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Abstract: Heterostructures based on layered materials are considered next-generation photocatalysts
due to their unique mechanical, physical, and chemical properties. In this work, we conducted a sys-
tematic first-principles study on the structure, stability, and electronic properties of a 2D monolayer
WSe2/Cs4AgBiBr8 heterostructure. We found that the heterostructure is not only a type-II het-
erostructure with a high optical absorption coefficient, but also shows better optoelectronic properties,
changing from an indirect bandgap semiconductor (about 1.70 eV) to a direct bandgap semiconductor
(about 1.23 eV) by introducing an appropriate Se vacancy. Moreover, we investigated the stability of
the heterostructure with Se atomic vacancy in different positions and found that the heterostructure
was more stable when the Se vacancy is near the vertical direction of the upper Br atoms from the 2D
double perovskite layer. The insightful understanding of WSe2/Cs4AgBiBr8 heterostructure and the
defect engineering will offer useful strategies to design superior layered photodetectors.

Keywords: van der Waals heterostructure; first-principles; electronic properties; bandgap engineering

1. Introduction

Organic–inorganic metal halide perovskites demonstrate high performance, but still
face one major challenge: a stability issue due to hydrophilic organic cations and dis-
playing very low thermal decomposition temperatures. Recently, all-inorganic halide
perovskites, especially the double perovskite, without molecules and lead-free perovskite
showing excellent stability against moisture, heat, and light, have attracted extensive at-
tention [1–3]. In general, since the 2D all-inorganic double perovskite Cs4AgBiBr8 has
a high exciton-binding energy, which is 3 times larger than that of the 3D all-inorganic
double perovskite Cs2AgBiBr6, the charge carrier mobility and absorption coefficients
of Cs4AgBiBr8 (2D) in the visible spectrum are worse than those of Cs2AgBiBr6 (3D) [4].
However, in 2021, Wang et al. reported the upconversion photovoltaic effect of WS2
monolayer/(C6H5C2H4NH3)2PbI4 2D perovskite heterostructures by below-bandgap two-
photon absorption via a virtual intermediate state, which enables heterojunction devices
with good photoresponsivity and excellent current on/off ratio [5]. Therefore, heterostruc-
ture is considered an efficient way to enhance device performance, especially the charge
mobility and light adsorption.

Furthermore, van der Waals heterostructures (vdWHs) based on 2DLMs (2D layered
materials) with selectable material properties pave the way to build new structures at the
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atomic scale, which may lead to new heterostructures with novel physical properties and
versatility [6,7]. Two-dimensional layered materials, such as graphene and transition metal
dichalcogenides (TMDs), have attracted great attention due to their extraordinary properties
in fundamental physics and potential applications [8,9]. Interestingly, MoX2 and WX2
(X = S, Se, Te) TMDs are indirect gap semiconductors in their bulk states, but some of them
can become direct gap semiconductors when the film thickness is intentionally changed
into a monolayer [10–12]. Due to the weakened dielectric shielding and layer-dependent
electronic structure, monolayer TMDs such as MoS2 and WSe2 have direct band gaps with
strong exciton characteristics in the visible or near-infrared range [13]. However, their
relatively weak light absorption hinders their practical application. Fang et al. reported
that integrating monolayer TMDs with 2D perovskites, which serve as the light-absorption
layer, can be an efficient solution. Through the complementary effect of two-dimensional
perovskites, heterostructure engineering based on TMD layers can effectively improve the
performance of photodetectors with low-power optoelectronic applications [14].

A TMD, WSe2, has recently received more attention [15–17]. Two-dimensional WSe2
thin films and Nanoflakes have been used for photoelectrochemical hydrogen produc-
tion [18,19]. In this work, we used first-principles calculations to investigate the effect
of WSe2 layer defects on the heterostructure properties of a monolayer WSe2/monolayer
Cs4AgBiBr8 heterostructure. Our computational results show that the heterostructure
exhibits an indirect band gap where the CBM (conduction band minimum) and VBM
(valence band maximum) positions locate at different k points when the WSe2 monolayer is
combined with the Cs4AgBiBr8 monolayer. Xia et al. reported that when the atom vacancy
defect of vdWHs generates a flat defect energy level [20], we can employ the strategy of
defect modification and successfully change the heterostructure from an indirect band
gap to a direct band gap by introducing the defect energy level. Finally, the obtained
heterostructure with a Se vacancy exhibits a direct band gap, and the heterostructure is
more stable when the Se vacancy is near the vertical direction of the upper Br atoms from
the 2D double perovskite layer.

