches 70%, the 

thread connection strength is close to 100%. At this time, if we continue to increase the 

tooth height ratio of the thread, although the connection strength still improves, the room 

for improvement is limited. When the thread connection strength reaches 100%, and one 

continues to increase the tooth height, the connection strength is no longer improved. So, 

on the premise of satisfying the thread connection strength, it is not necessary to pursue 

the tooth height rate excessively. Otherwise, the too-small diameter of the bottom hole 

will aggravate the friction between the tap and workpiece, which will greatly increase the 

wear of the tap and reduce its life. Therefore, using the optimized parameters to extrude 

the thread can not only ensure the strength of thread connection but also reduce the wear 

of the tap and workpiece and prolong their service life. 
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Figure 27. Strength of threaded connection before and after optimization. 

5.3.3. Hardness and Hardened Layer for Thread 

The hardness changes of three parts along the layer depth after optimization are 

shown in Figure 28. As can be seen from the figure, the hardness of the optimized tooth 

root is 365.52 HV0.2 and the depth of the hardened layer is 0.35 mm. The hardness of the 

optimized tooth top is 305.50 HV0.2 and the depth of the hardened layer is 0.2 mm. The 

hardness of the optimized tooth side is 341.40 HV0.2 and the depth of the hardened layer 

is 0.25 mm. While it can be found from Figure 13 that the hardness of the tooth root be-

fore optimization is 358.87 HV0.2, the depth of the hardened layer is 0.3 mm. The hardness 

of the tooth top before optimization is 302.13 HV0.2, and the depth of the hardened layer is 

0.15 mm. The hardness of the tooth side before optimization is 337.45 HV0.2 and the depth 

of the hardened layer is 0.2 mm. By comparing the thread hardness before and after op-

timization, it can be found that the optimized thread hardness increases by about 5 HV0.2 

and the hardened layer depth increases by about 0.05 mm. The results show that the op-

timized processing parameters can effectively improve the forming quality of thread. 
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Figure 28. Measurement of thread hardness after optimization. 

6. Conclusions 

In order to improve the forming quality of thread, the effects of bottom hole diam-

eter, machine tool speed, and lubricating medium on extrusion torque and temperature 

are studied by numerical simulation. For extrusion torque, the influence order is bottom 

hole diameter > machine tool speed > lubricating medium. For extrusion temperature, the 
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influence order is bottom hole diameter > machine tool speed > lubricating medium. 

Through orthogonal optimization, it is determined that the bottom hole diameter should 

choose ∅21.20 mm, machine tool speed should choose 40 RPM, and lubricating medium 

should choose PDMS polydimethylsiloxane coolant. When the optimized parameters are 

selected for processing, the maximum extrusion torque and the maximum extrusion 

temperature are reduced by 19.27% and 15.07%, respectively. The hardness of the opti-

mized thread increases about 5 HV0.2 and the depth of the hardened layer increases about 

0.05 mm. This proves the effectiveness of the optimized process. 

Compared with the existing research, the method of combining numerical simula-

tion and experiment is used to determine the best process parameters for machining the 

M22 × 2 thread. With the help of numerical simulation, the processing cost can be re-

duced and the processing safety problems, such as tap fracture caused by improper pa-

rameter selection, can be avoided. The accuracy of the finite element model and the reli-

ability of the optimization results are verified by experiment. This can prevent the limi-

tations of numerical simulation, such as the thread morphology not being able to be ob-

served in detail and the hardness not being able to be measured. This method is also 

suitable for determining the parameters of other screw threads. However, there are some 

unstable factors affecting thread quality in actual machining, which cause a certain error 

between actual machining results and numerical simulation results. In the future, nu-

merical simulation of thread processing, the elastic recovery of the workpiece, and the 

wear of the tap should be taken into account, so as to make the numerical simulation of 

thread forming closer to the actual. 
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