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Abstract: Surface composites are viable choices for various applications in the aerospace and automo-
tive industries. Friction Stir Processing (FSP) is a promising method for fabricating surface composites.
Aluminum Hybrid Surface Composites (AHSC) are fabricated using the FSP to strengthen a hy-
brid mixture prepared with equal parts of Boron carbide (B4C), Silicon Carbide (SiC), and Calcium
Carbonate (CaCO3) particles. Different hybrid reinforcement weight percentages (reinforcement
content of 5% (T1), 10% (T2), and 15% (T3)) were used in fabricating AHSC samples. Furthermore,
different mechanical tests were performed on hybrid surface composite samples with different weight
percentages of the reinforcements. Dry sliding wear assessments were performed in standard pin-on-
disc apparatus as per ASTM G99 guidelines to estimate wear rates. The presence of reinforcement
contents and dislocation behavior was investigated using Scanning Electron Microscopy (SEM) and
Transmission Electron Microscopy (TEM) studies. The results indicated that the Ultimate Tensile
Strength (UTS) of sample T3 exhibited 62.63% and 15.17% higher than that of samples T1 and T2,
respectively, while the Elongation (%) of T3 exhibited 38.46% and 15.38% lower than that of samples
T1 and T2, respectively. Moreover, it was found that the hardness of sample T3 increased in the stir
zone compared to samples T1 and T2, owing to its higher brittle response. The higher brittle response
of sample T3 compared to samples T1 and T2 was confirmed by the higher value of Young’s modulus
and the lower value of Elongation (%).

Keywords: FSP; UTS; elongation; microhardness; wear rate; SEM; TEM

1. Introduction

Aluminum (Al) surface composites are progressively replacing conventional alloys
for applications in the automotive, aircraft, and shipbuilding industries [1]. The FSP is
a very effective method to improve the surface properties of metals among numerous
production methods. It is a solid-state procedure used to modify surface properties [2,3].
The traditional issues connected with a liquid process, such as the wettability of the
reinforcing particles with the molten metals, are not present in this process [4]. The
addition of an equal weight percentage (wt%) of B4C and Titanium Diboride (TiB2) will
enhance microhardness and tensile properties. The development of a tribolayer during
sliding improved the wear resistance of the hybrid surface composite [5]. Uniform finer
grains were obtained by reinforcing B4C and TiB2 nanoparticles in the Al7075 alloy [6].
The wear resistance was enhanced by about 61% due to the addition of reinforcement [7].
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The microhardness and wear properties of wrought Al7075 alloy with SiC and Boron
Nitride (BN) nanoparticles were investigated. The wear resistance increased by 61 percent,
and microhardness increased by 45 percent in the manufactured composites [8]. Using
mono and mixed additions of ceramic and metal particles as reinforcement, the corrosion
and microstructural evolutions of surface composites were examined after the fabrication
of surface composites by FSP. Mono-reinforced surface composite displayed decreased
corrosion, whereas the mixed reinforcement surface composite showed a galvanic effect [9].

The Al6061 alloy was reinforced with Zirconium dioxide (ZrO2) from 0 to 10% and
ZrO2 and Graphene together as two different Metal Matrix Composites (MMCs). The com-
parative study showed that ZrO2-reinforced composites exhibited enhanced mechanical
properties, whereas composites reinforced with ZrO2 and Graphene showed improved
wear properties [10]. The surface of the composites was synthesized using Iron Oxide
(Fe3O4), Al powder as reinforcement, and Al1050 alloy as the substrate. The mean grain
size of the matrix decreased. An increase aided the metal matrix’s dynamic restoration
in high-angle grain boundaries [11]. To improve the microstructure and mechanical per-
formance of AA6061-15 wt% Al3Ni MMCs, FSP was used as a secondary procedure. The
following method resulted in a significant reduction in grain size and the removal of casting
faults, such as porosity [12]. Molybdenum as the metallic reinforcement and B4C as the
ceramic reinforcement with Al1050 as the substrate was combined to fabricate metal matrix
surface composites; the mono reinforcement showed a reduction in corrosion rate, whereas
the combined reinforcement showed a galvanic effect [8].