2. Calculation Methods

Our first-principles calculations were performed using density functional theory
(DFT) [21,22], which is implemented in the VASP code [23,24] with the standard frozen-
core projector-augmented wave (PAW) [25] method. We used the generalized gradient
approximation (GGA) [26] by the Perdew–Burke–Ernzerhof (PBE) method [27] to relax
the structure. The cut-off energy is set to 400 eV. We used a 2 × 3 × 1 k-points Γ-centered
mesh for calculating total energy and the structure relaxations of the WSe2/Cs4AgBiBr8
heterostructure, WSe2/Cs4AgBiBr8 heterostructure with W vacancy, and WSe2/Cs4AgBiBr8
heterostructure with Se vacancy. A Γ-centered mesh of 9 × 9 × 2 k-points was used for
the calculations of the WSe2 monolayer. All structures were relaxed until the energy was
less than 10−5 eV per atom and the force on each ion reduced below 0.03 eV Å−1. Then
the electronic properties were calculated with the optimized structures. Considering the
underestimation of the GGA–PBE functional of the band gaps, we employed the Heyd–
Scuseria–Ernzerhof (HSE06) hybrid functional [28] to calculate the electronic structure of
the WSe2 monolayer and Cs4AgBiBr6 monolayer for accurate band gap value.

3. Results and Discussion
3.1. Construction and Stability of the Heterostructure

We first investigated the structure of the WSe2 monolayer and Cs4AgBiBr8. The WSe2
monolayer is built by the monolayer 2D structure separated from WSe2 bulk (space group:
P63mmc and lattice parameters: a = 3.327 Å, c = 15.069 Å from [29,30]) and adding a vacuum
layer of 15 Å. We analyzed the WSe2 monolayer using the GGA–PBE method; the space

group is P
−
6m2, and the optimized lattice parameters are a = 3.315 Å and c = 18.031 Å. We

constructed a single-layer two-dimensional double perovskite Cs4AgBiBr8 by cutting the
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(0 1 1) surface of the double perovskite Cs2AgBiBr6 (space group: Fm
−
3m; lattice parameters:

a = 8.123 Å). To ensure that the analysis object is the Cs4AgBiBr8 monolayer, we added a
vacuum layer of 15 Å [31] to the unit cell of Cs4AgBiBr8 to avoid the effect of periodicity.
We analyzed the WSe2 monolayer with the GGA–PBE method; the space group is P4mmm,
and the optimized lattice parameters are a = 8.123 Å c = 20.782 Å.

Heterostructures were built by the Structural Utilities (804) of ‘vaspkit’ [32] to find two
representative heterostructures containing 73 atoms (containing 8 Cs, 2 Ag, 2 Bi, 16 Br, 15 W,
and 30 Se atoms) with a suitable lattice shape and reasonable lattice mismatch respectively,
named Heterostructure A and Heterostructure B (shown in Figure 1). The lattice mismatch
rate σ (the lattice mismatch which can quantify structural match of crystals) is 2.027%
and 4.048%, respectively, less than 5%. Heterostructure A is obtained by expanding the

WSe2 single crystal according to the transformation matrix

0 5 0
3 4 0
0 0 1

, and the supercell

is obtained by the Cs4AgBiBr8 single crystal expanding according to the transformation

matrix

0 2 0
1 1 0
0 0 1

. Heterostructure B is obtained by expanding the WSe2 single crystal

according to the transformation matrix

1 4 0
5 5 0
0 0 1

, and the supercell is obtained by the

Cs4AgBiBr8 single crystal expanding according to the transformation matrix

1 1 0
0 2 0
0 0 1

.

Following several attempts, the vacuum layer of the two species in the heterostructure
is set to 3.5 Å. In order to avoid the influence of periodicity on the calculation results, a
vacuum layer of 15 Å is set outside the heterostructure.
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Figure 1. (a) Side and (b) top views of Heterostructure A; (c) side and (d) top views of Heterostructure B.

