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Abstract: Inspired by nature, materials scientists have been exploring and designing various biomimetic
materials. Among them, composite materials with brick-and-mortar-like structure synthesized from
organic and inorganic materials (BMOIs) have attracted increasing attention from scholars. These
materials have the advantages of high strength, excellent flame retardancy, and good designability,
which can meet the requirements of various fields for materials and have extremely high research
value. Despite the increasing interest in and applications of this type of structural material, there is still
a dearth of comprehensive reviews, leaving the scientific community with a limited understanding
of its properties and applications. In this paper, we review the preparation, interface interaction,
and research progress of BMOIs, and propose possible future development directions for this class
of materials.
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1. Introduction

Over the past few centuries of biological evolution, nature has produced numerous
astonishing natural materials. This has inspired the design of composite materials, such as
biomimetic organic–inorganic composites with a “brick-and-mortar” structure (BMOIs),
which take inspiration from nacre. Nacre (Figure 1a) is composed of 95% brittle aragonite
platelets and 5% soft biological macromolecules arranged in a highly ordered “brick-
and-mortar” structure (Figure 1b) that reveals exceptional mechanical properties [1–4].
Research on nacre structure [5–7] has demonstrated the critical role of its “brick-and-mortar”
structure in conferring its superior properties. Xu et al. [8] used atomic force microscopy to
study the behavior of biopolymer chains in the nacre and have found that the biopolymer
matrix can self-reinforce during deformation. Researchers found that the biopolymer
matrix in the nacre has the ability to self-strengthen during deformation. The nacreous
structure, the “brick-and-mortar” structure, is able to deflect and inhibit crack propagation,
resulting in enhanced toughness and efficient dissipation of mechanical energy [9–13].
Therefore, BMOIs have emerged as a type of composite material with excellent properties
and multiple applications, prepared using inorganic materials as “bricks” and organic
materials as “mortar” through specific methods.

As early as 1989, Sarikaya et al. [14] proposed the “brick-and-mortar” structure,
analyzed its architecture, and subsequently utilized it to design and synthesize synthetically
laminated materials. Over the past few decades, corresponding research on BMOIs based on
the “brick-and-mortar” structure has become increasingly refined through both theoretical
and practical developments. Nowadays, a diverse range of raw materials are utilized,
with commonly used inorganic materials including montmorillonite (MMT) and graphene
oxide (GO), which possess excellent barrier properties and design flexibility. As early as
2007, Lin et al. [15] developed a “brick-and-mortar”-structured nanocomposite material

Materials 2023, 16, 4094. https://doi.org/10.3390/ma16114094 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma16114094
https://doi.org/10.3390/ma16114094
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-8738-3259
https://doi.org/10.3390/ma16114094
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma16114094?type=check_update&version=2


Materials 2023, 16, 4094 2 of 29

by incorporating polymers into the interlayer of MMT. In 2011, Putz et al. [16] proposed a
method of preparing “brick-and-mortar” structured paper using GO. Moreover, researchers
have employed various synthetic methods, such as layer-by-layer assembly (LBL), vacuum
filtration (VF), co-extrusion, and freeze casting (FC). Therefore, BMOIs, with their diverse
selection of raw materials and synthetic approaches, have enjoyed great expansion in terms
of its research and application scope.
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Figure 1. (a) Image of the inner, iridescent part of the shell of Haliotis laevigata [3]; (b) schematic
of BMOI [4].

In recent years, BMOIs have gained increasing attention and found wide applications
in fields such as biomedicine, flame retardancy, and intelligent materials. However, in the
existing reviews on relevant topics, most of them include BMOIs as a part of the review
without specific targeting. Some research focuses on the mechanical behavior [17] and
shear transfer efficiency [18] of nacre. Some consider it as a part of a bionic application
review (such as acoustic materials [19], structural materials [20], thermal conductive mate-
rials [21], nanochannels [22], energy absorbing materials [23], fiber composites [24,25] and
gels [26]). Some incorporate BMOIs as part of certain materials (such as graphene [27,28])
or preparation methods (such as freezing [29–31] and self-assembly [32]) reviews, while
others only review certain applications of BMOIs (such as oil-repellent and water-repellent
materials [33] and biomedical materials [34]). The existing reviews mostly explain certain
aspects of BMOIs and cannot provide a comprehensive understanding of them. Therefore,
by providing a detailed description of the preparation and applications of BMOIs, we aim
to provide a comprehensive understanding of BMOIs and inspire researchers from different
fields to study them.

2. Raw Materials

It is well known that the properties of composite materials are largely influenced
by their constituent materials. Common inorganic materials in BMOIs include montmo-
rillonite, graphene oxide and MXene, while organic materials include polyvinyl alcohol,
cellulose and its derivatives. Other less commonly used raw materials include chitosan
and calcium carbonate. A list of raw materials is presented in Table 1.

Table 1. List of raw materials.

Function Raw Material Reference

Inorganic raw material Brick
Montmorillonite [35–37]
Graphene oxide [38–40]

MXene [41–43]

Organic raw material Mortar
Polyvinyl alcohol [44,45]
Cellulose and its

derivatives [46–48]
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2.1. Inorganic Raw Material
2.1.1. Montmorillonite

Montmorillonite (MMT) is an excellent inorganic material that, when introduced into
materials, can significantly improve their corrosion resistance, fire resistance, antibacterial
activity, adsorption, and other properties. It is commonly used as an adsorbent, catalyst,
flame retardant, and carrier. Its structure, exfoliation, preparation, and applications are
shown in Figure 2 [49,50]. Due to its rich interface functional groups, MMT can form strong
interface interactions with organic materials and is widely studied as an inorganic material
in BMOIs.
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montmorillonite [50].

Peng et al. [35] employed the ice-templating technique to fabricate a nanocomposite
material, referred to as PDMS-MMT-L, by introducing MMT and polydimethylsiloxane,
resulting in a “brick-and-mortar” structure, as depicted in Figure 3a. The PDMS-MMT-
L exhibited a substantial improvement in Young’s modulus and toughness, by 23-fold
and 12-fold, respectively, when compared to pure polydimethylsiloxane. The toughening
mechanism of the material, involving crack deflection and bridging, was validated by in situ
crack tracking and three-dimensional reconstruction, utilizing the pearl-activated PDMS-
MMT-L nanocomposite material and confocal fluorescence microscopy (CFM), assisted by
the aggregation-induced emission (AlE) (Figure 3b).
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Materials 2023, 16, 4094 4 of 29

Guo et al. [36] coupled multifunctional carboxymethyl cellulose to dopamine and
assembled it with montmorillonite using a vacuum filtration-assisted method to prepare
a “brick-and-mortar structured” material (DAC/MTM, Figure 4a,b). The material was
characterized using X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance
NMR, and other tests, and it was found that it could persist in water for more than ten days
(good wet-state stability) (Figure 4c), high tensile strength (162.0 MPa), and elastic modulus
(8.7 GPa) when the relative humidity reached 90%. In addition, thermal analysis and
horizontal flame testing demonstrated that the material also had excellent fire resistance
(Figure 4d).
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Figure 4. (a) The schematic of DAC/MTM; (b) the SEM image of DAC/MTM; (c) water stability test
diagram of the DAC/MTM; (d) diagram of DAC/MTM exposed to gas combustion process and SEM
after combustion, (1) DAC/MTM before combustion, (2) gas combustion process (3) DAC/MTM
after combustion, (4, 5) SEM after combustion of the DAC/MTM in (3) [36].

