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Supplementary Note S1: The relation of effective thermal conductivity and the central 
ultra-thin wall with hollow structure 

Firstly, as shown in Figure S1a and S1b, the actual thermal conductivities of the ultra-
thin hollow wall and background are κu   and  κb  , respectively. The thickness of the 
background and the ultra-thin hollow wall are correspondingly denoted by d and σ  .  
Given that the thickness σ  is quite small, we can consider there is an effective heat source 
along the bottom boundary of this ultra-thin hollow wall and the average effective heat 
source in the thickness d of the background is denoted by eff

vQ [1]. Thus, =eff
v uQ q d  and 

uq  should possess the terms of θcos . We can assume θ= cosuq d U  with an undeter-
mined U. Then, the general solutions of temperature for this structure based on the steady-
state heat conduction equation are expressed as follows [1]: 
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Figure S1. 2D (a) and 3D (b) Schematic of the central ultra-thin hollow wall structure embedded in 
the background. (c) Unfolded ultra-thin hollow wall. 

The boundary conditions can be written as: 
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where A and B in Equation (S2) and (S3) are undetermined parameters of the solutions, 
which can be derived based on the continuity of the boundary conditions at each in-
terface. 

If we consider an effective 2D model is equivalent to the current 3D model with an 
ultra-thin hollow wall, the corresponding effective region of the ultra-thin hollow wall 
possesses a thermal conductivity κ eff 

u . Then, the general solutions for the temperature of 
each effective region can be shown as follows: 
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( ) ( )θ−= + >1
2 2 2 2coseffT C r D r r r                                                          (S5) 

The above C and D are determined by the boundary conditions as follows: 
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Since the background in the actual model and effective model should be equivalent, 
the B2 should be equal to D2. Further, the ultra-thin hollow wall is unfolded to a 2D plane 
(Figure S1c). The temperature distributions at z = 0 should use the temperature distribu-
tions at the outer boundary ( )= ur r  of the ultra-thin hollow wall, written as follows: 
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Then, the inner temperature distributions of the ultra-thin hollow wall can be ex-
pressed as: 
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Since other boundaries of the opened ultra-thin hollow wall are thermal insulations, 
the general solution of such conditions can be described as [1]:  
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From Equation (S8) and (S9), we can obtain the equal relation of  inner
uT  at z = 0 as 

follows: 
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Then, the general expression of nW  can be derived as follows: 
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According to the temperature distributions at z = 0, the explicit form of nW  can be 
acquired as follows: 
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Thus, the temperature expression of the inner
uT  is: 
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According to the ultra-thin structure of the hollow wall, the heat flux at the 
inner boundary is determined by 
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Since θ= cosuq d U , we can calculate constant U as: 
κ
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Here, combining equations (S3), (S6) and (S16), we can derive the expression of eff 
uκ  

as follows: 
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The 1m  and 2m  are related with ur  and σ , as 

( )σ= − −
22
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where κu  and κb  are the corresponding thermal conductivities of the ultra-thin ellipti-
cal hollow wall and background. Then, ur  and h is the radius and height of the ultra-thin 
hollow wall. d and σ  are the thickness of the ultra-thin hollow wall and background, 
respectively. Herein，it is easy to see that the background temperature fields vary from 
convergence to divergence with the increase of heights of the ultra-thin hollow wall as 
shown in Figure S2. 

 
Figure S2. The temperature fields of the whole structure when the heights (h) of this ultra-thin hollow wall are (a) 2 mm, 
(b) 6 mm and (c) 20 mm, respectively. 

Supplementary Note S2: The relation about the original temperature and on-demand 
new temperature value of the thermostatic boundary due to a shift of the ultra-thin 
hollow wall from the background center 

If we introduce the temperature modulation as another strategy to acquire the homo-
geneous zero-index scheme, as shown in Figure S3a, we can obtain the constant tempera-
ture for this ultra-thin hollow wall based on the steady-state heat conduction equation. 
Now let’s assume this constant temperature to ori

uT . Thus, when this ultra-thin hollow 



Materials 2023, 16, 3657 4 of 6 
 

 

wall moves left or right with a value Δx  (assume the left shift is a negative value), the 
constant temperature should need a corresponding change α  to realize an IETC for this 
ultra-thin hollow wall. 