The FSP was implemented to reinforce the Al5083 surface with SiC and Alumina
(Al2O3) microparticles to obtain surface composites. The obtained results noticed an en-
hancement in the microhardness, tensile strength, and wear properties [13]. The FSP is
used to reinforce Silicon Nitride (Si3N4) and Aluminum Nitride (AlN) with the base metal
Al2024. By eliminating flaws caused by metal melting, the hardness, corrosion resistance,
microstructure formation, wear resistance, and durability of Al2024 were improved [14].
FSP used Al2O3 micro and nanoparticles to strengthen the Al356 alloy surface. The surface
composites’ microhardness and elastic modulus characteristics were enhanced [15]. An-
other experiment employed several process settings to reinforce Al1050 with SiC particles.
As the traverse and rotation speeds were increased, the SiC particles were better distributed
across the substrate. The base Al alloy microhardness was increased three times [16]. The
atomized Al powder and SiC powder were cold compacted to produce billets, and FSP
then processed these billets. The process refined the grain structure leading to enhanced
tensile behavior [17].

Al5083 alloy and Al6061-T651 were reinforced with SiC and Al2O3 hybrid particles,
and improved tensile and wear properties were achieved [18]. By reinforcing an Al6061-
T651 alloy plate with Al2O3 sub-micron-size and SiC particles, a surface composite up
to 3 mm thick was formed, and the hard phase was detected at a 20–30% concentration.
Surface composites with steel as the bearing metal reduced friction and wear by 40% and
90%, respectively, compared to the base metal Al surface [19]. The Taguchi method of
DOE was used to optimize parameters, such as rotational tool speed and reinforcement
percentage to achieve enhanced wear and tensile characteristics. According to microstruc-
ture photographs, the SiC and Al2O3 reinforcements were equally spread in the nugget
zone [20]. The hybrid surface composite was created by reinforcing the SiC and MoS2
particles on the matrix metal Al356 alloy surface. The process settings were 1600 rpm
rotational speed, 50 mm/min travel speed, and a 3◦ tool tilt angle to obtain the same
results. The nugget zone featured a uniform distribution of reinforcement particles and a
MoS2-rich Mechanically Mixed Layer (MML) on top of the worn surface, which improved
wear properties [21]. According to microstructures, the reinforcement particles (Gr, Al2O3,
and SiC) are evenly distributed in the nugget zone of all surface hybrid composites. As
indicated by micrographs, the reinforcement particles (SiC, Gr, and Al2O3) were equally
distributed in the nugget zone of all surface hybrid composites, and the pinning effect of
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hard SiC and Al2O3 particles strengthened the microhardness of Al–Al2O3/SiC surface
hybrid composites [22,23].

The degree of spreading, mixing, and dispersion was identified as three distinct stages
of particle distribution [24]. The Fretting fatigue to abrasion was predominantly observed
in the wear mechanism derived from wear debris analysis and worn-out track micrographs.
The impact of tool traverse speed and volume percent of reinforcement on rotational tool
speed, Titanium Carbide (TiC), Gr, and the interaction effect between rotational tool speed
and TiC/Gr hybrid ratio [25]. On the matrix surface, the influence of process factors, such
as rotational tool speed, traverse speed, and reinforcement ratio on the B4C and Al2O3 was
investigated [26,27].

This research aimed to examine and analyze the dynamic material flow and numerous
property and microstructure evaluations of Al hybrid surface composite. The mechanisms
involved in property evaluation are analyzed in detail using SEM, including Energy dis-
persive X-ray spectroscopy (EDS), optical microscopy (OM), and TEM techniques. In this
regard, there is a paucity of literature on reinforcements with three different elements. The
synergistic effect of three different reinforcement particles as a hybrid is evaluated. The ef-
fect of the combined effect of the particles is studied. As a result, this serves as a foreground
for the current study and contributes to future research along with the same principles.