Rahid et al. [37] used a layer-by-layer deposition technique to form a film composed
of polyethyleneimine (PEI), montmorillonite, and oligomeric siloxane. The film showed
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a nearly 65 GPa reduced modulus due to strong electrostatic and hydrogen bonding.
Additionally, the material exhibited high hardness and chemical resistance, making it
durable over time.

2.1.2. Graphene Oxide

Graphene oxide (GO) is a two-dimensional nanomaterial with controllable size and
excellent mechanical, electrical, chemical, and optical properties. It also has excellent
modifiability, as its plethora of epoxy functional groups and hydroxyls on the outside
allow it to react very easily with other polymers to improve the mechanical properties of
materials [51]. In addition, GO has excellent electrical and thermal conductivity, making it
a valuable material for applications in electronics, sensors, and energy storage devices. Its
optical properties also make it an attractive material for applications in optoelectronics and
photonics. This indicates that GO is well-suited as a “brick” for preparing multifunctional
BMOIs with mechanical properties.

Chen et al. [38] combined the natural chelating agent phytic acid (PA) with GO,
and they were closely linked by hydrogen bonds to form a “brick-and-mortar” structure
(Figure 5). Compared with pure GO, the hardness, ultimate strength, maximum Young’s
modulus, toughness, and strain energy release rate of the nacre-bio-based composite
material (PA/GO) increased by 41.0%, 124.1%, 134.7%, 118.5%, and 150.6%, respectively.
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Figure 5. Schematic diagram of PA/GO preparation and comparison of tensile test results between
PA/GO and GO [38].

Yu et al. [39] synthesized a composite material substrate named LOG-P by intercalating
oligomeric proanthocyanidins (OPC) into Ca-Al layered double hydroxide (Ca-Al-LDH)
and GO, and then crosslinked it with 2D polyvinyl alcohol (PVA) to construct a “brick-
and-mortar” structure, as shown in Figure 6a. The Young’s modulus of LOG-P in the
dehydrated state is about 5 GPa, while it decreases by approximately 99% in the hydrated
state, as shown in Figure 6b. Ag circuits were integrated on LOG-P using 3D printing
technology to study the electrical stability of microelectronic structures and evaluate the
feasibility of LOG-P as a human body implant, as shown in Figure 6c.
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(c) cyclic resistance measurements of Ag electrodes in hydrated and dehydrated states [39].

Chu et al. [40] successfully grafted a reduced graphene oxide (RGO)/bis (diethoxyphos-
phoryl) ethane (BTSE) coating onto the surface of magnesium alloy substrate (Figure 7a),
while inhibiting corrosion and wear behavior. The coating exhibited a well-arranged
biomimetic “bricks and mortar” structure connected by a chemical network, composed of Si-
O-C bonds between RGO flakes and Si-O-Si bonds originating from BTSE self-crosslinking
reaction. The reduction in porosity and defects made the RGO/BTSE coating highly con-
tinuous and intact, and the corrosion rate of the coating was reduced by an order of mag-
nitude compared to the bare Mg substrate and RGO-coated samples due to barrier effect
(Figure 7d). Furthermore, the wear resistance of the substrate was found to be improved,
as indicated in Figure 7b,e, which was attributed to the directional lubrication effect of re-
duced graphene oxide flakes. The composite coating also exhibited excellent wear resistance,
providing protection against frictional wear of the substrate. The wear rate decreased from
3.5 × 10−3 mm3 N−1 for bare magnesium alloy to 5.13 × 10−5 mm3 N−1 m−1 for RGO/BTSE
coated samples (Figure 7c). The interlayer sliding between RGO flakes effectively reduced
the friction resistance, although the addition of BTSE weakly increased its shear resistance.
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Figure 7. (a) Schematic diagram for the corrosion/wear resistance mechanism of RGO/BTSE coat-
ing; (b) SEM image of RGO/BTSE coating after wear; (c) COF value of samples (bare Mg, RGO,
RGO/BTSE) under the calculated wear rate; (d) results of electrochemical measurement; (e) sross-
sectional SEM images of coated RGO/BTSE samples [40].
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2.1.3. MXene

MXene is a new type of 2D transition metal carbide/nitride material with atomic
layer thickness, large electrochemically active surface energy, and excellent mechanical
properties. Its general formula can be represented as Mn+1XnTx, where M represents an
early transition metal, X represents carbon and/or nitrogen, and Tx represents functional
groups attached to the surface of MXene during etching. Its structure is similar to that of
graphene. MXene has made exciting achievements in research fields such as hydrogen
storage, supercapacitors, and electromagnetic shielding. Shi et al. [41] used hydrophilic 2D
titanium carbide (Ti3C2Tx) MXene nanosheets and highly conductive 1D silver nanowires
(AgNWs) as “bricks”, poly(dopamine) (PDA)/Ni2+ as “mortar”, and developed a strain
sensor with a “brick-and-mortar structure”, which has ultra-high sensitivity, high strength,
and toughness, as shown in the flow chart in Figure 8a and the “brick-and-mortar structure”
in Figure 8b,c. Liu et al. [42] used freeze-drying to construct a chitosan/MXene layered
structure skeleton embedded in a polyborosiloxane matrix to create a “brick-and-mortar
structure” composite material with favorable anti-impact and electromagnetic interference
(EMI) shielding performance. The preparation process and structure schematic are shown
in Figure 8d. The material can effectively attenuate 85.9–92.8% of the impact force and has
a highly efficient EMI shielding effect of 47.2–71.8 dB.
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Figure 8. (a) Flow chart of the preparation of Ti3C2Tx-AgNW-PDA/Ni2+; (b) schematic representation
of the structure of “brick” and “mortar”; (c) schematic representation of “brick and structure” [41];
(d) flow chart of the preparation of chitosan/MXene [42].

