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Abstract: This study examines a hierarchical vertex-based structure that improves the crashworthi-
ness of the conventional multi-cell square, a biological hierarchy of natural origin with exceptional
mechanical properties. The vertex-based hierarchical square structure (VHS) is explored for its
geometric properties, including infinite repetition and self-similarity. The cut-and-patch method
is used to derive an equation for the material thicknesses of different orders of the VHS based
on the principle of the same weight. A thorough parametric study of VHS was conducted using
LS-DYNA, which examined the effects of material thickness, orders, and various structural ratios.
The results were evaluated based on common crashworthiness criteria and demonstrated that the
total energy absorption (TEA), specific energy absorption (SEA), and mean crushing force (Pm) of
VHS exhibited similar monotonicity concerning the orders. SEA of the first-order VHS with λ1 = 0.3
and the second-order VHS with λ1 = 0.3 and λ2 = 0.1 are improved by at most 59.9% and 102.4%
respectively; the second-order VHS with 0.2 ≤ λ1 ≤ 0.4 and 0.1 ≤ λ2 ≤ 0.15 have the better overall
performance of crashworthiness. Then, the half-wavelength equation of VHS and Pm of each fold
was established based on the Super-Folding Element method. Meanwhile, a comparative analysis
with the simulation results reveals three different out-of-plane deformation mechanisms of VHS. The
study indicated that material thickness had a greater impact on crashworthiness. Finally, the compar-
ison with conventional honeycombs demonstrated that VHS holds great promise as a structure for
crashworthiness. These results provide a solid foundation for further research and development of
new bionic energy-absorbing devices.

Keywords: crashworthiness; hierarchical structure; vertex-based; fractal geometry; super-folding
element; energy absorption

1. Introduction

Crashworthiness is an important criterion for the ability of a vehicle to withstand
severe impacts and collisions. Various energy-absorbing devices installed at the front of
the vehicle are the main means of improving its crashworthiness [1–5]. Over the past
few decades, various types of thin-walled metal tubes have been used in the design
and manufacture of energy-absorbing devices, such as circular, square, and gradient
tubes [6–18]. Extensive research has demonstrated that an excellent energy absorber
should have a long plateau stage, a large platform force, and a low peak force. As a
result, many potentially new artificial structures have been designed, such as periodic
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cellular structures or tubes filled with ultra-light materials, foam-filled tubes, and composite
sandwich structures [19–29].

Many natural materials have good energy absorption properties due to their structural
characteristics [30–32]. One characteristic is the hierarchical structure widely found in
organic and biological systems, such as bones, wood, gecko foot pads, and sponges [33–36].
These biomaterials exhibit excellent properties due to the cross-scale modulation of the
hierarchical structure from the microscopic to the macroscopic [37–43]. In recent years,
many man-made materials with remarkable hierarchical structures have been developed,
such as sandwich cores, polymers, and composites, which have achieved superior me-
chanical properties [44–48]. Simultaneously, existing research has demonstrated that the
responses and interactions of different length scales and hierarchies determine the overall
behaviors of hierarchical structures [26,49–53]; this means different orders of the hierar-
chical structure have different properties. Therefore, by tuning the structural hierarchy
and the geometric properties of the substructures, it is possible to improve the lightness
and performance of materials. Liu et al. [54] investigated three hierarchical cubic lattice
structures and six kinds of hybrid hierarchical lattice structures to study the synergistic
hierarchical arrangement effect.

The vertex-based hierarchical structure is a combination of bionic structure and
artificial design and, like the hierarchy, has the characteristic of infinite evolution. Its
construction involves replacing each vertex of an existing structure with a smaller, sim-
ilar cell. Currently, common vertex-based hierarchical structures are vertex-based hier-
archical square (VHS) and vertex-based hierarchical honeycomb (VHHC). Ajdari and
Oftadeh et al. [48,55] found that VHHCs are stiffer than conventional honeycombs with
the same mass. Sun et al. [30] found that the first-order and second-order VHHCs have an
81.3% and 185.7% improvement in specific energy absorption, respectively, compared to
conventional honeycomb in out-of-plane impact. At the same time, there was essentially
no increase in the peak force of the material. Wang et al. [32] found that the vertex-based
hierarchical structure of the VHS significantly improved the folding response of the tube
and had a stable compression history. Meanwhile, the scale ratio of the sub-structure to the
parent structure significantly influences the mean crushing force [30–32,50].

However, few studies have summarized the geometric constitutive laws of the infinite
evolution of vertex-based hierarchical structures. Besides, these previous studies have
only demonstrated that vertex-based hierarchical structures can be the ideal lightweight
structure for designing crashworthy structures without considering the influence of the
coordination mechanisms between its different sub-structures on energy absorption. Si-
multaneously, the crushing behaviors of vertex-based hierarchies are limited by the type
and order of the hierarchy. To efficiently design a VHS with improved crashworthiness, the
optimal combination of hierarchical levels and geometric parameters, etc. must be found.

To fill these gaps, different hierarchical orders are considered here for comparing their
relative performance in this study. The geometrical configuration law of VHS is summa-
rized and the material thickness relationship calculation equation for different orders of
the VHS with the same mass is derived. The out-of-plane collision behaviors and energy
absorption characteristics of the VHS with first and second order are numerically inves-
tigated in more detail. The distribution range of the optimum specific energy absorption
of the VHS at different thicknesses is also explored. Finally, the factors affecting the mean
crushing force and energy absorption of the VHS are analyzed theoretically based on the
Super-Folding element.

2. Geometric Configuration of Vertex-Based Hierarchical Squares
2.1. Geometric Description

The geometry of the hierarchy is infinitely repeatable and self-similar. Based on Wang’s
work [32], the out-of-plane crashworthiness of the higher-order VHS has attracted interest.
Therefore, the first step in this study is to define VHS mathematically.
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The higher-order VHS is to replace all the vertices of the previous-order one with a
smaller-scale square. The infinite-order VHS will be formed when this procedure can be
repeated indefinitely, as illustrated in Figure 1. The structural ratio, a set of real numbers λi,
is defined by the ratio of the newly introduced square edge length (li) to the conventional
multi-cell square side length (l0), i.e., λi = li/l0, where i denotes the i-th hierarchical order
varying from 1 to n.

Figure 1. Vertex-based hierarchical square: (a) 3D view of the conventional multi-cell square (in
this paper, the conventional multi-cell square is treated as zero-order VHS) with the side length of
l0 = 40 mm, the first-order VHS with λ1 = 0.5, and second-order hierarchical with λ1 = 0.5, λ2 = 0.25,
(b) top view of the conventional multi-cell square and hierarchical VHS, and (c) single unit-cell of
multi-cell square with conventional structure (zero-order), first-order, and second-order hierarchies.