2. Materials and Methods
2.1. Materials and Fabrication of Composite Samples

The matrix metal used was a rolled Al-Mg2Si Alloy plate with a dimension of
120 mm × 75 mm × 6 mm acquired from Metal Mart in Coimbatore, India. The ele-
mental composition of the matrix metal is given in Table 1. The B4C powder with an
average particle size of 50 microns, SiC powder with the average particle size of 50 microns,
and Calcium Carbonate (CaCO3) powder with the average particle size of 100 microns. An
equal proportion of the reinforcement particles were mixed in acetone solution using a
magnetic stirrer for 6 h. The particles were then dried for around 24 h. These dry particles
were then crushed within Al plate grooves that had been cut. The groves were machined to
a depth of 3.5 mm and widths of 0.6 mm, 0.9 mm, and 1.2 mm, as shown in Figure 1a. This
corresponds to three different combinations of samples which were fabricated based on
the addition of different weight percentages (5, 10, and 15 wt%) of reinforcement contents
in the metal matrix, i.e., the sample T1 has 5 wt% reinforcement content, the sample T2
has 10 wt% reinforcement content and the sample T3 has 15% of reinforcement content,
as given in Table 2. The tool was made of hardened steel H13 with an 18 mm shoulder
diameter, 1.7 mm pin height, and a 6 mm diameter, as shown in Figure 1b. For FSP, pin, and
pinless devices were utilized. The top surface layer of the groove was sealed with a pinless
tool, and the matrix and reinforcement were equally mixed with a pin tool. To prevent
movement during the FSP, the workpiece is fastened to the fixture, as shown in Figure 1c.
The tool rotated clockwise in the groove containing B4C, SiC, and CaCO3 Powder. The
exact process was completed thrice. First, the tool was rotated without the pin, which is
considered a capping process. For all passes, the common process parameters (a traverse
speed of 35 mm/min and a rotating speed of 1200 rpm) were used.

Table 1. Elemental composition of Al-Mg2-Si alloy.

Element Aluminum
(Al)

Magnesium
(Mg) Silicon (Si) Iron (Fe) Zinc (Zn) Manganese

(Mn)
Titanium

(Ti)
Copper

(Cu)
Chromium

(Cr)

Weight
Percentage 97.9 to 99.3 0.35 to 0.60 0.30 to 0.60 0.1 to 0.3 0 to 0.15 0 to 0.10 0 to 0.10 0 to 0.10 0 to 0.050
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Figure 1. Steps involved in the fabrication process: Preparation of Aluminum plate with grooves (a),
assembling the FSP tool (b) in the Friction Stir Processing setup (c).

Table 2. Detailed composition of the hybrid surface composites.

Sample
Hybrid Reinforcement Matrix

B4C + SiC + CaCO3 (wt%) Al-Mg2-Si (wt%)

T1 5 95
T2 10 90
T3 15 85

The second pass is carried out by using a tool with a pin. Hence, the particle reinforce-
ment occurs on the Al plate’s surface from the second pass onward. The third pass is where
the tool with the pin is directed in the counter direction, and it is stopped in the same spot
where it started. The samples were machined using the Electrical Discharge Machining
(EDM) process for mechanical and microstructural studies.

2.2. Experimental Details
2.2.1. Mechanical Characterization

A standard tensile sample was cut as per the ASTM E8 standard, i.e., a dog bone
shape sample with a gauge length of 20 mm. The tensile test samples were cut from the stir
zone parallel to the tool traverse direction. The tensile test was carried out at a crosshead
speed of 1.3 mm/min using the universal testing machine (TMC-Chennai, CUTM-50 kN,
Chennai, India).

The microhardness test was carried out using Mitutoyo, Kanagawa, Japan HM113
machine, and the load applied was 50 g for 10 s. The sample dimensions, such as length and
width used for the Vickers hardness test, were 30 mm and 6 mm, respectively. A diamond
indenter with an angle of 136◦ between opposite faces was used.
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A dry sliding wear test was carried out as per ASTM G99 standard [28] using DuCom
Instrument (Make TR20-LE), Bangalore, India. The sliding distance used was 2500 m, the
velocity applied was 1.5 m/s, and the load applied was 25 kg.

2.2.2. Fractography Analysis

Gatan sample preparation equipment was used for the sample preparation of fractog-
raphy analysis. The Minitom low-speed diamond saw was employed to slice the sample
up to 500 microns. A disc punch was used to further obtain 3 mm diameter discs from the
samples. Furthermore, a disc punch was used to bring the thickness of the 3 mm discs up
to around 80 microns. Precision Ion Polishing System (PIPS) with Liquid Nitrogen cold
stage and the auto terminator was used to reduce the sample thickness to 10 microns.

Before being analyzed with a transmission electron microscope (TEM), the samples
were reduced to a thickness of 100 microns, then punctured into spheres in the stir zone.
The TEM analysis was performed using a JEOL JEM2100 High-Resolution TEM with a
200 kV working voltage (Tokyo, Japan). The scanning electron microscopy and the EDS
analysis of the reinforcement particles were studied using the FESEM instrument (Carl
Zeiss, White Plains, NY, USA). This instrument can investigate structures as small as 1.5 nm
and magnify objects up to 5 lakh times that size.