At times, multiple inorganic materials are used at the same time. Chen et al. [43]
used GO, MMT, and wood auto-hydrolysates (WH) to prepare a nanocomposite thin
film. The film was strengthened by the synergistic effect of hydrogen bonding and co-
valent bonding between the three components, resulting in excellent mechanical and
fire-resistant properties.
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2.2. Organic Raw Material
2.2.1. Polyvinyl Alcohol (PVA)

Polyvinyl alcohol (PVA) is widely used as a coating material, packaging film, and in
the textile industry due to its excellent film-forming and barrier properties. Moreover, its
biocompatibility and ability to form hydrogels have made it a subject of extensive research
for biomedical applications such as drug delivery and tissue engineering. Therefore, PVA
is considered an excellent organic material with diverse potential applications [44,45].
Kou et al. [44] used reduced graphene oxide (CRG) as “bricks” and PVA as “mortar”
to prepare a coating (CRG-PVA) with a “brick-and-mortar structure” and outstanding
mechanical properties. Kilometers-long fibers were then prepared using continuous wet-
spinning assembly technology. The tensile strength of the fiber increased with the PVA
content, reaching a maximum of 200 MPa, surpassing other nacre-inspired materials. It
was found that the tensile strength of the fibers was not related to the molecular weight
of PVA, as molecular motion is confined to the nanochannels between adjacent CRG
layers. Wang et al. [45] used polydopamine-wrapped reduced graphene oxide (PDG) as
“bricks” and PVA as “mortar” to prepare an artificial nacre nanocomposite material using
vacuum-assisted filtration self-assembly technology, as shown in Figure 9. The material’s
tensile strength, fracture elongation, and toughness were 327 ± 19.3 MPa, 8 ± 0.2%, and
13.0 ± 0.7 MJ/m3, respectively, which is significantly higher than nacre, mainly due to the
“brick-and-mortar” structure of PDG and PVA and the hydrogen bonds between them.
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2.2.2. Cellulose and Its Derivatives

The primary skeleton of cellulose is synthesized by plants through photosynthesis,
making it an abundant and renewable resource [52]. Cellulose exhibits biodegradability
and good chemical modification capabilities, enabling it to meet the design requirements
for intermolecular interactions and environmental friendliness for biomaterials of interest.
Guan et al. [46] utilized cellulose nanofiber and TiO2-coated mica microplatelets (TiO2-mica)
to prepare an environmentally friendly water-based material (CN-TiO2-mica) that combines
energy-saving cooling and fire-resistant properties. By employing the “directional fluid
assembly” method to construct a “brick-and-mortar structure” (Figure 10a), high infrared
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reflectivity (about 90%, Figure 10b) can be achieved. The fire resistance can be improved
by prolonging the path of oxygen entry into the material (Figure 10c–e). Qiu et al. [47]
utilized nanofibrillar cellulose and hydroxyl functionalized black phosphorus to produce
a high mechanical strength and highly efficient flame-retardant film. Xu et al. [48] used
carboxymethyl cellulose (a cellulose derivative) and nanoclay platelets to prepare a high-
tensile-strength, high-transparency, and fire-resistant film.
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Figure 10. (a) Preparation of CN- TiO2-mica; (b) infrared reflectance performance test of CN-TiO2-
mica; (c,d) fire test of balsa wood and balsa wood with CN-TiO2-mica coating; (e) schematic diagram
of the principle of high fire-retardant performance of the nacre-inspired coating [46].

3. Strategies
3.1. Layer-By-Layer Assembly

The layer-by-layer assembly (LBL) technique, originally proposed by Iler in 1966 [53],
has since evolved to include the assembly of multilayer thin films in three dimensions,
significantly expanding its applications. This technique is a bottom-up processing method
that enables the accurate sort of nanoscale components based on layer-by-layer adsorption,
resulting in materials with a clear nanostructure. As such, layer-by-layer assembly has
become a commonly used method for creating BMOIs [54]. The layer-by-layer assembly
process involves substrate pretreatment, layer deposition driven by a driving force, cleaning
between layers to stabilize the layer structure, and cyclic repetition of the process [55,56],
as shown in Figure 11.

In a study by Wang and colleagues [57], aluminum oxide/GO-PVA (Al2O3/GO-
PVA) nanosheets were used to create artificial pearls. The process involved adding 3-
aminopropyltriethoxysilane to a solution of water and methanol, stirring until it was
fully hydrolyzed, and then adding Al2O3 platelets and sonicated them. After stirring at
40 ◦C for 30 min, they obtained a suspension that was washed with ethanol (Figure 12).
Using this suspension and a GO/PVA dispersion, they alternately dried the films on a
glass substrate to produce a thin film, which had superior strength (143 ± 13 MPa) and
toughness (9.2 ± 2.7 MJ/m3) compared to nacre. Moreover, the tensile strength of the
Al2O3/GO-PVA film was 2.8 times that of the Al2O3/PVA film, and the toughness was
about 6 times that of the GO-PVA film. These results suggest that the three-component
composite material is effective in achieving a balance between strength and toughness.
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Figure 12. The preparation process of Al2O3/GO-PVA. (a) GO and PVA. (b) mixing of GO and PVA.
(c) GO-PVA coating and its SEM image. (d) assembling silane-modified Al2O3 microplatelets into
monolayer at air−water interface. (e) transferring the assembled Al2O3 monolayer onto GO−PVA
layer. (f) the obtained flexible, foldable artificial nacre after sequential repetition [57].

3.2. Vacuum Filtration

Vacuum filtration (VF) [58], also referred to as papermaking, is a classical mechanical
assembly method that uses a vacuum pump to pass a solution through a filter, ultimately
resulting in solid film formation. The primary benefit of this approach is its expandability,
which enables it to be used for large-scale manufacturing. However, assembling bulk
materials can be time consuming. Wan et al. [59] based their work on GO–molybdenum
disulfide (MoS2)–thermoplastic polyurethane (TPU). They added the MoS2 and TPU so-
lutions to the GO solution, and after stirring and ultrasound, a suspension was obtained.
The artificial nacre layer was obtained by vacuum-assisted filtration and drying, and then
immersed in an HI solution for reduction. The final product was obtained by washing
with ethanol, as shown in Figure 13. This film not only has high toughness (3.8 times that
of natural nacre layer) and strength (1.7 times that of natural pearl layer), it also has high
conductivity, making it highly promising in applications such as artificial muscles, tissue
engineering, and flexible supercapacitor electrodes.
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3.3. Freeze Casting

In seawater, when the water contains impurities, ice crystals can form a mechanism
that excludes impurities into the crevices of the ice [60]. Inspired by this appearance, the
technology of freeze casting (FC) has emerged. Freeze casting is a technology that enables
the formation of ordered, layered porous materials and is currently a commonly used
technique for preparing biomimetic “brick-and-mortar” structure [61]. Shao et al. [31] intro-
duced the principles of FC technology in different directions and analyzed the relationship
between the process and the structure. As shown in Figure 14, the basic principles of FC
technology are first described. FC involves the controlled solidification of solutions, sus-
pensions, sols, or gels, followed by sublimation of the solvent under reduced pressure, and
then densification through post-processing. During the controlled solidification process,
phase separation occurs as the solvent solidifies, and the resulting solid phase (usually ice)
serves as a template.
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Munch et al. [62] combined alumina with poly(methyl methacrylate) to form a super-
tough, template-structured hybrid ceramic material, with a processing flowchart. The
hybrid ceramic material has toughness similar to aluminum alloy. In the past, most FC
techniques used isotropic and unidirectional FC, but the nucleation direction of isotropic FC
is uncontrollable, and unidirectional FC produces only a near-distance regular multilayer
structure. To improve FC technology and establish long-range, regular layered structures,
bidirectional FC was developed [63]. Zhao et al. [64] utilized an improved bidirectional
FC method and then assembled a GO/PVA composite film using uniaxial extrusion and
chemical reduction. Consequently, a composite film was developed that not only had high
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strength (150.9 MPa), but also toughness (8.50 MJ/m3) and high elongation (10.44%), which
is superior to materials prepared by other methods.