To ensure iteration of the VHS, some construction rules must be followed, and some
geometrical constraints on the hierarchically introduced edges must be imposed. Figure 2
illustrates two different geometric constructions of first-order VHS. These two modes are
the only geometric constructions that VHS can adopt. In each of these two constructions,
the four connection points of the VHS substructure fall exactly on the red circle, found
in Figure 2. Inspired by the orthogonal polygon’s inner and outer tangent circles, the
construction path of Figure 2a,b are named the inner-tangent circle pattern and outer-
tangent circle pattern, respectively. The inner-tangent circle pattern is the only way to
achieve infinite iterations of the VHS.
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The evolution between the adjacent order of different VHSs is clearly demonstrated in
Figure 3. To avoid edge overlap of cells between adjacent orders, some geometric constraints
must be imposed on the edges introduced by the hierarchy. For the i-th hierarchical order
(i ≥ 1)

0 ≤ li ≤ li−1, (1)

which can also be rewritten with structural ratio parameters as

0 ≤ λi ≤ λi−1. (2)

when this equation is extended to the entire VHS structure, it provides

0 ≤∑n
i=1 λi ≤ 1 (3)

where ∑n
i=1 λi = 0 denotes the conventional multi-cell square. Eventually, we obtain the

construction law of the VHS, {
0 ≤ λi ≤ λi−1

0 ≤ ∑n
i=1 λi ≤ 1

(4)
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According to Equation (4), a range of values for the structural ratio of the third-order
VHS can be obtained, which is exactly a tetrahedral space, as illustrated in Figure 4. The
projection of this space in the λ1λ2-plane is the range of values for the structural ratio of
the third-order VHS.
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2.2. Thickness of VHS Material

Thickness is an essential factor that determines the mechanical properties of materials.
The relationship between the order of VHS and the thickness was derived based on mass
conservation. Since the height of the material is the same for all VHSs in this section, the
mass expression can be written as

M = ρ0V = ρ0SH = ρzH (5)

where ρ0, S, H are the density, cross-sectional area, and height of the initial material,
respectively and ρz is the linear density of the material in the height direction. Therefore,
mass conservation degenerates to linear density conservation. Since the VHS’ thickness is
uniform, the cross-sectional area is expressed as

S = L0t0 = Liti (6)

where Li is the sum of the VHS side lengths in-plane without considering the thickness,
which is satisfied with Li ∝ li; although, this calculation results in an extra portion of
overlapping area at the nodes of the structure, which is ti

2. Since the weight of VHS is
constant, the thickness of the material is thinner and thinner with the iteration of the order.
The error of area calculation is negligible. For the initial structure in Figure 5, the line
density in the height direction can be obtained as follows

ρ0z = l0t0ρ0(k1 + k2 + 2k1k2) (7)

where t0, l0 k1 and k2 are the wall thickness, the cell’s side length, and the cell’s number
in the x and y direction of the initial material, respectively. In Figure 6, we find that the
i-th sub-structure is formed by replacing the 16 vertices of the i − 1-th sub-structure with
smaller squares, where the edge length is li = λi·l0 and the thickness of the new VHS
is reduced to ti. In this process, the total cross-section length of the new sub-structure
increases by 16li. However, in terms of the i − 1-th sub-structure, it loses 4li.

Based on the above evolutionary process, we propose to use the cut-and-patch method
to calculate the total length of the VHS cross-section; it is carried out in three specific steps.
The first step is to patch. For the i order VHS, without considering the newly formed i-th
sub-structure, it loses a total 4li·Ni−2 length of the cross-section, only compared with the
previous i − 1 order VHS in the first i − 1 orders of structure. Ni−2 is the i − 2 order of
the VHS’s total vertex number (Table 1). Therefore, after patching this lost length for the
i order VHS, the sum of the cross-sectional lengths of the new VHS’ first i− 1 order structure
becomes the same as that of the i − 1 order VHS, which is still Li−1.
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Table 1. The total number of the vertex of the i order VHS.

i 0 1 . . . n

Ni (k1 + 1)(k2 + 1) 4(k1 + 1)(k2 + 1) . . . 4n(k1 + 1)(k2 + 1)

The second step is to cut. The total length of the structure after the first step has an
increase 4li Ni−2 compared to the previous i order VHS. Therefore, the extra length (∆Li)
from the i-th order sub-structure should be cut out, so that the total length of the i-order
VHS’s cross-section after this processing is unchanged

∆Li = 4i−1(k1 + 1)(k2 + 1)li, (8)

and repeating the same approach to the first i − 2 orders of the i order VHS

∆Li−1 = 4i−2(k1 + 1)(k2 + 1)li−1. (9)

By using mathematical induction, any ∆Li of i order VHS can be obtained. Each order
of i-order VHS is intact after this treatment, and the total length of any alone order is easily
calculated. The detailed calculation results are provided in Table 2.
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Table 2. The cut-and-patch length statistics of i-order VHS.

i Li ∆Li

0 (k1 + k2 + 2k1k2)l0 (k1 + k2 + 2k1k2)l1
1 4(k1 + 1)(k2 + 1)l1 4(k1 + 1)(k2 + 1)l2
2 42(k1 + 1)(k2 + 1)l2 42(k1 + 1)(k2 + 1)l3

. . . . . . . . .
n−1 4n−1(k1 + 1)(k2 + 1)ln−1 4n−1(k1 + 1)(k2 + 1)ln

n 4n(k1 + 1)(k2 + 1)ln 0

The last step summed all of the results, which come from Li minus ∆Li−1. Then, the
total length of the n-order VHS of the cross-section is obtained

Ln =
n

∑
i=1

(Li − ∆Li−1) + L0 (10)

The results of Equation (10) can be calculated by Table 2 as follows

Ln/l0 = (k1 + 1)(k2 + 1)

(
1 + 3

n

∑
i=1

λi·4i−1

)
+ (k1k2 − 1)(1− λ1) (11)

where ζs = (k1 + 1)(k2 + 1)
(
1 + 3 ∑n

i=1 λi·4i−1), ξs = (k1k2 − 1)(1− λ1). Because the
material has the same linear-density in the height direction, we obtain

t0(k1 + k2 + 2k1k2) = tn(ζs + ξs). (12)

Hence, the wall thickness of n-order VHS can be obtained by remaining density
unchanged as follows

tn =
tn

t0
=

k1 + k2 + 2k1k2

ζs + ξs
(13)

where tn is the thickness rate of n-order VHS (i.e., dimensionless thickness). Let
k2 = mk1 = mk. Equation (13) can be changed as

tn =
k(1 + m + 2mk)

(k + 1)(mk + 1)
(
1 + 3 ∑n

i=1 λi·4i−1
)
+ (mk2 − 1)(1− λ1)

(14)

Geometrically, m can be understood as the aspect ratio of the VHS mother structure.
For the initial multi-cell tube with m = 1, the cross section is square, and one can have

tn =
tn

t0
=

2k
(k + 1)

(
1 + 3 ∑n

i=1 λi·4i−1
)
+ (k− 1)(1− λ1)

(15)

For the first-order VHS with m = 1, one can have

t1 =
t0

1 + λ1(1 + 2/k)
(16)

Equation (16) is consistent with Wang’s research [32].
The finite element models were established through ANSYS, based on the initial

structure of K4 and K8, and the density of the material is taken as 2.8 g/cm3. The model
masses of different λi are calculated separately and compared with the results calculated
by theoretical Equation (14), provided in Figure 7. The theoretical results are extremely
precise, considering that the relative error between the two results is within 7.5 × 10−4.
Table 3 shows the thickness of the VHS with different structural ratios.
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Table 3. The thickness of the VHS with different structural ratios.