The samples for the optical microscopy (OM) were prepared by polishing using Emery
paper of different grades (800, 1000, 1200, 1400, and 1600 µm). After that, the samples were
further polished using a twin-disc polishing machine. The samples were then etched with
Keller’s reagent as the etchant. Furthermore, the microstructure investigation was carried
out using an Optical Microscope to make QS Metrology XJL17 with a magnification of up
to 400×.

3. Results and Discussion
3.1. Energy Dispersive X-ray Spectroscopy (EDS) Analysis

Particles were analyzed to identify the elemental composition, as shown in Figure 2.
The EDS maps in Figure 2a show the existence of calcium in two high peaks and carbon.
Figure 2b indicates the presence of silicon at the highest peak. Figure 2c shows the presence
of boron carbide at the highest peaks. Thus, the particles were identified, which were used
as reinforcements in fabricating the metal matrix composite samples.

3.2. Effect of Hybrid Reinforcement on the Tensile Properties

The tensile properties of the surface hybrid composites with increasing hybrid re-
inforcement are shown in Figure 3a–c. Grain boundary sliding, and dislocation motion
might be limited by reinforcement particles, such as B4C, SiC, and CaCO3. Furthermore, a
poor interfacial bond between the reinforcement particles and the matrix is observed [22].
It is observed from Figure 3b that the ultimate tensile strength of sample T3 is 62.63%
and 15.17% higher than that of samples T1 and T2, respectively. From Figure 3c, it is
observed that the Elongation (%) of T3 is 38.46% and 15.38% lower than that of samples T1
and T2, respectively. Incompatible deformation between the plastically deformed matrix
and the stiff reinforcing particles causes dislocations in the composites. The addition of
reinforcing particles inhibits elongation by increasing the effective slip distance [24]. The
applied tensile load is distributed throughout the Al matrix via comparably tougher hybrid
reinforcement. The Young’s Modulus is the amount of rigidity in the Elastic region, as
shown in Figure 3d for different samples. It was obtained from the slope of the linear curve
from the stress–strain curve.
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Figure 2. Reinforcement particles with EDS Analysis: (a) CaCo3, (b) SiC, and (c) B4C.

Dislocation movement is slowed by creating strain fields caused by changes in the
thermal expansion coefficient. The enhanced load transfer due to the significant interfacial
bonding could also contribute to the achieved properties. Pore removal makes the com-
posite denser and gives it more room to resist tensile loads. Tensile strength is increased
by strain fields created by deformation-induced dislocations [8]. The fact that grain de-
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velopment slows as the fraction of hybrid reinforcement particles increases aligns with
the phenomena of increased mechanical strength with increasing reinforcement particle
addition. The addition of hybrid particles increased yield strength, which resulted in
improvements in the hardness value of the surface composite and a reduction in grain size.
The presence of hybrid particles in the metal matrix reduced dislocation movement and
reduced the ductility of the matrix [29–31].
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Fracture morphologies of the tensile samples are shown in Figure 4a–c. Sample T1
shows deeper dimples and thicker tear edges, indicating a ductile fracture. In sample
T2, hybrid particles are present in the pores indicating a brittle fracture. In sample T3,
the quasi-cleavages are noted, which indicates a brittle fracture. Large, deep, and closely
spaced dimples indicate high ductility and energy absorption capacity, while small, shallow,
and widely spaced dimples indicate lower ductility.
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3.3. Effect of Hybrid Reinforcements on Microhardness Properties

Figure 5 shows the microhardness VHN for the entire processed zone. Stirred samples
were split into base alloy and Heat-Affected Zones (HAZ) based on their distance from the
stirred zone to evaluate the microhardness profile throughout the stirred area. After that,
the measurements from each zone were merged to form a profile. In the HAZ, the treated
samples have a low hardness. High-temperature qualities alter the behavior of the softened
matrix metal and the coarsening effect caused by particle reinforcement. The DRX effect
and the matrix grain size strengthening effect cause grain size reduction in the stir zone,
resulting in higher hardness than the HAZ zone.
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On the other hand, the hardness effect on the stir zone is a result of a combination of
particle distribution and grain size strengthening mechanisms [32], and the dominance
of precipitate solution hardening. The hybrid zone has a higher hardness than the base
metal, as shown in Figure 5. Microstructural refinement, homogeneity, and densification
are responsible for this [21,33]. The FSP considerably increases the Al substrate’s hardness.
Increased hardness is anticipated due to the uniform dispersion of SiCp and B4C particles
with extremely high hardness and considerable microstructural change caused by FSP [34].
The presence of ceramic reinforcements is responsible for the increase in hardness. The
uniform dispersion of reinforcing particles in the matrix and the Orowan strengthening
mechanism are two critical elements for the increase in hardness [35]. The microhardness
fluctuates since the heat varies in different zones of the material. In the stir zone, the
change is insignificant as the string of the metal occurs, which lead to an increase in
hardness [36]. The strain-hardening behavior of the applied mechanical load challenges
the heat generated in the thermos-mechanical affected zone. Consequently, the hardness
variation is significant [37].