3.4. Other Methods

Co-extrusion is a large-scale processing technique utilized to produce “brick-and-
mortar” structures comprising ceramics with metallic toughness. In this method, the
viscosity of the polymer is reduced by extruding raw material rods through a heated
spinneret, resulting in the formation of long fibers collected online by the extrusion head.
The co-extruded long fibers, such as NiO-coated Al2O3, are cut into short segments and
subjected to transverse deformation by heating and pressing in a mold, followed by bonding
to construct a “brick-and-mortar” structure [65–67].

3D printing has recently been used in constructing nacre-inspired “brick-and-mortar”
structures with complex 3D shapes [68]. Specifically, inorganic materials are arranged in
an orderly manner during the 3D printing process, assisted by the application of external
fields (electric field, force, electric, magnetic field, etc.). Zhang et al. [69] used sodium
alginate (SA) and GO to synthesize a multiresponsive, “brick-and-mortar”-structured
sheet that exhibits rapid responses to multiple stimuli (water, heat, light). The 3D-printed
pearls are lightweight and exhibit mechanical properties comparable to natural nacre. 3D
printing technology has the advantage of producing pearl-like materials with complex
three-dimensional shapes that are difficult to obtain by conventional methods, without com-
promising their scalability and shape-forming ability. However, controlling the microstruc-
ture without compromising the expandability and shape-forming ability is a challenge for
3D printing technology.

Advantages and disadvantages (Table 2): FC allows for fine control over layer thick-
ness and mimics some of the nanoscale structural features of nacre. However, it cannot
provide fine control over platelet size distribution, especially at scales less than 1 µm. In
contrast, LBL assembly technology is suitable for the production of high-precision, regular
nanocomposites, resulting in well-defined nanostructures. This not only allows for highly
layered and ultra-thin composite materials, but also typically results in strong interfacial
bonding and mechanical strength due to close contact between layers. However, due to its
multi-step nature, LBL technology is very time consuming and labor intensive. Vacuum
filtration is energy efficient, but the synthesized materials often have low density and high
porosity, leading to poor mechanical properties.

Table 2. Advantages and disadvantages of strategies.

Strategies Advantage Disadvantage Reference

Layer-by-layer assembly High-precision, regular
nanocomposites

Time consuming and labor
intensive [57]

Vacuum filtration Energy efficient Low density and high porosity [59]

Freeze casting Fine control at large size Imprecise control in small size [31,61–64]

Others
Co-extrusion Large-scale processing Imprecise control [65–67]

3D printing Generate 3D complex structures Small-scale production [68,69]

4. Interfacial Forces

The interface interaction between organic and inorganic materials is an important
factor affecting the performance of BMOIs. To adjust the mechanical properties of BMOIs
based on the requirements of materials properties and processes, different interface interac-
tions can be constructed. Common interface interactions include covalent bonds, hydrogen
bonds, ionic bonds, and so on. Song et al. [51] investigated the interfacial design and
toughening mechanism of GO-based biomimetic mineralized composites (BMOIs). They
used GO with different sizes as “bricks”, PVA as “mortar”, and carbon nanotubes (CNTs)
as interfacial reinforcement to prepare four composite materials with the same structure but
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different interface distributions. By comparing the results of tensile tests with finite element
simulation results, they found that the bonding strength and stress level between the hard
phase interfaces were the key factors determining the overall mechanical properties of the
material/organization.

4.1. Non-Covalent Bonds
4.1.1. Hydrogen Bonds

Hydrogen bonds are among the most frequently encountered and essential inter-
molecular or intramolecular interactions in molecules [70]. Despite being weak, they can
have a profound impact on the aggregation state of a substance by modifying its physical
properties, shape, and structure [71]. Dikin et al. [72] prepared ordered layered structures
of graphene oxide thin films by filtration method. Due to the hydrogen bonding between
GO and water, the GO paper exhibited high mechanical properties with a tensile strength
of 133 MPa and a Young’s modulus of 32 GPa.

Kang et al. [73] simulated the structural features of natural nacre by combining (GO)
and gelatin (GG) biopolymer and revealed the mechanism of comprehensive mechanical
properties. The material was induced to self-assemble into orderly arrangements of nacre-
like films through the formation of coordination bonds, ionic bonds, and hydrogen bonds by
vacuum filtration, resulting in a strong and tough BMOI with a fracture strength of 88.7 MPa,
a fracture strain of 0.84%, a tensile modulus of 25.4 GPa, and good biocompatibility.

4.1.2. Ionic Bonds

Shu et al. [74] used a bottom-up LBL deposition technique to prepare ultra-thin films
(LDH/HEP)n with strong electrostatic and hydrogen bonding at the interface of nacre-
like heparin (HEP) and layered double hydroxides (LDH), as shown in Figure 15. The
HEP/LDH ultra-thin films were densely stacked together, forming a clear “brick-and-
mortar” structure, demonstrating significant mechanical property enhancement and good
biocompatibility. Compared with previously reported polymer-LDH hybrid films, the film
modulus was significantly increased (23 GPa).
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Liang et al. [75] prepared a high-performance BMOI with excellent UV-blocking
ability, semi-transparency, and mechanical properties. They used a fast and green vacuum
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filtration method, selecting polyglutamic acid (PGA) as the “mortar” and positively charged
NiAl-NO3 LDH nanosheets as the “brick” to prepare the PGA/LDH film through strong
electrostatic interaction. Experimental results including XRD, FT-IR, and tensile tests
indicated that the artificial pearl had a layered “brick-and-mortar” structure, excellent
strength (93.5 MPa), and flexibility (easy to bend and fold).

4.1.3. π-π Bonds

Graphene, with its SP2 hybridized structure, has strong stability due to π-π bonding.
Similarly, BMOI with strong stability can be constructed through π-π interactions of GO.
Zhang et al. [76] synthesized poly (acrylic acid) and 3-aminophenylboronic acid to form
PAPBx, and then used room-temperature casting and drying method to prepare a GO
hydrogel with a thickness of 10~12 µm by enhancing the π-π interactions between PAPBx
and GO nanosheets. The gel prepared at a PAPBx concentration of 4% showed excellent
tensile strength, fracture strain, and toughness, which were 382 ± 12 MPa, 4.31 ± 0.08%,
and 7.50 ± 0.40 MJ m−3, respectively. Zhang et al. [77] used a π-π stacking supramolecular
method to fix phthalocyanine derivative-2,11,20,29-tetra-tert-butyl-2,3-naphthalocyanine
(NPc) on GO to form a layered GO-NPc hybrid, as shown in Figure 16. Adsorption and
fluorescence spectroscopy analyses confirmed the existence of π-π interactions between
GO and NPC, making the GO stable under environmental conditions. Fluorescence and
photo-response measurements also showed that this hybrid material could be used as an
effective photoelectric conversion material for photoelectric applications.
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4.2. Covalent Bonds