Conventional Multi-Cell Square First-Order VHS Second-Order VHS

K4 K8 K4 K8 K4 K8

tc4 (mm) tc8 (mm) λ1 tf4 (mm) tf8 (mm) λ2 ts4 (mm) ts8 (mm)

2 1 0.1 1.739 0.889 0.05 1.311 0.684

2 1 0.15 1.633 0.842
0.05 1.250 0.656
0.1 1.013 0.537

2 1 0.2 1.538 0.800
0.05 1.194 0.630
0.1 0.976 0.597
0.15 0.800 0.430

2 1 0.25 1.455 0.762

0.05 1.143 0.606
0.1 0.941 0.503
0.15 0.800 0.430
0.20 0.696 0.376
0.25 0.615 0.333

2 1 0.3 1.379 0.727

0.05 1.096 0.584
0.1 0.909 0.488
0.15 0.777 0.419
0.2 0.678 0.367
0.25 0.602 0.327
0.30 0.541 0.294

2 1 0.4 1.250 0.667

0.05 1.013 0.544
0.1 0.851 0.460
0.15 0.734 0.398

0.2 0.645 0.351
0.25 0.576 0.314
0.3 0.519 0.284
0.35 0.473 0.259
0.4 0.435 0.238

2 1 0.5 1.143 0.615

0.05 0.941 0.510
0.1 0.800 0.435
0.15 0.696 0.379
0.2 0.615 0.336
0.25 0.552 0.302
0.3 0.500 0.274
0.35 0.457 0.251
0.4 0.421 0.231
0.45 0.390 0.214
0.5 0.364 0.200

2 1 0.6 1.053 0.571

0.05 0.879 0.479
0.1 0.755 0.412
0.15 0.661 0.362
0.2 0.588 0.323
0.25 0.530 0.291
0.3 0.482 0.265
0.35 0.442 0.243
0.4 0.408 0.225

2 1 0.75 0.941 0.516

0.05 0.800 0.440
0.1 0.696 0.383
0.15 0.615 0.339
0.2 0.552 0.304
0.25 0.500 0.276

2 1 1 0.800 0.444 - - -
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3. Numeric Simulation
3.1. Crashworthiness Criterion for VHS

In general, including total energy absorption (TEA), specific energy absorption (SEA),
and the mean crushing force (Pm), these typical criteria are widely used to evaluate the
crashworthiness of materials, as illustrated in Table 4 [27,56,57]. In this paper, these criteria
were adopted to evaluate the crashworthiness of the VHS.

Table 4. Crashworthiness criterion.

Crashworthiness Criteria Symbol/Calculation Formula

The peak crushing force FP

Total energy absorption (TEA) Ea =
∫ s

0 F(δ)dδ

Specific energy absorption (SEA) SEA = Ea
M

The mean crushing force (Pm ) Pm = Ea
δmax

In Table 4, F(δ) denotes the instantaneous crushing force, which is a function of
displacement; δ, M represents the mass of the structure.

3.2. Finite Element Model

LS-DYNA is widely used to simulate the crashworthiness study of materials, and it
is very reliable for the simulation of hierarchical structures. Figure 8 demonstrates the
VHS under out-of-plane (z-direction) dynamic loading. The Belytschko-Tsay 4-node shell
elements were implemented to model the VHS wall [32]. For VHS, an automatic surface-
to-surface contact was applied between the VHS and the rigid wall, while an automatic
single surface contact was adopted to account for the contact between the formation of
lobes during deformation. The contact between all the surfaces was modeled with dynamic
and static friction coefficients of 0.2 and 0.3, respectively. A clamped boundary condition
with a fully fixed rigid wall was prescribed at the bottom of the VHS. A rigid wall without
mass was compressing the VHS in the out-of-plane direction dynamically at a prescribed
velocity of 10 m/s.
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Figure 8. Finite element of the VHS.

The material used for the VHS was SimpNeed® 6061 aluminum alloy, with Young’s
modulus E = 70 GPa, initial yield stress σy = 245 MPa, and Poisson’s ratio ν = 0.33. The
constitutive model of the material was based on the bilinear isotropic hardening MAT 3 in
LS-DYNA, which has a tangential modulus of 700 MPa. The conventional multi-cell square
in this section was the same structure as the K4 with t0 = 1 mm in Section 2.

The cell size of the VHS in the vertex region is small, which needs a smaller mesh size
to fully simulate its deformation. However, a smaller mesh means a longer computational
cost. A convergence test was carried out to obtain an optimum mesh size ratio for the
numerical simulation, and the selection of the mesh size ratio was based on the Bisection
method. The mesh size ratio is defined as

ϕ = lsize/ln (17)

where lsize and ln is the mesh size and the min sub-structure of the VHS, respectively, as
illustrated in Figure 9. The second-order VHS of λ1 = 0.5, λ2 = 0.25 was adopted for the test.
The material thickness of the verification structure is provided in Table 2 as 0.552 mm.
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Table 5 demonstrates the computational cost, the mean crushing force, and the relative
error of TEA between the mesh size ratios of 1.0, 0.5, 0.25, 0.125, 0.10, and 0.075, respectively.
The relative error of TEA was defined as

e = |(E2 − E1)/E2| (18)

where E1, and E2 are the TEA of the adjacent size ratio, respectively. The curve of the force
and TEA characteristics predicted using the different mesh size ratios are summarized
in Figure 10. It is exhibited that the wave of force can correspond to each other between
size ratios 0.125, 0.1, and 0.075; also, the differences in Pm and TEA simulation results
were negligible. Hence the size ratio ϕ = 0.125 was adopted throughout this study for the
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second-order VHS. For the zero-order and first-order VHS, this paper referenced ϕ = 0.02
and ϕ = 0.08, respectively [32].

Table 5. Comparisons between different mesh sizes ratios of the VHS.

Structural Ratio Mesh Size Ratio Computational Cost/h Pm/kN Relative Error of TEA

λ1 = 0.5,
λ2 = 0.25

ϕ = 1.0 0.01 1.03 99.8%
ϕ = 0.5 0.03 530.09 8.7%

ϕ = 0.25 3.5 528.01 0.6%
ϕ = 0.125 8.8 510.67 0.2%

ϕ = 0.1 10.6 502.86 0.1%
ϕ = 0.075 14.2 502.57 –
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3.3. Parametric Studies on VHS

In this section, the influence of structural ratio (λi) and order of hierarchy on the
crashworthiness responses of the VHS are explored, with two different material thicknesses
(t0 = 1 mm or 2 mm) under the same velocity. Assuming the same weight, the material
thickness of the other VHSs in this section can be checked and converted from Table 2.

Figure 11a,b illustrates the SEA, Fp, and Pm of the first-order VHS for the possible
values of λ1 under two different material thicknesses. The results demonstrate that both the
SEA and Fp increase with increasing thickness in the range of λ1. According to Figure 11a,
for VHSs with varying thicknesses, the SEA increases and then decreases as the values of
λ1 increase. Specifically, for the VHS with t0 = 1 mm, its SEA monotonically increases in
the region of 0 ≤ λ1 ≤ 0.25 and monotonically decreases in the region of 0.25 ≤ λ1 ≤ 1,
peaking at λ1 = 0.25. For the VHS with t0 = 2 mm, these monotonic regions and maximum
values will change. It is evident that the initial thickness of the material not only directly
affects the magnitude of SEA of the VHS, but also changes its monotonic regions with λ1.