The excellent distribution deters dislocation movement resulting in the material’s
hardness. According to the Hall–Patch connection, metal mechanical characteristics are
inversely related to grain size. The grains in the composite have undergone a great deal
of refinement. The composite’s hardness is improved by the refined grains. The effect of
those factors is amplified as the volume fraction rises. Work hardening occurs because
of dislocation interactions and their accumulation during deformation. The accumulated
dislocations contribute to increased microhardness due to the strain-hardening effect.

Furthermore, as the volume fraction rises, the average inter-particle distance falls,
increasing the contact between the Al alloy matrix and hybrid particles [38]. As the hybrid
particle composition increases, the pinning effect becomes more robust. Ceramic particles
can operate as load barriers, minimizing plastic deformation because there is less direct
contact between the pin and the counterpart disc. The wear rate is decreased as the hybrid
reinforcement content is increased. This is because surface composite layers containing
more hybrids have a higher hardness [13]. Some strengthening mechanisms that enhance
hardness after FSP are dispersion hardening, grain refining, and dislocation interaction
with non-shearable carbide particles [39,40].

The composite that included friction stir processing (FSP) and hybrid particles gener-
ally increased the surface hardness of the. Hybrid composites.
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The zones of the specimens, such as the base alloy zone and the heat-affected zone
(HAZ), were separated based on how far away from the stirred zone they were, and the
microhardness profile over the stirred zone was also looked at. A profile was made after
the microhardness of each zone was assessed (see Figure 5). The profile revealed a rise in
hardness as the agitated zone was approached. From the far edge of the HAZ, away from
the stirred zone to the other edge of the HAZ close to the stirred zone, hardness results
rose consistently.

3.4. Effect of Hybrid Reinforcement on Wear Behaviour

By incorporating hybrid particles, the material’s abrasive wear resistance was im-
proved while the plowing tendency was minimized, as shown in Figure 6. The surface
composite layers appear to have lesser abrasiveness than the underlying alloy. This could
be due to the material’s increased hardness and the presence of reinforcing ceramic par-
ticles, which can help decrease plastic deformation [13]. The wear test results indicate
that it has the lowest wear rate because reinforcement particles are used to strengthen the
composite. Hardness and wear rate have an inverse connection, according to Archard’s
wear law [41]. The presence of reinforcement would have resulted in stress concentration
at the reinforcement/matrix interface as dislocations piled up, allowing fracture nucleation
and propagation to occur more quickly. By delaying the initiation and propagation of
cracks, the homogeneous distribution of refined reinforcement would have improved the
wear resistance of Al-Mg2Si alloys. The wear rate decreased by 21.14% in the T2 sample
compared to sample T1, and a 20.90% decrease was observed in the T3 sample compared
to the T2 sample [42,43].
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The worn surface morphology is shown in Figure 7a–c. The worn surfaces have
indicated adhesion wear as the debris has again placed itself on the surface, which leads to
wear in sample T3.

The non-reinforcement behavior of the particles and big grains weakened the compos-
ite matrix, resulting in the sample with the lowest wear resistance [21]. Another reason for
these differences is that hybrid particles can withstand the imposed stress while resisting
the Al matrix’s plastic deformation. Moreover, the thermal expansion coefficients of Al and
reinforcing particles vary. This deviation adds to the number of dislocations [44,45].

Due to the presence of hybrid particles, the actual contact surface between the rubbing
pin and the spinning disc decreases. During sliding, hybrid particles take on the regular
burden right away. Due to the load-carrying action, the coefficient of friction at the contact
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surface is lowered. The proper bonding of hybrid particles to the Al matrix avoids particle
pullout from the surface and thus decreases the wear rate [46–48].
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The wear rates of different specimens varied based on their resistance to wear, which
was influenced by the composition of the alloys and the amount of nanoparticles present.
By subjecting the AlMg2Si alloy to Friction Stir Processing (FSP), its wear rate was reduced.
This improvement was primarily due to the FSP’s impact on refining the grain structure.
The composite alloys T2 and T3 demonstrated a significant deterioration in wear rate.
However, the wear rate of T1 can be attributed to the lack of reinforcement from large
grains and particles, which weakened the composite matrix.