The two types of heterostructure are very similar; Heterostructure B can be obtained
from Heterostructure A when the W atom and the vertical two Se atoms are exchanged
in the horizontal direction. Interestingly, in the vertical direction, the atoms position
correspondences are different; the calculated results show that the properties of the two het-
erostructures are basically the same. In order to quantify the thermodynamic stability of
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the interaction between WSe2 and Cs4AgBiBr8, the interface adhesion energy Ead, a good
descriptor, is obtained according to Equation (1):

Ead = Ehete. − EWSe2 − ECs4 AgBiBr8 , (1)

where Ehete., EWSe2 , and ECs4 AgBiBr8 represent the total energies of the relaxed heterostruc-
tures WSe2/Cs4AgBiBr8, monolayer WSe2, and monolayer Cs4AgBiBr8, respectively. We
calculated the adhesion energy of the two heterostructures to be −0.226 eV and −0.219 eV,
respectively. Obviously, Heterostructure A has lower adhesion energy and lattice mismatch
rate, so we decided to use Heterostructure A for follow-up research.

After geometric optimization, the surface of WSe2 did not exhibit significant defor-
mation. The WSe2/Cs4AgBiBr8 heterostructure has a typical vdW equilibrium spacing,
which was calculated to be 3.67 Å (Figure 1a) between the WSe2 and Cs4AgBiBr8 layers. We
noticed that when WSe2 was adsorbed onto the surface of Cs4AgBiBr8(001), only physical
adsorption occurred, but no chemical adsorption was observed.

3.2. Electronic Properties of WSe2/Cs4AgBiBr8

To investigate the photocatalytic performance of the WSe2/Cs4AgBiBr8 heterostruc-
ture, the energy band structures of the WSe2 monolayer, Cs4AgBiBr8 monolayer, and
WSe2/Cs4AgBiBr8 heterostructure were calculated, respectively. We employed GGA–PBE
and HSE06 methods to acquire more exact electronic structure properties, as shown in
Figure 2. The WSe2 monolayer has a direct bandgap of 1.55 eV with the GGA–PBE method,
which agrees well with the 1.6 eV estimated by extrapolating, as shown in Figure 2a. For the
WSe2 monolayer, CBM and VBM are located at the K point, while the Cs4AgBiBr8 mono-
layer has an indirect bandgap of 2.09 eV, as shown in Figure 2b. With the HSE06 method,
the WSe2 monolayer has a direct bandgap of 2.03 eV, and the bandgap of Cs4AgBiBr8
monolayer is 3.23 eV. Thus, the GGA–PBE functional might underestimate the band gaps
of the heterostructures that we built, by about 0.6 eV, at least.
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Figure 2. Energy band structures of the (a) WSe2 monolayer and (b) Cs4AgBiBr8 monolayer with
PBE (red dashed lines) and HSE (black solid lines) methods.

The WSe2/Cs4AgBiBr8 heterostructure is a type-II heterostructure which has better
photocatalytic performance, owing to its effectiveness in spatially separating photogen-
erated electron-hole pairs by band alignment between two semiconductors [33]. By com-
paring the band structures of the Cs4AgBiBr8 monolayer and the WSe2 monolayer, we
found that the band structure of the WSe2/Cs4AgBiBr8 heterostructure is influenced by
vdW interaction between Cs4AgBiBr8 and WSe2 interfaces, rather than an uncomplicated
superposition of the WSe2 monolayer and the Cs4AgBiBr8 monolayer. The energy bands of
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WSe2/Cs4AgBiBr8 heterostructures are staggered around the forbidden band, as shown
in Figure 3a, in which the red and blue parts are contributed by Cs4AgBiBr8 and WSe2,
respectively. The band structure of the WSe2/Cs4AgBiBr8 heterostructure has an indirect
bandgap of 1.10 eV using the GGA–PBE method, which did not meet our expectations. The
VBM and CBM of the heterostructure were located at Γ point and the point between the Γ
point and X point, respectively. Obviously, the Cs4AgBiBr8 monolayer contributes the VBM,
and the CBM comes from the WSe2 monolayer. Learning from the total and atom-projected
density of states (TDOS and PDOS) between −1.5 eV and 1.5 eV, as shown in Figure 3a, the
VBM is mainly composed of Ag d state and Br p state; at the same time, the CBM is mainly
composed of W d state and Se p state.
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Figure 3. The projected band structures (left) and the DOS (right) of the (a) Cs4AgBiBr8/WSe2 het-
erostructure, (b) Cs4AgBiBr8/WSe2 heterostructure with No. 6 Se vacancy, and (c) Cs4AgBiBr8/WSe2

heterostructure with W vacancy. The red square and blue circle in the band structures show the
electron orbits of Cs4AgBiBr8 and WSe2, respectively.