From Figure 11b, it is clear that the fluctuation of the curve of Pm is consistent with
the curve of its corresponding SEA, while the curve of Fp remains essentially unchanged,
revealing that, for the first-order VHS with the same mass, their Fp are the same. In general,
the first-order VHS has a 59.9% and 33.8% improvement in SEA compared to conventional
multi-cells, with initial material thicknesses of 1 mm and 2 mm, respectively.

At the same time, the peak force of the material remains largely unchanged. This indi-
cated that the first-order VHS has excellent crashworthiness compared to the conventional
multi-cell square.
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of first-order VHS with t0 = 1 mm and 2 mm; (b) Fp & Pm of first-order VHS with t0 = 1 mm and
2 mm.

Figure 12 illustrates a comparison of the SEA for various second-order VHSs with two
different thicknesses. The SEA of all second-order VHSs decreases monotonically over the
entire range of values of λ2. From Figures 12 and 13, one can obtain that, similar to the
first-order, the variations of the curves of SEA and Pm with the value of λ2 are the same.

Figure 12. Comparison of SEA of various second-order VHSs under different thicknesses:
(a) t0 = 1 mm; (b) t0 = 2 mm.

Figure 13. Comparison of Pm of various second-order VHSs under different thicknesses:
(a) t0 = 1 mm; (b) t0 = 2 mm.
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The second-order VHS has a 102.4% and 77.9% improvement in SEA compared to
conventional multi-cells, with initial material thicknesses of 1 mm and 2 mm, respectively.
At the same time, there is also a significant improvement in the mean crushing force. As the
values of λ2 increases, the SEA and Pm of the second-order VHS are much smaller than the
conventional multi-cell square. This is mainly due to the negative effect of the dramatically
reduced material thickness outweighing the structural effect of the vertex base.

The simulations in this paper maintained the same weight, thus the crashworthiness
criteria of TEA and SEA are equivalent. Combined with the previous analysis, for the
first-order and second-order VHS presented in this paper, the three criteria of TEA, SEA,
and Pm can be unified into a single one. For optimum crashworthiness, the values of λ2
of the second-order VHS should be as small as possible to obtain the greatest possible
material thickness.

To analyze the influence of the structural ratio (λi) in more detail, Figure 14 plots the
SEA contours for first-order and second-order VHS with different initial material thickness
and possible values of λ1 and λ2. From Figure 14, it is clear that the closer the sum of the
values of λ1 and λ2 of the second-order VHS is to 1, the lower its SEA. When λ1 and λ2
are both equal to 0.5, the SEA of the second-order VHS reaches a minimum. As can be
observed in Table 3, the lowest material thicknesses of the second-order VHS are found at
values of 0.5 for both λ1 and λ2.; this, again, indicates that material thickness is critical to
its SEA. To achieve optimum crashworthiness, the above analysis demonstrates that the
design region for the second-order VHS should be within the range of 0.2 ≤ λ1 ≤ 0.4, and
0.1 ≤ λ2 ≤ 0.15.

Figure 14. SEA contours for the second-order VHS under different thicknesses: (a) t0 = 1 mm;
(b) t0 = 2 mm.

4. Discussion
4.1. Theoretical Analyses

Inspired by the work of Wierzbicki on the multi-cell square [58,59], C-shape and
T-shape as the basic elements for energy dissipation discretization of VHS were adopted.
The previous structure added two new types of C-shape and T-shape elements after each
order evolution, as demonstrated in Figure 15. The vertices of the VHS were denoted by
C-shape and T-shape, respectively, while the previous C-shape disappears (i.e., the C-shape
element of VHS will only exist near the four vertices of the previous order). Hence, the
total energy dissipation of the n-order VHS in one wavelength can be expressed as

Eint = [0, . . . , Jn]
[
0, . . . , EC

n

]T
+ [K1, . . . , Kn]

[
ET

1 , . . . , ET
n

]T
(19)

where Ji, Ki are the number of C-shapes and T-shapes, respectively, and EC
i , ET

i is the energy
dissipation of the corresponding C-shape and T-shape, respectively. [0, . . . , Jn] is the row
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vector where the first n−1 elements are all 0, and
[
0, . . . , EC

n
]T is the column vector where

the first n−1 elements are all 0.
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energy dissipation of the C-shape and the T-shape [32] is provided in Table 6. 
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Figure 15. Typical energy dissipation elements of the VHS: (a) sub-structure of first-order VHS,
(b) sub-structure of second-order VHS, and (c) sub-structure of third-order VHS.

The Super-Folding Element method [32,58,59] is used to analyze the crashworthiness
of materials, as shown in Figure 16. The energy dissipation can be composed of three
regions: E1 = 16M0 I1(ϕ0)Hb/t, E2 = 2πM0c and E3 = 4M0 I3(ϕ0)H2/b, where H is the
half-wavelength and b is the small radius of the toroidal shell, as illustrated in Figure 16.
It has been demonstrated in the literature that there is more complex deformation in the
T-shape cell [32]. The conical surface area may be further formed in the most core region I,
which leads to additional energy dissipation E4 = 2M0 I4(ϕ0)H2/b [32]. M0 is the fully
plastic bending moment calculated as M0 = σ0t2/4 (σ0 denotes the static yield stress of foil
material and c stands for the wall length of each fold) [17].
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However, experimental and simulated evidence suggests that this is currently rare. At
the same time, the formation with or without conical surface zone IV is only a question
of whether or not to add a coefficient related to E4 in the canonical calculation equation,
which will be discussed in detail later. To be conservative, the energy dissipation analysis
in this section considers only the deformation of zones I, II, III. The composition of the
energy dissipation of the C-shape and the T-shape [32] is provided in Table 6.

Table 6. Composition of the energy dissipation element.

Unit Type I II III

C− shape(Ci ) 1 lC
i (2) 2

T− shape(Ti ) 1 lT
i (3) 2
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From Table 4, we can obtain

EC
i = E1

i + E2
i + 2E3

i (20)

ET
i = E1

i + E2
i + 2E3

i . (21)

For the calculation of zone II, it is necessary to obtain the length of the horizontal
hinge line of each unit involved in this deformation, which is theoretically impossible to
find out one by one. To facilitate the handling of this part of energy dissipation, assuming
that each part of the material is fully involved in the deformation of zone II. Hence, the
total length of the material’s cross-section was the sum of all units’ horizontal hinge lines
in the zone II. Finally, we can obtain

∑ c =
n

∑
i=0

[
JilC

i (2) + KilT
i (3)

]
= Ln (22)

From Equations (19)–(22), the energy dissipation of the VHS at a given wavelength
can be derived as follows

Eint =
(

E1
i + 2E3

i

)(
Jn +

n

∑
i=1

Ki

)
+ 2πM0Ln (23)

Assuming that the parent structure of the VHS is the multi-cell square with k × k,
the number of different energy dissipation elements of the n-order VHS can be directly
obtained, as illustrated in Table 7.

Table 7. Several different energy dissipation elements for n-order VHS.