Although the aforementioned non-covalent bonds can significantly improve the me-
chanical properties, they are easily disrupted in solution, salt, and pH values [78]. To
expand the application of BMOIs, it is necessary to use stronger covalent bonds to pre-
pare BMOIs. Common covalent bonds include amide bonds and boronic ester bonds.
Liu et al. [79] utilized a vacuum-evaporation self-assembly technique to insert graphene
oxide (GO) nanosheets into a Soy protein isolate (SPI)-glycerin (Gly) matrix, develop-
ing a biomimetic composite material film that solves the problems of poor mechanical
performance and water resistance of SPI. The composite material (SPI-Gly) constructed
a “brick-and-mortar” structure through hydrogen bonds and amide bonds, resulting in
improved tensile strength and modulus. After chemical reduction, SPI-Gly rGO was ob-
tained, with further improvements in tensile strength (50.03 ± 2.67 MPa) and modulus
(1.7 ± 0.07 GPa). Meanwhile, the SPI-Gly rGO film can maintain its original shape in water
for up to one year, as shown in Figure 17. An et al. [80] formed a rigid-layered GO–borate
BMOI by borate salt cross-linking. The results showed that the strength of the oxidized
graphene film increased by nearly 25% to 160 ± 18 MPa with the addition of 0.94 wt%
borate salt, and the stiffness increased by more than 255%.
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5. Properties and Application
5.1. Light Weight and High Strength

The adoption of a “brick-and-mortar” architecture has been demonstrated to pro-
vide exceptional mechanical robustness to biomimetic materials composed of intercalated
nanosheets. Remarkably, several of these materials have even outperformed natural nacre
in terms of mechanical strength, meeting the high demands of materials for fields such
as construction, aviation, and biomedical engineering that require high strength and low
weight. Hao and colleagues [81] used genipin crosslinking, hyperbranched poly (amido
amine) (HPAMAM), and clay nanosheets to prepare a tough biomimetic composite mem-
brane (G-HPAMAM/nanoclay) through SEM observation with highly ordered structures
(Figure 18a), similar to those of natural nacre and nacre-like composite materials. FT-IR
testing (Figure 18b) revealed a peak at 1278 cm−1, indicating the presence of genipin in
the pearl-like composite material, and the vibration peaks near 1540 cm−1 were weakened,
while those near 1645 cm−1 were relatively enhanced. These results indicate that an amide
connection was formed between genipin and HPAMAM. As shown in Figure 18c, the
biomimetic composite membrane had two relaxation peaks in the loss modulus at −40 ◦C
and 7 ◦C, respectively, with the peak at −40 ◦C indicating strong mobility of HPAMAM
molecules, and the broader peak at 7 ◦C suggesting that the relaxation time distribution
of HPAMAM/nanoclay was wide, but could be inhibited by an increase in genipin con-
centration. As shown in Figure 18d, the diffraction peaks of G-HPAMAM/nanoclay were
shifted more significantly compared with those of the uncrosslinked composite material,
indicating a reduction in the interlayer spacing of clay nanosheets. The interaction between
HPAMAM and clay nanosheets was stronger after crosslinking because the close binding
of HPAMAM molecules resulted in a shorter distance between the clay nanosheets. This
suggests that the biomimetic composite membrane has good flexibility. Finally, the fracture
toughness of the biomimetic composite membrane was as high as 5.03 MJ/m3, and the
mechanical strength was 152.9 MPa, far exceeding that of nacre.

5.2. Flame Retardant

In recent years, research on “brick-and-mortar” structures in the field of flame re-
tardancy has rapidly gained popularity. The flame-retardant effect of these structures is
mainly achieved by forming a barrier on the surface, isolating the substrate from contact
with air, and simultaneously inhibiting heat conduction. The materials can be applied
in fields such as construction and electronics that are prone to fire due to its high flame
retardancy. By reducing the probability of fire occurrence, it can help to minimize casualties
and property damage caused by fires.
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Figure 18. (a) SEM images of HPAMAM/nanoclay composite (5000×); (b) FT-IR of G-HPAMAM/
nanoclay composite film; (c) loss modulus of G-HPAMAM/nanoclay composites; (d) SAXD patterns
of G-HPAMAM/nanoclay composites [81].

Carosio et al. [82] prepared “brick-and-mortar”-structure composite materials using
transparent cellulose nanofiber/clay nanocomposites, which can be applied as a fire re-
tardant coating for wood. This coating not only enhances the fire resistance of the wood,
but also has a certain degree of optical transparency. The flame-retardant performance
was evaluated using cone calorimetry. When exposed to a typical 35 kW/m2 heat flux,
the ignition time of the coated wood sample was improved to about 4.5 min, and the
maximum average heat release rate was reduced by 46%, the total heat release during
combustion was reduced by 33%, thereby significantly reducing the potential fire hazard of
the wood structure.

Meanwhile, Sun et al. [83] used chloromagnesite cement as a substitute for traditional
adhesives and D-gluconic acid sodium salt as a waterproof modifier in the preparation
of laminated veneer lumber (LVL) to produce a “brick-and-mortar”-structure LVL with
high strength and flame retardancy. The fracture strength of the LVL was about 101 MPa,
which is equivalent to that of LVL produced with currently available commercial adhesives.
Cone calorimetry testing showed a significant decrease in heat release rate (HRR), total
heat release (THR), smoke production rate (SPR), and total smoke production (TSP), as
shown in Figure 19.

Carosio et al. [84] obtained compressed chitosan/montmorillonite complexes by di-
rectly mixing solutions/suspensions of opposite charges, deposited multilayer coatings
using the LBL deposition technique, and then coated the coatings onto acrylic fabrics using
a simple doctor-blade coating technique. The structure of the composite was studied by
field emission scanning electron microscopy (FESEM), and it was found that oriented clay
nanoplatelets were continuously bonded together by the chitosan matrix. Increasing the
coating loading to above 10% improved the uniformity of the surface coverage. The coating
with a loading of over 10% endowed the fabric with self-extinguishing ability in flame
retardancy tests. Cone calorimetry tests showed that the ignition time was prolonged (up
to 46%), the heat release rate was significantly reduced (the peak heat release rate and total
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heat release rate were up to −62% and −49%, respectively), and the total smoke release
was also reduced (up to −49%), as shown in Figure 20.

Materials 2023, 16, x FOR PEER REVIEW 17 of 30 
 

 

mainly achieved by forming a barrier on the surface, isolating the substrate from contact 

with air, and simultaneously inhibiting heat conduction. The materials can be applied in 

fields such as construction and electronics that are prone to fire due to its high flame re-

tardancy. By reducing the probability of fire occurrence, it can help to minimize casualties 

and property damage caused by fires. 

Carosio [82] et al. prepared “brick-and-mortar”-structure composite materials using 

transparent cellulose nanofiber/clay nanocomposites, which can be applied as a fire re-

tardant coating for wood. This coating not only enhances the fire resistance of the wood, 

but also has a certain degree of optical transparency. The flame-retardant performance 

was evaluated using cone calorimetry. When exposed to a typical 35 kW/m2 heat flux, the 

ignition time of the coated wood sample was improved to about 4.5 min, and the maxi-

mum average heat release rate was reduced by 46%, the total heat release during combus-

tion was reduced by 33%, thereby significantly reducing the potential fire hazard of the 

wood structure. 