The VBM of WSe2/Cs4AgBiBr8 heterostructure is provided by the Cs4AgBiBr8 layer,
while the CBM is provided by the WSe2 layer. This demonstrates that the holes and excited
electrons are separately confined to different layers of the heterostructure, which promotes
the formation of spatially indirect excitons.
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3.3. Cs4AgBiBr8/WSe2 with Defects
3.3.1. Cs4AgBiBr8/WSe2 with W Vacancy

It can be learned from Figure 3c that W atoms play a major role in the CBM, so the effect
of adding W vacancies to the heterostructure is also considered. The WSe2 layer consists of
15 WSe2 molecules with a total of 15 W atoms and 30 Se atoms. We attempted to analyze
15 different heterostructures with W atom vacancies using the GGA–PBE method (one of
which is shown in Figure S1a). Electronic properties of 15 W atom vacancy heterostructures
are similar and not ideal. It can be learned from the energy band structures and the
DOS (Figure 3c) that the defect states brought by the W vacancies are generated near
the VBM and coincide with the VBM, which makes both sides of the forbidden band
provided by WSe2 and the band gap is still indirect, which is not conducive to improving
the photocatalytic activity.

3.3.2. Stability of Cs4AgBiBr8/WSe2 with Se Vacancy

WSe2/Cs4AgBiBr8 heterostructure is an indirect band gap heterostructure, which is
not conducive to improving the photocatalytic activity, and the positions of VBM and CBM
are very close, so we tried to introduce defects in the heterostructure. The VBM provided by
Cs4AgBiBr8 is located at the Γ point, while the CBM provided by WSe2 is located between
the Γ point and the X point, not on the ordinary high symmetry point. Compared with the
2D double perovskite Cs4AgBiBr8 layer, the WSe2 layer has better ductility. Combining the
above two points, we decided to study the WSe2 layers in WSe2/Cs4AgBiBr8, namely the
W vacancy and the Se vacancy defects.

Interestingly, we found that the introduction of Se atomic vacancy evidently affects
the electronic properties of the heterostructures. We numbered the 30 Se atoms in the
WSe2 layer as 1 to 30 (as shown in Figure 4a), where the odd numbers are the upper
layer, and the even numbers are the lower layer. The calculated results show that all
30 Cs4AgBiBr8/WSe2 heterostructures with Se atom vacancies are very close in electronic
properties and all have direct band gaps, two of which are shown in Figure S2. Compared to
the original heterostructure, that with Se atom vacancies shows minimal structure change.
We therefore calculated the adhesion energies of 30 heterostructures with Se atom vacancy
(Figure 4b). We found that the adhesion energy of most of the 30 heterostructures with Se
atom vacancy is around −0.225 eV, and the heterostructures have lower interfacial adhesion
energy when the defects appear on the lower surface of the WSe2 layer. Clearly, we observe
that the heterostructures with No. 6 Se vacancy and the No. 14 Se vacancy have abnormally
low adhesion energies. Both of the heterostructures with No. 6 Se vacancy and No. 14 Se
vacancy are near the vertical direction of the upper Br atoms from the 2D double perovskite
layer. The abnormally low interfacial adhesion energy may be caused by this Br atom.

3.3.3. Electronic Structure of Cs4AgBiBr8/WSe2 with Se Vacancy

We analyzed Cs4AgBiBr8/WSe2 heterostructures with No. 6 Se vacancy (shown in
Figure S1b), which has the lowest adhesion energy. We found a defect level provided by
WSe2 between the Fermi level and the conduction band, which is quite flat and reaches a
minimum at the Γ point (Figure 3b). Compared with the Cs4AgBiBr8/WSe2 heterostruc-
ture energy band structure (Figure 3a), the Se atom vacancy has little effect on the va-
lence band, and the VBM is still located at the Γ point. Therefore, we speculate that the
Cs4AgBiBr8/WSe2 heterostructure with Se atom vacancy has a direct band gap of 0.63 eV,
and both VBM and CBM are located at the Γ point.
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The partial charge density of VBM has no change when there is a Se vacancy in the Cs4Ag-
BiBr8/WSe2 heterostructure. 

To understand how charges are transferring at the interface, we calculated the work 
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Figure 4. (a) Se atoms (n = 30) in the WSe2 layer of the heterostructure with Se atom vacancy defects.
The atoms are numbered 1 to 30, where the odd numbers are the upper layer, and the even numbers
are the lower layer. (b) The adhesion energy of Cs4AgBiBr8/WSe2 heterostructures with 30 Se
atom vacancy defects (data are shown in Table S1). The partial charge densities of the (c) CBM
and (d) VBM of the Cs4AgBiBr8/WSe2 heterostructure, and that of the (e) CBM and (f) VBM of the
Cs4AgBiBr8/WSe2 heterostructure with Se vacancy.