Cn
T-Shape

Tn Tn−1 . . . T2 T1

4n(k + 1)2 0.5·4n(k + 1)2 0.5·4n−1(k + 1)2 . . . 0.5·42(k + 1)2 4k(k + 1)

Obviously, n in Table 7 should be greater than 0. For the C-shape and T-shape elements,
ϕ0 = π/4, and I1(ϕ0) =0.58, I3(ϕ0) =1.11, Eint is derived as follows

Eint = M0

[(
9.28

Hb
tn

+ 8.88
H2

b

)(
Jn +

n

∑
i=1

Ki

)
+ 2πLn

]
(24)

Let Qn = (Jn + ∑n
i=1 Ki), where Qn is the total number of C-shape and T-shape, which

can be calculated from Table 7 as follows

Qn =
5
3
(k + 1)2·4n +

4
3
(k + 1)(k− 2) (25)

From the conservation of dissipated energy, we can find

Pm
n ·2H = M0

[(
9.28

Hb
tn

+ 8.88
H2

b

)(
Jn +

n

∑
i=1

Ki

)
+ 2πLn

]
(26)

By substituting Qn =

(
Jn +

n
∑

i=1
Ki

)
into Equation (26), we can obtain

2Pm
n

M0
=

[(
9.28

b
tn

+ 8.88
H
b

)
Qn +

2πLn

H

]
(27)
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The half wavelength of folding can be determined by the stationary condition as
∂Pm

n /H = 0, ∂Pm
n /b = 0. Hence, H, b and Pm

n are derived as follows

H = 3

√
4π2·tnLn2

9.28·8.88·Qn2 = 0.782 3

√
tnLn2

Qn2 = 0.782 3

√
LnL0t0

Qn2 (28)

b = 3

√
2π·8.88·tn2Ln

9.28·9.28·Qn
= 0.865 3

√
tn2Ln

Qn
= 0.865 3

√
tnL0t0

Qn
(29)

Pn
m = 0.375σ0

3
√

0.58·2π·1.11·128Qn2Lntn5 = 3.01σ0
3
√

Qn2tn4L0t0 (30)

Significantly, the three coefficients 0.58, 2π, and 1.11 in Equation (30) can be interpreted
as the contribution of the Super-Folding Element’s three typical deformation zones I, II, and
III to the VHS. Similarly, if the material develops a conical surface zone IV during crushing,
only a relevant factor needs to be added to Equation (30). For a given initial structure, only
the values of Qn and tn determine the values of Pn

m.
Figure 17 compares the theoretical and numerical results of the mean crushing force

for the first-order VHS with different values of λ1. Since the theoretical derivation in this
paper is conservative, this phenomenon is justified. The theoretical results were always
smaller than the numerical ones, and only when λ1 ≥ 0.25. The fluctuations of the curve of
the theoretical and numerical results are in good agreement for the VHS with t0 = 1 mm.
While for the VHS with t0 = 2 mm, only when λ1 ≥ 0.4 do the fluctuations of the curve
of the theoretical and numerical results agree well. As can be observed from Table 2, the
thickness of the VHS decreases significantly as the values of λ1 continue to increase. It is
also clear from Equation (30) that the values of Qn and L0t0 remain unchanged for a given
i-th VHS. At this point, the only factor determining the values of Pn

m is the thickness, which
can also be considered as λ1. Hence, the values of Pn

m decrease significantly as the values
of λ1 increase, which is consistent with the numerical results. This demonstrates that the
thickness of the material has a profound effect on the out-of-plane deformation mechanism
of the VHS.
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theoretical and numerical results.

4.2. Analysis of the VHS Out-of-Plane Deformation Mechanism

Figure 18 illustrates the deformation of the first-order VHS with λ1 equal to 0.1, 0.25,
and 0.5 for a compression ratio (κ) of 0.5, respectively. All deformations started at the
bottom, which was fixed and progressed toward the loaded end. The VHS with λ1 = 0.1
has the greatest material thickness of the three and the greatest length-to-slenderness ratio
of the tube in which its sub-structure is located. As can be observed from Figure 18a, the
deformation is a progressive folding of the entire material at a larger half-wavelength,
guided by the rod-like buckling produced by the sub-structure. Its deformation is not
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consistent with the theoretical model based on the Super-Folding Element in Section 4.1,
which explains why its mean crushing force is much lower than the theoretical results
according to Figure 17. As can be observed from Figure 18b, for a VHS with λ1 = 0.25,
the deformation is divided into two processes. First, the sub-structure appears to fold
progressively with the whole material at a smaller half-wavelength, a stage that can be
explained by the Super-Folding Element. Then, when the material is compressed to a
certain stage, part of the sub-structure demonstrates bending similar to that of the VHS
with λ1 = 0.1, which then triggers a larger half-wavelength folding of the whole material.
Compared to the other two VHS, the deformation of the VHS with λ1 = 0.5 is the most
consistent with the Super-Folding Element, which has the smallest half-wavelength of the
fold, the densest folds, and the numerical results for mean crushing force agree well with
the theoretical results.
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Figure 18. Modes of deformation for first-order VHS: (a) λ1 = 0.1, (b) λ1 = 0.25, and (c) λ1 = 0.5.

Figure 19 demonstrates that both theoretical results accurately predict that the mean
crushing force of the second-order VHS decreases rapidly with increasing values of λ2.
Again, the theoretical results remain smaller than the numerical results. In contrast to the
first-order VHS, the theoretical results of the second-order VHS with t0 = 2 mm are in
better agreement with the simulation results. The numerical results of the second-order
VHS with λ1 = 0.5 and λ2 = 0.25 demonstrate the greatest deviation from the theoretical
results. Referring to Table 1, by varying the values of λ2, the material thickness of the
second-order VHS with λ1 = 0.5 has the widest range of variation. This means that when
it is subjected to out-of-plane loading, its local structure takes on more varied forms of
buckling, which in turn leads to changes in the out-of-plane deformation regime of the
material as a whole. As a result, the mean crushing force of the numerical results differs
significantly from the theoretical results based on the Super-Folding Element.
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4.3. Comparison of the VHS with the Conventional Honeycomb

As one of the most common crashworthiness structures, conventional honeycomb
structures have excellent energy absorption and structural protection properties and are
widely used in engineering applications. In this part, the conventional multi-cell square,
first-order VHS, and second-order VHS are compared with the conventional honeycomb
under out-of-plane loading. From Section 3, the first-order VHS with λ1 = 0.3 and the
second-order VHS with λ1 = 0.3, λ2 = 0.1 were chosen, which have better performance
than others. To achieve the same geometric configuration and weight as the VHS as far as
possible, the honeycomb was chosen in the geometry of Figure 20, with H equal to 100 mm
and t0 equal to 0.9 mm, while the material thickness of the red part in Figure 20a is twice as
thick as the other parts.
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The SEA and Pm for the same weight are plotted in Figure 21 to visually compare
the crashworthiness characteristics of these four structures. The crashworthiness of the
conventional honeycomb is far superior to the conventional multi-cell square in every
respect. Even compared to first-order VHS with λ1 = 0.3, SEA and Pm of the honeycomb are
6% and 3% higher, respectively, and the fluctuations of force in plateau stages are smaller.
However, the second-order VHS with λ1 = 0.3 and λ2 = 0.1 has a 15% higher SEA and 13%
higher Pm than the conventional honeycomb, and a longer plateau stage. Overall, VHS has
a greater potential for crashworthiness than conventional honeycombs. It deserves to be
studied in depth.
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5. Conclusions

This study investigated the crashworthiness characteristics of the VHS under out-of-
plane dynamic loading. The study made the following important conclusions:

(1) The geometrical characteristics of the VHS were analyzed and summarized, and an
equation for the material thickness was derived based on the principle of equal mass.
The thickness of the material decreases significantly as the order of VHS increases.