α= +new ori
u uT T                                                                  (S19) 

( )( )α εΔ= + Δ Δ ≤' 0.5T x x L
L

                                                  (S20) 

As shown in Figure S3b and 3c, no matter how we change the value of Δx in the 
background with a length L, we find out the temperature curves of the whole structure at 
the line (y = 0 mm) always passes one point which also deviates a value ε '  in contrast to 
the center of ultra-thin hollow wall. Thus, there is a size shift effect in this structure and 
the relation is expressed as follows: 
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Figure S3. (a) 3D Schematic of the ultra-thin hollow wall structure embedded in the background. (b) and (c) the tempera-
ture curves of the whole structure at the line (y = 0 mm) when xΔ takes two different values. 
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Thus, combining equations (S19), (S20) and (S22), we can derive the temperature on-
demand new temperature value ori

uT as follows:  
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L
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Supplementary Note S3: The comparison between our homogeneous zero-index 
scheme and the rotating near-zero-index scheme 
1) The rotating scheme [2, 3] has been proposed to achieve the near infinite effective ther-
mal conductivity (IETC) and adjustable ETC by rotating fluids. Such a rotating scheme is 
quite interesting and can be used to achieve large ETC beyond naturally occurring mate-
rials. But the rotating scheme cannot exactly obtain the infinite effective thermal conduc-
tivity in practice. Then, based on the above discussions, we propose and design our ho-
mogeneous zero-index scheme beyond rotating to realize the IETC and its effective ther-
mal conductivity can be highly tuned by changing the height of the ultra-thin wall with a 
new theoretical framework. 
2) Then, the rotating fluid scheme needs a highly spinning motor, which consumes mas-
sive energy input, while our current scheme needs low energy input. 
3) Due to rotating with the same angular velocity, the linear velocity of the metadevice is 
high, resulting in the unavoidable phenomena that the ETC along the tangential direction 
is very large while the ETC along the radial direction is small. As a result, it is hard to 
achieve thermal camouflage and thermal expander functionalities by this rotating scheme. 
However, our scheme can flexibly and easily realize the zero-index thermal camouflage 
device and zero-index super thermal expander, as demonstrated in our paper theoreti-
cally and experimentally. 

In all, our homogeneous zero-index scheme is quite robust and feasible to fabricate, 
and it will further provide more robust and flexible zero-index thermal metadevices. The 
advantage comparison of our homogeneous zero-index scheme is shown in Figure S4. 

 
Figure S4. Comparison of these schemes for controlling heat flow in terms of energy consumption, application scope, 
arbitrary structure, fabrication difficulty, and flexibility. 

  



Materials 2023, 16, 3657 6 of 6 
 

 

Supplementary References 
1. J. Guo, G. Xu, D. Tian, Z. Qu, C.-W. Qiu, Passive Ultra-Conductive Thermal Metamaterials, Adv. Mater. 34 (2022) 2200329. 

https://doi.org/10.1002/adma.202200329. 
2. Y. Li, K.-J. Zhu, Y.-G. Peng, W. Li, T. Yang, H.-X. Xu, H. Chen, X.-F. Zhu, S. Fan, C.-W. Qiu, Thermal meta-device in analogue of 

zero-index photonics, Nat. Mater. 18 (2019) 48–54. https://doi.org/10.1038/s41563-018-0239-6. 
3. G. Xu, K. Dong, Y. Li, H. Li, K. Liu, L. Li, J. Wu, C.-W. Qiu, Tunable analog thermal material, Nat. Commun. 11 (2020) 6028. 

https://doi.org/10.1038/s41467-020-19909-0. 
 