We calculated the partial charge densities for the CBM and VBM of the Cs4AgBiBr8/WSe2
heterostructure and of the heterostructure with Se vacancy (shown in Figure 4c–f, respec-
tively). The electron orbitals of WSe2 and Cs4AgBiBr8 occupy the CBM and VBM of
the Cs4AgBiBr8/WSe2 heterostructure, respectively, which is consistent with the earlier
analysis about DOS. Comparing the partial charge densities of CBM between the orig-
inal heterostructure and heterostructure with Se vacancy, it is evident that the charge
centers on the Se vacancy, which is uniformly distributed in the original heterostructure.
The partial charge density of VBM has no change when there is a Se vacancy in the
Cs4AgBiBr8/WSe2 heterostructure.

To understand how charges are transferring at the interface, we calculated the work
function, which is used as an intrinsic reference for band alignment, of the Cs4AgBiBr8
monolayer, WSe2 monolayer with Se vacancy, and Cs4AgBiBr8/WSe2 with Se vacancy
using the GGA–PBE method. The work function is calculated according to Equation (2) [34]:

Φ = Evac − E f ermi, (2)

where Φ, Evac, and E f ermi represent the work function, the electrostatic potential of the
vacuum level, and the Fermi level, respectively. Based on Equation (2), the work functions
of the Cs4AgBiBr8 monolayer, WSe2 monolayer with Se vacancy, and Cs4AgBiBr8/WSe2
with Se vacancy are 4.33 eV, 5.07 eV, and 4.43 eV, respectively, as shown in Figure 5a–c.
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Figure 5. The electrostatic potentials of the (a) Cs4AgBiBr8 monolayer, (b) WSe2 monolayer with
Se vacancy, and (c) Cs4AgBiBr8/WSe2 heterostructure with Se vacancy, respectively. (d) The band
diagram of the WSe2/Cs4AgBiBr8 heterostructure and schematic of the charge separation at its
interface under sunlight irradiation.

It can be seen from the electrostatic potentials that the electrons in the Cs4AgBiBr8
layer with low work function flow into the WSe2 layer, which has high work function after
the electrostatic potential contact is formed. Therefore, the negative charges will accumulate
at the interface of the WSe2 layer; at the same time, the positive charges will accumulate at
the interface of the Cs4AgBiBr8 layer. Finally, the two Fermi levels of WSe2 and Cs4AgBiBr8
reach the same energy level; then, an internal electric field, which is generated by this
spontaneous interfacial charge transfer, takes shape at the interface from the WSe2 layer
to the Cs4AgBiBr8 layer. We plotted the energy level lineup diagrams and the charge
separation schematic of the Cs4AgBiBr8 monolayer and WSe2 monolayer before and after
contact, as shown in Figure 5d.

4. Conclusions

We constructed van der Waals heterostructures using monolayer WSe2 and monolayer
2D Cs4AgBiBr8. Considering a reasonable lattice mismatch rate and interface adhesion en-
ergy, we constructed a newWSe2/Cs4AgBiBr8 heterostructure with a lattice mismatch rate
of 2.027% and the lowest interface adhesion energy. Importantly, layered WSe2/Cs4AgBiBr8
can form a type-II heterostructure. By introducing Se vacancy, we further successfully
converted it into a direct band gap WSe2/Cs4AgBiBr8 heterostructure. We also found the
most stable WSe2/Cs4AgBiBr8 heterostructure with Se vacancy, when Se vacancy appeared
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on the lower surface of WSe2 and near the vertical direction of the upper Br atoms from
the 2D double perovskite layer. These results indicate that it is possible to construct type-II
van-der-Waals heterostructures composed of TMD monolayers and 2D double perovskites
from indirect band gaps to direct band gaps based on bandgap engineering.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ma16103668/s1, Figure S1: the top and side views of Cs4AgBiBr8/WSe2
heterostructure with (a) Se vacancy and (b) W vacancy; Figure S2: the band structures (left) and the
DOS (right) of the Cs4AgBiBr8/WSe2 heterostructure with (a) No. 2 Se vacancy and (b) No. 3 Se
vacancy; Table S1: The adhesion energy (eV) of 30 Cs4AgBiBr8/WSe2 heterostructures with different
Se atom vacancy defects.
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