(2) Finite element analysis was conducted to investigate the crash behaviors of the VHS.
Compared with conventional multi-cell tubes, the first-order and second-order VHS
increase SEA by up to 59.9% and 102.4%, respectively. The monotonicity of TEA, SEA,
and Pm with λi for the first-order and second-order VHS is consistent. Meanwhile,
there are optimum design regions to achieve the best crashworthiness for VHS (i.e.,
for second-order VHS, the optimum design region for the second-order VHS should
be within the range of 0.2 ≤ λ1 ≤ 0.4 and 0.1 ≤ λ2 ≤ 0.15).

(3) Theoretical results based on the Super-Folding Element method were used to predict
the Pm of the VHS, which demonstrated good agreement with the finite element
analysis results. The out-of-plane deformation pattern of the VHS varied with the
values of λi, accompanied by the alternation of two different folding patterns.

(4) Comparing the honeycomb of the same size and weight with the first-order and
second-order VHS, the study found that when the order reaches 2, the SEA and Pm of
the VHS are greater than the honeycomb.

In conclusion, this study provides new insights into the crashworthiness performance
of hierarchical structures, particularly the VHS. However, crashworthiness studies of VHS
based on experiments still need to be carried out. At the same time, the crashworthiness
of VHS based on other metals or combinations of different materials also requires fur-
ther investigation. The results of the study have important implications for the design,
development, and application of such structures in various industries.

Author Contributions: Conceptualization, methodology, and software, C.S.; validation, formal analy-
sis, investigation, and writing—original draft preparation, C.S. and X.L.; resources, data curation, and
writing—review and editing, C.S., W.X. and J.L.; formal analysis and visualization, and supervision,
C.S. and X.L.; project administration, and funding acquisition, X.L. and J.L. All authors have read
and agreed to the published version of the manuscript.

Funding: The research was financially supported by the National Key R&D Program of China
(2022YFB4300101) and the China Postdoctoral Science Foundation (2022M713515).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on reasonable request
from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gao, G.; Guan, W.; Li, J.; Dong, H.; Zou, X.; Chen, W. Experimental Investigation of an Active–Passive Integration Energy

Absorber for Railway Vehicles. Thin-Walled Struct. 2017, 117, 89–97. [CrossRef]
2. Wang, Z.; Liu, J.; Yao, S. On Folding Mechanics of Multi-Cell Thin-Walled Square Tubes. Compos. Part B Eng. 2018, 132, 17–27.

[CrossRef]
3. Gao, G.; Dong, H.; Tian, H. Collision Performance of Square Tubes with Diaphragms. Thin-Walled Struct. 2014, 80, 167–177.

[CrossRef]
4. Guan, W.; Gao, G.; Li, J.; Yu, Y. Crushing Analysis and Multi-Objective Optimization of a Cutting Aluminium Tube Absorber for

Railway Vehicles Under Quasi-Static Loading. Thin-Walled Struct. 2018, 123, 395–408. [CrossRef]
5. Yu, Y.; Gao, G.; Dong, H.; Guan, W.; Li, J. A Numerical Study on the Energy Absorption of a Bending-Straightening Energy

Absorber with Large Stroke. Thin-Walled Struct. 2018, 122, 30–41. [CrossRef]
6. Yin, H.; Wen, G.; Fang, H.; Qing, Q.; Kong, X.; Xiao, J.; Liu, Z. Multiobjective Crashworthiness Optimization Design of Functionally

Graded Foam-Filled Tapered Tube Based on Dynamic Ensemble Metamodel. Mater. Des. 2014, 55, 747–757. [CrossRef]

https://doi.org/10.1016/j.tws.2017.03.029
https://doi.org/10.1016/j.compositesb.2017.07.036
https://doi.org/10.1016/j.tws.2014.03.007
https://doi.org/10.1016/j.tws.2017.11.031
https://doi.org/10.1016/j.tws.2017.10.003
https://doi.org/10.1016/j.matdes.2013.10.054


Materials 2023, 16, 3749 20 of 21

7. Wang, Z.; Wang, X.; Liu, K.; Zhang, J.; Lu, Z. Crashworthiness Index of Honeycomb Sandwich Structures Under Low-Speed
Oblique Impact. Int. J. Mech. Sci. 2021, 208, 106683. [CrossRef]

8. Li, Z.; Wang, Z.; Wang, X.; Zhou, W. Bending Behavior of Sandwich Beam with Tailored Hierarchical Honeycomb Cores.
Thin-Walled Struct. 2020, 157, 107001. [CrossRef]

9. Reid, S.R. Plastic Deformation Mechanisms in Axially Compressed Metal Tubes Used as Impact Energy Absorbers. Int. J. Mech.
Sci. 1993, 35, 1035–1052. [CrossRef]

10. Zhang, X.; Leng, K.; Zhang, H. Axial Crushing of Embedded Multi-Cell Tubes. Int. J. Mech. Sci. 2017, 131–132, 459–470. [CrossRef]
11. Zhang, X.; Zhang, H.; Wang, Z. Bending Collapse of Square Tubes with Variable Thickness. Int. J. Mech. Sci. 2016, 106, 107–116.

[CrossRef]
12. Li, Z.; Yu, J.; Guo, L. Deformation and Energy Absorption of Aluminum Foam-Filled Tubes Subjected to Oblique Loading. Int. J.

Mech. Sci. 2012, 54, 48–56. [CrossRef]
13. Xie, S.; Yang, W.; Wang, N.; Li, H. Crashworthiness Analysis of Multi-Cell Square Tubes Under Axial Loads. Int. J. Mech. Sci.

2017, 121, 106–118. [CrossRef]
14. Zhang, X.; Zhang, H. Crush Resistance of Square Tubes with Various Thickness Configurations. Int. J. Mech. Sci. 2016, 107, 58–68.

[CrossRef]
15. Ding, X.; Tong, Z.; Liu, Y.; Liu, S. Dynamic Axial Crush Analysis and Design Optimization of a Square Multi-Cell Thin-Walled

Tube with Lateral Variable Thickness. Int. J. Mech. Sci. 2018, 140, 13–26. [CrossRef]
16. Cheng, X.; Bai, Z.; Zhu, F.; Chou, C.C.; Jiang, B.; Xu, S. An optimized bio-inspired thin-walled structure with controllable

crashworthiness based on magnetorheological fluid. Mech. Adv. Mater. Struct. 2022, 1–16. [CrossRef]
17. Wang, Z.; Lu, Z.; Tian, H.; Yao, S.; Zhou, W. Theoretical assessment methodology on axial compressed hexagonal honeycomb’s

energy absorption capability. Mech. Adv. Mater. Struct. 2016, 23, 503–512. [CrossRef]
18. Ying, L.W.; Yang, F.P.; Wang, X. Analytical Method for the Axial Crushing Force of Fiber-Reinforced Tapered Square Metal Tubes.