Meanwhile, Sun [83] et al. used chloromagnesite cement as a substitute for traditional 

adhesives and D-gluconic acid sodium salt as a waterproof modifier in the preparation of 

laminated veneer lumber (LVL) to produce a “brick-and-mortar”-structure LVL with high 

strength and flame retardancy. The fracture strength of the LVL was about 101 MPa, 

which is equivalent to that of LVL produced with currently available commercial adhe-

sives. Cone calorimetry testing showed a significant decrease in heat release rate (HRR), 

total heat release (THR), smoke production rate (SPR), and total smoke production (TSP), 

as shown in Figure 19. 

 

Figure 19. Plot of the results of the cone calorimetric test of the LVL. (a) HRR, (b) THR, (c) SPR and 

(d) TSP in cone calorimetry test [83]. 

Carosio [84] et al. obtained compressed chitosan/montmorillonite complexes by di-

rectly mixing solutions/suspensions of opposite charges, deposited multilayer coatings 

using the LBL deposition technique, and then coated the coatings onto acrylic fabrics us-

ing a simple doctor-blade coating technique. The structure of the composite was studied 

by field emission scanning electron microscopy (FESEM), and it was found that oriented 

clay nanoplatelets were continuously bonded together by the chitosan matrix. Increasing 

Figure 19. Plot of the results of the cone calorimetric test of the LVL. (a) HRR, (b) THR, (c) SPR and
(d) TSP in cone calorimetry test [83].

Materials 2023, 16, x FOR PEER REVIEW 18 of 30 
 

 

the coating loading to above 10% improved the uniformity of the surface coverage. The 

coating with a loading of over 10% endowed the fabric with self-extinguishing ability in 

flame retardancy tests. Cone calorimetry tests showed that the ignition time was pro-

longed (up to 46%), the heat release rate was significantly reduced (the peak heat release 

rate and total heat release rate were up to −62% and −49%, respectively), and the total 

smoke release was also reduced (up to −49%), as shown in Figure 20. 

 

Figure 20. Plot of the results of the cone calorimetric test of the composite material (a) TTI, 

(b)pkHRR, (c)THR and (d)TSR in cone calorimetry test [84]. 

Zhong [85] et al. developed a material with ultra-high strength and stiffness using 

injection molding and a combination of organophilic ultrathin γ-Al(OH)3 (O-gibbsite) sin-

gle-crystal nanoplatelets, all-hydrocarbon composites, and extended-chain ultrahigh-mo-

lecular-weight polyethylene (UHMWPE). The material is constructed with O-gibbsite as 

bricks and UHMWPE as mortar. The tensile strength of the material reached 200 MPa, 

and the notched Izod impact strength was 28 kJ/m2, significantly better than other com-

mercial HDPE and hydrocarbon matrix (All-PE) materials. Despite the high combustibil-

ity of hydrocarbons, the material still exhibited good flame retardancy. Inspired by the 

natural pearl layer, Qiu [47] et al. proposed a bio-inspired nanocomposite material com-

posed of nanofiber cellulose (NFC) and a few layers of hydroxyl-functionalized black 

phosphorus (BP-OH) using a vacuum-assisted filtration self-assembly process. The two-

dimensional (2D) BP-OH dispersed well in the one-dimensional (1D) NFC and had a 

strong interface hydrogen bond, resulting in the composite film having excellent tensile 

strength and elongation at break, reaching 214.0 MPa and 23.8%, respectively. The mate-

rial also exhibited high heat and fire resistance, as shown in Figure 21. 

Peng [86] et al. used a vacuum-assisted filtration self-assembly process to achieve 

synergistic toughening of GO and MMT nanoplates and prepared a PO-MMT-PVA mul-

tifunctional ternary bio-inspired nanocomposite material. The synergistic toughening ef-

fect of graphene oxide and MMT nanoplates successfully realized the integration of strong 

and tough ternary bio-inspired nanocomposite materials, with a tensile strength of 356.0 

MPa and toughness of 7.5 MJ/m3, which is superior to most binary graphene oxide-based 

layered materials. At the same time, the biomimetic nanocomposite material exhibits ex-

cellent flame retardancy. When used as a protective layer for silkworm cocoons, it can 

protect the cocoon from ignition for at least 5 min, as shown in Figure 22. 

Figure 20. Plot of the results of the cone calorimetric test of the composite material (a) TTI, (b)pkHRR,
(c)THR and (d)TSR in cone calorimetry test [84].



Materials 2023, 16, 4094 18 of 29

Zhong et al. [85] developed a material with ultra-high strength and stiffness using
injection molding and a combination of organophilic ultrathin γ-Al(OH)3 (O-gibbsite)
single-crystal nanoplatelets, all-hydrocarbon composites, and extended-chain ultrahigh-
molecular-weight polyethylene (UHMWPE). The material is constructed with O-gibbsite as
bricks and UHMWPE as mortar. The tensile strength of the material reached 200 MPa, and
the notched Izod impact strength was 28 kJ/m2, significantly better than other commercial
HDPE and hydrocarbon matrix (All-PE) materials. Despite the high combustibility of
hydrocarbons, the material still exhibited good flame retardancy. Inspired by the natural
pearl layer, Qiu et al. [47] proposed a bio-inspired nanocomposite material composed of
nanofiber cellulose (NFC) and a few layers of hydroxyl-functionalized black phosphorus
(BP-OH) using a vacuum-assisted filtration self-assembly process. The two-dimensional
(2D) BP-OH dispersed well in the one-dimensional (1D) NFC and had a strong interface
hydrogen bond, resulting in the composite film having excellent tensile strength and
elongation at break, reaching 214.0 MPa and 23.8%, respectively. The material also exhibited
high heat and fire resistance, as shown in Figure 21.

Materials 2023, 16, x FOR PEER REVIEW 20 of 33 
 

 

 
Figure 21. Fire test: (a) the combustion result of a cotton ball; (b) combustion results of cotton ball 
protected by BP−OH40/NFC [47]. 

Peng [86] et al. used a vacuum-assisted filtration self-assembly process to achieve 
synergistic toughening of GO and MMT nanoplates and prepared a PO-MMT-PVA mul-
tifunctional ternary bio-inspired nanocomposite material. The synergistic toughening ef-
fect of graphene oxide and MMT nanoplates successfully realized the integration of strong 
and tough ternary bio-inspired nanocomposite materials, with a tensile strength of 356.0 
MPa and toughness of 7.5 MJ/m3, which is superior to most binary graphene oxide-based 
layered materials. At the same time, the biomimetic nanocomposite material exhibits ex-
cellent flame retardancy. When used as a protective layer for silkworm cocoons, it can 
protect the cocoon from ignition for at least 5 min, as shown in Figure 22. 

 
Figure 22. Fire test: (a) Combustion result of a silk cocoon; (b) Combustion results of silk cocoon 
protected by rGO-MMT-PVA; (c, d) SEM image of different sizes of rGO-MMT-PVA after flame 
treatment [86]. 

Figure 21. Fire test: (a) the combustion result of a cotton ball; (b) combustion results of cotton ball
protected by BP−OH40/NFC [47].