Compos. Struct. 2016, 153, 222–233. [CrossRef]
19. Liu, J.; Wang, Z.; Hui, D. Blast Resistance and Parametric Study of Sandwich Structure Consisting of Honeycomb Core Filled with

Circular Metallic Tubes. Compos. Part B Eng. 2018, 145, 261–269. [CrossRef]
20. Wang, Z.; Li, Z.; Zhou, W.; Hui, D. On the Influence of Structural Defects for Honeycomb Structure. Compos. Part B Eng. 2018, 142,

183–192. [CrossRef]
21. Jia, J.; Da, D.; Hu, J.; Yin, S. Crashworthiness Design of Periodic Cellular Structures Using Topology Optimization. Compos. Struct.

2021, 271, 114164. [CrossRef]
22. Yang, H.; Wang, B.; Ma, L. Designing Hierarchical Metamaterials by Topology Analysis with Tailored Poisson’S Ratio and Young’S

Modulus. Compos. Struct. 2019, 214, 359–378. [CrossRef]
23. Taghipoor, H.; Ghiaskar, A.; Shavalipour, A. Crashworthiness Performance of Thin-Walled, Square Tubes with Circular Hole

Discontinuities Under High-Speed Impact Loading. Int. J. Crashworthiness 2022, 27, 1622–1634. [CrossRef]
24. Li, D.; Qin, R.; Xu, J.; Zhou, J.; Chen, B. Topology Optimization of Thin-Walled Tubes Filled with Lattice Structures. Int. J. Mech.

Sci. 2022, 227, 107457. [CrossRef]
25. Zarei Mahmoudabadi, M.; Sadeghi, M. A Study on the Static and Dynamic Loading of the Foam Filled Metal Hexagonal

Honeycomb—Theoretical and Experimental. Mater. Sci. Eng. 2011, 530, 333–343. [CrossRef]
26. Sun, G.; Zhang, J.; Li, S.; Fang, J.; Wang, E.; Li, Q. Dynamic Response of Sandwich Panel with Hierarchical Honeycomb Cores

Subject to Blast Loading. Thin-Walled Struct. 2019, 142, 499–515. [CrossRef]
27. Taghipoor, H.; Eyvazian, A.; Musharavati, F.; Sebaey, T.A.; Ghiaskar, A. Experimental Investigation of the Three-Point Bending

Properties of Sandwich Beams with Polyurethane Foam-Filled Lattice Cores. Structures 2020, 28, 424–432. [CrossRef]
28. Zhang, H.; Zhang, X. Crashworthiness Performance of Conical Tubes with Nonlinear Thickness Distribution. Thin-Walled Struct.

2016, 99, 35–44. [CrossRef]
29. Adachi, T.; Tomiyama, A.; Araki, W.; Yamaji, A. Energy Absorption of a Thin-Walled Cylinder with Ribs Subjected to Axial

Impact. Int. J. Impact Eng. 2008, 35, 65–79. [CrossRef]
30. Sun, G.; Jiang, H.; Fang, J.; Li, G.; Li, Q. Crashworthiness of Vertex Based Hierarchical Honeycombs in Out-of-Plane Impact.

Mater. Des. 2016, 110, 705–719. [CrossRef]
31. Li, W.; Luo, Y.; Li, M.; Sun, F.; Fan, H. A More Weight-Efficient Hierarchical Hexagonal Multi-Cell Tubular Absorber. Int. J. Mech.

Sci. 2018, 140, 241–249. [CrossRef]
32. Wang, Z.; Li, Z.; Shi, C.; Zhou, W. Mechanical Performance of Vertex-Based Hierarchical Vs Square Thin-Walled Multi-Cell

Structure. Thin-Walled Struct. 2019, 134, 102–110. [CrossRef]
33. Lakes, R. Materials with Structural Hierarchy. Nature 1993, 361, 511–515. [CrossRef]
34. Fratzl, P.; Weinkamer, R. Nature’S Hierarchical Materials. Prog. Mater. Sci. 2007, 52, 1263–1334. [CrossRef]
35. Pouget, E.; Dujardin, E.; Cavalier, A.; Moreac, A.; Valéry, C.; Marchi-Artzner, V.; Weiss, T.; Renault, A.; Paternostre, M.; Artzner, F.

Hierarchical Architectures by Synergy Between Dynamical Template Self-Assembly and Biomineralization. Nat. Mater. 2007, 6,
434–439. [CrossRef] [PubMed]

36. Shin, Y.A.; Yin, S.; Li, X.; Lee, S.; Moon, S.; Jeong, J.; Kwon, M.; Yoo, S.J.; Kim, Y.-M.; Zhang, T.; et al. Nanotwin-governed
toughening mechanism in hierarchically structured biological materials. Nat. Commun. 2016, 7, 10772. [CrossRef]

https://doi.org/10.1016/j.ijmecsci.2021.106683
https://doi.org/10.1016/j.tws.2020.107001
https://doi.org/10.1016/0020-7403(93)90054-X
https://doi.org/10.1016/j.ijmecsci.2017.07.019
https://doi.org/10.1016/j.ijmecsci.2015.12.006
https://doi.org/10.1016/j.ijmecsci.2011.09.006
https://doi.org/10.1016/j.ijmecsci.2016.12.005
https://doi.org/10.1016/j.ijmecsci.2016.01.003
https://doi.org/10.1016/j.ijmecsci.2018.02.034
https://doi.org/10.1080/15376494.2022.2146240
https://doi.org/10.1080/15376494.2014.994150
https://doi.org/10.1016/j.compstruct.2016.05.108
https://doi.org/10.1016/j.compositesb.2018.03.005
https://doi.org/10.1016/j.compositesb.2018.01.015
https://doi.org/10.1016/j.compstruct.2021.114164
https://doi.org/10.1016/j.compstruct.2019.01.076
https://doi.org/10.1080/13588265.2021.1981125
https://doi.org/10.1016/j.ijmecsci.2022.107457
https://doi.org/10.1016/j.msea.2011.09.093
https://doi.org/10.1016/j.tws.2019.04.029
https://doi.org/10.1016/j.istruc.2020.08.082
https://doi.org/10.1016/j.tws.2015.11.007
https://doi.org/10.1016/j.ijimpeng.2006.11.005
https://doi.org/10.1016/j.matdes.2016.08.032
https://doi.org/10.1016/j.ijmecsci.2018.03.006
https://doi.org/10.1016/j.tws.2018.09.017
https://doi.org/10.1038/361511a0
https://doi.org/10.1016/j.pmatsci.2007.06.001
https://doi.org/10.1038/nmat1912
https://www.ncbi.nlm.nih.gov/pubmed/17515916
https://doi.org/10.1038/ncomms10772


Materials 2023, 16, 3749 21 of 21

37. Aizenberg, J.; Weaver, J.C.; Thanawala, M.S.; Sundar, V.C.; Morse, D.E.; Fratzl, P. Skeleton Ofeuplectella Sp.: Structural Hierarchy
from the Nanoscale to the Macroscale. Science 2005, 309, 275–278. [CrossRef]

38. Baer, E.; Hiltner, A.; Keith, H.D. Hierarchical Structure in Polymeric Materials. Science 1987, 235, 1015–1022. [CrossRef]
39. Tang, Z.; Kotov, N.A.; Magonov, S.; Ozturk, B. Nanostructured Artificial Nacre. Nat. Mater. 2003, 2, 413–418. [CrossRef] [PubMed]
40. Ji, B.; Gao, H. Mechanical Principles of Biological Nanocomposites. Ann. Rev. Mater. Res. 2010, 40, 77–100. [CrossRef]
41. Gao, H.; Ji, B.; Jäger, I.L.; Arzt, E.; Fratzl, P. Materials Become Insensitive to Flaws at Nanoscale: Lessons from Nature. Proc. Natl.