Peng et al. [86] used a vacuum-assisted filtration self-assembly process to achieve
synergistic toughening of GO and MMT nanoplates and prepared a PO-MMT-PVA multi-
functional ternary bio-inspired nanocomposite material. The synergistic toughening effect
of graphene oxide and MMT nanoplates successfully realized the integration of strong and
tough ternary bio-inspired nanocomposite materials, with a tensile strength of 356.0 MPa
and toughness of 7.5 MJ/m3, which is superior to most binary graphene oxide-based lay-
ered materials. At the same time, the biomimetic nanocomposite material exhibits excellent
flame retardancy. When used as a protective layer for silkworm cocoons, it can protect the
cocoon from ignition for at least 5 min, as shown in Figure 22.
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Figure 22. Fire test: (a) Combustion result of a silk cocoon; (b) Combustion results of silk cocoon
protected by rGO-MMT-PVA; (c,d) SEM image of different sizes of rGO-MMT-PVA after flame
treatment [86].

5.3. Responsive

Many responsive materials in BMOIs are highly sensitive to external environmental fac-
tors such as temperature and water, which is perfectly suited for the requirements of smart
devices. Smart devices are primarily designed to automatically provide corresponding feed-
back based on changes in the external environment, achieving an intelligent purpose. This
causes BMOIs to have great potential in the field of smart devices. Ma et al. [87] developed
a fire warning sensor that can be used before combustion. They used a low-temperature
evaporation assembly method, with GO and adenosine triphosphate (ATP) as the substrate,
to prepare a “brick-and-mortar”-structure imitation pearl paper by utilizing hydrogen
bonding and electrostatic attraction between GO and ATP molecules. Then, a fire alarm
sensor was designed based on the high-temperature thermal reduction characteristics of
graphene oxide, as shown in Figure 23. The material not only has a fast flame detection
response (1.36 s) and a long continuous alarm time (1300 s) in paper containing 50 wt%
ATP, but also exhibits flexibility, flame retardancy, thermal insulation performance, and
charring performance.
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Yuan et al. [88] developed a boron-modified graphene oxide (GO-BA) paper for use in
early fire alarm sensors using a green and easy-to-evaporate self-assembly method. The
method has advantages such as simplicity, low cost, and environmental friendliness. The
material uses GO as brick and boric acid (BA) as mortar to construct a “brick-and-mortar”
structure through hydrogen bonds between them. Notably, the insulating GO-BA paper
can rapidly thermally reduce to electrically conductive reduced graphene oxide (rGO)
when exposed to flames, providing an ideal fire alarm response time of ~0.8 s. The alarm
mechanism is shown in Figure 24. Furthermore, the oxidized boron formed under the
flame attack covers the surface of the GO paper, suppressing further oxidation of the GO
paper while insulating it from the external environment, thereby enhancing the material’s
flame-retardant properties.
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5.4. Electromagnetic Shielding

BMOIs exhibit excellent electromagnetic shielding performance, which can effectively
address the issue of mutual interference among electronic components caused by magnetic
fields generated by electric currents. Sun and colleagues [89] successfully synthesized
Ti3C2Tx MXene-xanthan nanocomposite films with outstanding electromagnetic shielding
properties using vacuum-assisted filtration in a vacuum, and prepared MXene-xanthan
nanocomposite films with varying volume ratios of MXene and xanthan (designated as
MXF1-MXF5). The synthesis route is depicted in Figure 25a. The SEM images (Figure 25b–g)
clearly show a layered structure, whereas the xanthan gum film lacks such a structure,
indicating the formation of a highly organized “brick-and-mortar” structure. The electrical
conductivity of the composite films was significantly improved compared to previous
reports on MXene-based composite films (361,066 ± 2084–187 ± 6.6 S m−1 from MXF1
to MXF5), and the films also exhibited high tensile strength (up to 121.09 ± 7.96 MPa for
MXF5), as demonstrated in Figure 25h.

5.5. Anti-Corrosion

Exposure to the external environment can cause corrosion and deteriorate the proper-
ties of materials over time, especially for materials that come into contact with corrosive
liquids. The anti-corrosion materials in BMOIs can effectively prevent this problem and
can be used as coatings for materials placed outdoors for a long time, containers that
come into contact with corrosive liquids, and so on. Wang et al. [90] prepared a novel
bioinspired material, B-GO/wSBRc, by using graphene oxide (GO) and waterborne styrene
butadiene rubber (wSBR), which exhibited excellent anti-corrosion properties. As shown
in Figure 26a–d, the Epit values of B-GO/wSBRc were reduced to a certain extent. The
corrosion current density obtained by Tafel extrapolation method and corrosion potential
(Figure 26e) clearly showed that with the increase in GO content, the Ecorr value gradually
increased in the first (from −1.07 V/SCE to −0.21 V/SCE), second (from −1.07 V/SCE
to −0.31 V/SCE) and third stages (from −1.07 V/SCE to −0.36 V/SCE). This indicates
that layered graphene oxide can effectively enhance the anti-corrosion ability of wSBRc.
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The main mechanism for the enhancement of anti-corrosion includes: (1) B-GO/wSBRc
cured at low temperature has no micro-pores, which can efficiently block the electrolyte
from contacting the substrate; (2) GO can be well dispersed in wSBRc and maximize the
diffusion path; and (3) π-π stacking between GO and wSBRc enhances their interaction.
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Figure 26. Tafel plots of (a) wSBRand B-GO/wSBRc with (b) 0.5 wt%, (c) 1 wt% and (d) 2 wt% GO
pasted Al-2024 at 1st, 2nd and 3rd stages; (e) corrosion current density (icorr) and corrosion potential
(Ecorr) [90].

5.6. Other

Zhu et al. [91] prepared a biomimetic “brick-and-mortar”-structure composite film us-
ing vacuum filtration and konjac glucomannan–montmorillonite (KGM-MTT). The optical
transparency and mechanical properties (tensile strength of 116 MPa) of the KGM-MTT
composite film were significantly improved. The prepared composite film had a pearl-like
“brick-and-mortar” structure with good transparency and mechanical properties. Under
humid conditions, the pearl-like KGM-MTT film had a transparency of 20–50% in the visi-
ble spectrum, while the traditional KGM-MTT hybrid film had a transparency of 5–9%, as
shown in Figure 27a–e. The ultimate tensile strength of the artificial pearl film was 2–3 times
higher than that of films prepared by conventional methods. The cytotoxicity evaluation
showed that the prepared KGM-MTT film was biocompatible, as shown in Figure 27f–i.
Furthermore, this nacre-like KGM-MTT composite film can serve as a platform for intro-
ducing Ag nanoparticles, providing broad potential for antibacterial applications of such
films, as shown in Figure 27j,k. In summary, KGM-MTT composite films impregnated with
silver nanoparticles are very useful materials in food packaging and healthcare systems.