Acad. Sci. USA 2003, 100, 5597–5600. [CrossRef] [PubMed]
42. Gao, H. Learning from nature about principles of hierarchical materials. In Proceedings of the 2010 3rd International Nanoelec-

tronics Conference (INEC), Hong Kong, China, 3–10 January 2010; pp. 65–68.
43. Gao, H. Mechanical Principles of a Self-Similar Hierarchical Structure. MRS Proc. 2009, 1188, 23–34. [CrossRef]
44. Katz, J.L.; Misra, A.; Spencer, P.; Wang, Y.; Bumrerraj, S.; Nomura, T.; Eppell, S.J.; Tabib-Azar, M. Multiscale Mechanics of

Hierarchical Structure/Property Relationships in Calcified Tissues and Tissue/Material Interfaces. Mater. Sci. Eng. C 2007, 27,
450–468. [CrossRef]

45. Fan, H.; Luo, Y.; Yang, F.; Li, W. Approaching Perfect Energy Absorption through Structural Hierarchy. Int. J. Eng. Sci. 2018, 130,
12–32. [CrossRef]

46. Xu, M.; Zhao, Z.; Wang, P.; Duan, S.; Lei, H.; Fang, D. Mechanical Performance of Bio-Inspired Hierarchical Honeycomb
Metamaterials. Int. J. Solids Struct. 2022, 254–255, 111866. [CrossRef]

47. Zhang, Y.; Xu, X.; Wang, J.; Chen, T.; Wang, C.H. Crushing Analysis for Novel Bio-Inspired Hierarchical Circular Structures
Subjected to Axial Load. Int. J. Mech. Sci. 2018, 140, 407–431. [CrossRef]

48. Oftadeh, R.; Haghpanah, B.; Papadopoulos, J.; Hamouda, A.M.S.; Nayeb-Hashemi, H.; Vaziri, A. Mechanics of Anisotropic
Hierarchical Honeycombs. Int. J. Mech. Sci. 2014, 81, 126–136. [CrossRef]

49. Xu, X.; Zhang, Y.; Wang, J.; Jiang, F.; Wang, C.H. Crashworthiness Design of Novel Hierarchical Hexagonal Columns. Compos.
Struct. 2018, 194, 36–48. [CrossRef]

50. Tsang, H.H.; Raza, S. Impact Energy Absorption of Bio-Inspired Tubular Sections with Structural Hierarchy. Compos. Struct. 2018,
195, 199–210. [CrossRef]

51. Zhang, D.; Fei, Q.; Jiang, D.; Li, Y. Numerical and Analytical Investigation on Crushing of Fractal-Like Honeycombs with
Self-Similar Hierarchy. Compos. Struct. 2018, 192, 289–299. [CrossRef]

52. Yin, S.; Wu, L.; Nutt, S. Stretch-Bend-Hybrid Hierarchical Composite Pyramidal Lattice Cores. Compos. Struct. 2013, 98, 153–159.
[CrossRef]

53. Liu, R.; Yao, G.; Gao, K.; Xu, Z.; Yang, Y.; Guo, X.; Yu, Z.; Zhang, Z.; Han, C. Study on Mechanical Properties of Lattice Structures
Strengthened by Synergistic Hierarchical Arrangement. Compos. Struct. 2023, 304, 116304. [CrossRef]

54. Zhang, D.; Fei, Q.; Liu, J.; Jiang, D.; Li, Y. Crushing of Vertex-Based Hierarchical Honeycombs with Triangular Substructures.
Thin-Walled Struct. 2020, 146, 106436. [CrossRef]

55. Ajdari, A.; Jahromi, B.H.; Papadopoulos, J.; Nayeb-Hashemi, H.; Vaziri, A. Hierarchical Honeycombs with Tailorable Properties.
Int. J. Solids Struct. 2012, 49, 1413–1419. [CrossRef]

56. Taghipoor, H.; Damghani Nouri, M. Experimental and Numerical Investigation of Lattice Core Sandwich Beams Under Low-
Velocity Bending Impact. J. Sandw. Struct. Mater. 2017, 21, 2154–2177. [CrossRef]

57. Taghipoor, H.; Sadeghian, A. Experimental Investigation of Single and Hybrid-Fiber Reinforced Concrete Under Drop Weight
Test. Structures 2022, 43, 1073–1083. [CrossRef]

58. Abramowicz, W. Thin-Walled Structures as Impact Energy Absorbers. Thin-Walled Struct. 2003, 41, 91–107. [CrossRef]
59. Wierzbicki, T. Crushing Analysis of Metal Honeycombs. Int. J. Impact Eng. 1983, 1, 157–174. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1126/science.1112255
https://doi.org/10.1126/science.3823866
https://doi.org/10.1038/nmat906
https://www.ncbi.nlm.nih.gov/pubmed/12764359
https://doi.org/10.1146/annurev-matsci-070909-104424
https://doi.org/10.1073/pnas.0631609100
https://www.ncbi.nlm.nih.gov/pubmed/12732735
https://doi.org/10.1557/PROC-1188-LL01-01
https://doi.org/10.1016/j.msec.2006.05.055
https://doi.org/10.1016/j.ijengsci.2018.05.005
https://doi.org/10.1016/j.ijsolstr.2022.111866
https://doi.org/10.1016/j.ijmecsci.2018.03.015
https://doi.org/10.1016/j.ijmecsci.2014.02.011
https://doi.org/10.1016/j.compstruct.2018.03.099
https://doi.org/10.1016/j.compstruct.2018.04.057
https://doi.org/10.1016/j.compstruct.2018.02.082
https://doi.org/10.1016/j.compstruct.2012.11.004
https://doi.org/10.1016/j.compstruct.2022.116304
https://doi.org/10.1016/j.tws.2019.106436
https://doi.org/10.1016/j.ijsolstr.2012.02.029
https://doi.org/10.1177/1099636218761315
https://doi.org/10.1016/j.istruc.2022.07.030
https://doi.org/10.1016/S0263-8231(02)00082-4
https://doi.org/10.1016/0734-743X(83)90004-0

	Introduction 
	Geometric Configuration of Vertex-Based Hierarchical Squares 
	Geometric Description 
	Thickness of VHS Material 

	Numeric Simulation 
	Crashworthiness Criterion for VHS 
	Finite Element Model 
	Parametric Studies on VHS 

	Discussion 
	Theoretical Analyses 
	Analysis of the VHS Out-of-Plane Deformation Mechanism 
	Comparison of the VHS with the Conventional Honeycomb 

	Conclusions 
	References