Liang et al. [92] successfully prepared a novel GP-reinforced MMT-CS-GP-OH com-
posite material using a self-assembly process based on evaporation, with the use of GP
(genipin), CS (chitosan), and MMT. They systematically studied the relationship between
MMT content, CS-GP crosslinking, pH value, and the mechanical properties and interface
interactions of the composite film. The results showed that the biologically inspired nano-
composite material prepared had a synergistic effect originating from hydrogen bonds and
covalent bonds, making its tensile strength 226 MPa and toughness 5.1 MJ/m3. Moreover,
since GP is a natural crosslinker that can spontaneously react with CS to produce a deep
blue pigment, the artificial pearl has excellent anti-UV universality (10.0% at 365 nm), as
shown in Figure 28. Therefore, this integrated nacre-like MMT-CS nano-composite material
is likely to be used in aerospace, biomedical and industrial fields in future.
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Figure 27. (a) Before and (c) after pictures of water absorption of the conventional KGM-MTT
blend films; (b) Before and (d) after pictures of water absorption of the KGM-MTT; (e) UV/visible
light transmittance test results; (f) micrographs of cocultured cells of control group, (g) KGM films,
(h) KGM-MTT composite films; (i) proliferation of cells after co-culture; (j) antibacterial action against
staphylococci; (k) antibacterial action against Escherichia coli, (1) 0.1 mol/L of silver ion concentration,
(2) 0.2 mol/L of silver ion concentration [91].
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Figure 28. (a) UV-vis spectra of CS, CS-GP-OH, MMT-CS, MMT-CS-GP, and MMT-CS-GP-OH films;
(b) UV-vis spectra of MMT-CS-GP-OH films with different MMT contents; (c) schematic illustration
of UV-shielding performance testing of the MMT-CS-PG-OH film; (d) photocatalytic degradation
profile of rhodamine B unprotected and protected by the MMT-CS-PG-OH film [92].
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Dai et al. [93] prepared an underwater super-oleophobic hybrid mesh (GO-CaCO3)
through LBL of GO and calcium carbonate (CaCO3). They verified its oil–water separation
ability using a homemade oil–water separation device, as shown in Figure 29a. The
solution in the figure is a mixture of cyclohexane and water, and is stained with Sudan III
and methylene blue for observation. As seen in the figure, water can quickly pass through
the hybrid mesh while cyclohexane cannot, achieving the purpose of oil–water separation.
Additionally, by replacing cyclohexane with other oils and calculating the water flux
and separation efficiency, the results in Figure 29b indicate that the hybrid mesh exhibits
high separation efficiency and water flux far exceeding that of other studies for a certain
oil–water mixture. Moreover, after multiple cycles of oil–water separation experiments, the
hybrid mesh maintained excellent separation efficiency, as shown in Figure 29c. The hybrid
mesh can be widely applied in the field of oily wastewater treatment.
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Figure 29. (a) Image of GO-CaCO3 oil–water separation; (b) separation flux and efficiency of the
GO-CaCO3; (c) reusability of the GO-CaCO3 [93].

BMOIs have far-reaching applications beyond their current applications (Table 3). For
instance, Chen et al. [94] developed a highly transparent and oil-repellent film using CS and
CaCO3, which could be applied to swimming goggles and lenses. Du et al. [95] produced
self-healing and shape-programmable structural materials using a thermally switchable
Diels-Alder network polymer and alumina, which could meet the shape demands of
different parts of the human body (Figure 30). Although BMOIs have been widely applied
in various fields, the current research mainly focuses on their properties, and further
exploration of their potential applications is needed.
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Table 3. Properties and application.

Properties Application References

Light weight and high strength material Structural material of construction, aviation, and biomedical [81]

Flame-retardant materials Fireproof materials of construction, electronics [47,82–86]

Responsive materials Inductor of smart fields [87,88]

Electromagnetic shielding materials Isolation layer electronic components [89]

Anti-corrosion materials Protective film of objects that come into contact with corrosive liquids [90]

Other applications Oil/water separation net/membrane [91–95]

6. Conclusions

One of the important components of composite materials is BMOIs, which greatly
expand the application of composite materials. Inspired by the nacreous layer of pearls,
BMOIs utilize organic substances as “mortar” and inorganic substances as “bricks”, which
are connected in alternation to form a highly regular “brick-and-mortar” structure that
provides BMOIs with exceptional mechanical and barrier properties. The diversity of raw
materials and design of interfacial forces can make BMOIs multifunctional and meet the
demands of various fields. Compared with conventional composite materials, BMOIs not
only provide excellent mechanical properties such as high strength and toughness, but also
offers UV resistance, flame retardancy, and corrosion resistance.

It is well known that the choice of raw materials has a significant impact in the
performance of composite materials. The inorganic materials of BMOIs mainly include
MMT and GO, which can provide the material with high mechanical properties and barrier
properties, meeting the needs of high strength, toughness, fire resistance, and corrosion
resistance. Additionally, GO exhibits excellent electrical properties and can also enable
BMOI to have a place in materials fields such as capacitors and electrodes.

In the previous discussion, we detailed the interfacial interaction forces, including
non-covalent bonds (hydrogen bonds, ionic bonds, and π-π interactions) and covalent
bonds. Different interfacial forces can be designed based on different raw materials, with
varying bond strengths. Generally, covalent bonds are more stable and suitable for materials
requiring high strength, while adding other non-covalent bonds can further enhance the
performance. In order to simplify production processes, yield, and other requirements,
non-covalent bonds such as hydrogen bonds can be chosen. Therefore, BMOIs have high
designability and can be adjusted according to design requirements.

The synthesis methods described earlier can all produce high-strength and high-
toughness BMOIs, but each strategy has its advantages and disadvantages. FC allows for
fine control of the thickness of layers and can simulate some of the nanoscale structural fea-
tures of nacre, but it cannot provide a finely controlled platelet size distribution, especially
at scales below 1µm. In contrast, LBL enables high-precision ordering of nanoscale building
blocks, producing well-defined nanostructures. It not only allows for highly laminated and
ultra-thin composite materials, but the close contact between layers typically results in high
interfacial bonding and mechanical strength. However, due to its multi-step nature, the
LBL technique is time and effort consuming. VF is energy efficient, but the synthesized
materials often have low density and high porosity, resulting in poor mechanical properties.

As research on BMOIs continues to develop, its applications have been further ex-
panded, not only in traditional material fields but also in smart materials, drug delivery,
aerospace, and other areas. In the future, the high performance and designability of BMOIs
will enable it to expand into even more fields.

Currently, there are still many common challenges in the research field of BMOIs.
Firstly, different preparation methods have their own advantages and disadvantages. The
LBL method is time consuming and labor intensive, the control accuracy of low-scale FC
is insufficient, the mechanical performance of vacuum filtration is relatively weak, and
the scale limitations of 3D printing technology are also problematic. Therefore, one of the
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main directions of future research is to optimize the design and synthesize an efficient,
green, simple, high-precision, large-scale, and low-cost synthesis strategy. Secondly, there
is insufficient research on functionalized BMOIs, and in the future, BMOIs should not only
have excellent mechanical properties but also possess other properties such as self-healing
and shape-changing capabilities to meet the requirements of a wider range of fields. Despite
the many problems and challenges faced by BMOIs, they can be foreseen that it will be one
of the development directions for high-performance, multifunctional materials.
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