The wear rates of hybrid composites containing different volume fractions of particles
were analyzed. The hybrid composites showed a decrease in wear rate. Notably, the
inclusion of hybrid particles had a significant impact on the reduction in wear rate in the
hybrid composite materials. This effect can be observed in Figure 6. Therefore, the wear
resistance was positively influenced by both the Friction Stir Processing (FSP) technique
and the addition of hybrid particles [49]. It is worth noting that the wear resistance
was affected by the behavior of particles and large grains, which may have softened the
composite matrix.

3.5. Microstructural Analysis

The reinforcement particles are scattered over the metallic matrix, and their respective
elemental distribution is illustrated in the micrographs in Figure 8a–f. Reinforcing particles
segregate at grain boundaries in stir casting and other liquid metallurgical processing
methods [50]. When the matrix material does not melt, the effects of solidification are
eliminated. The idea of reinforcing particles roaming smoothly owing to a density difference
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inside the plasticized material before forging is eliminated. Consequently, Fly Ash particles
were reinforced adequately in the composite [51]. The shattering of hybrid particles, which
resulted in a refined microstructure, could have caused severe plastic deformation, a
fundamental property of FSP [39].
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Figure 8. SEM Analysis of Particle distribution: (a) Sample T1 (b) EDS of Sample T1; (c) Sample T2
(d) EDS of Sample T2; (e) Sample T3 (f) EDS of Sample T2.
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The strain created during FSP has been much larger than the strain developed during
other severe plastic deformation procedures [52]. The inclusion of reinforcing particles,
which causes a higher rate of dislocation formation, has been linked to this behavior.
Differential thermal contraction between the reinforcing particles and the matrix and the
Orowan process have been identified as the primary causes of increased dislocation density
in the composite layer [53]. The sub-grains capable of converting to a grain must have
a large misorientation angle relative to the nearby deformed material for Continuous
Dynamic Crystallization [54–56]. After FSP, grain orientation changes significantly, as
shown in SEM images in Figure 9a–c. The FSP-processed composite has a lot of low-angle
grain boundaries. The sub-grain boundaries formed by dislocation rearrangement are
displayed in Figure 10a–c. During the deformation process, dislocations are gradually
integrated into sub-grain barriers, increasing their orientation, and transforming them into
low-angle grain boundaries [57]. During the FSP process, Al is predominantly subjected to
significant plastic deformation. The grains have been observed to be oriented in a similar
direction in Sample T1 in Figure 9a, whereas the grain boundaries in sample T2 (Figure 9b)
have been oriented in different directions. However, the grain boundaries in sample T3
are oriented with a set grain in a similar orientation. The grain in Sample T3 has lesser
dendritic formation compared to that in sample T1. The optical micrographs shown in
Figure 10 depict the particle distribution in various zones in different types of samples.
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Figure 9. Microstructure investigation in the stir zone in different types of samples through SEM:
(a) T1—5 wt%, (b) T2—10 wt%, (c) T3—15 wt%.

Figure 11a–f shows the TEM images of different samples. Dislocations are developed
when a substance is distorted. The grains in the stir zone go through a recrystallization
and deformation cycle before being forged at the tool’s back [47]. The microstructure
of the grains formed during the early phases of FSP coarsens, and more dislocations
are generated during subsequent thermo-mechanical deformation in the larger grains
that preferentially bear load [56]. Equiaxed grains with an average grain size of about



Materials 2023, 16, 4131 14 of 19

2.2 µm were generated during intense plastic deformation, comparable to the Nugget Zone,
providing appropriate deformation heat and facilitating the dynamic recrystallization
process [55,58]. Dynamic Recovery (DRV) happens quickly when metals with high stacking
fault energy, such as Aluminum, are hot worked. As dislocations grow and interact during
the early stages of deformation, the flow stress rises. Dislocations begin to rearrange
and produce low-angle boundaries as dislocation density increases and sub-grains form,
and the recovery rate accelerates [54]. As dislocation multiplies and recovery occurs
due to dislocation rearrangement, the flow stress saturates and approaches a dynamic
equilibrium. The flow stress remains constant as the strain grows, resulting in steady-state
deformation [58–60]. The steady state is mirrored by equiaxed sub-grains with virtually
dislocation-free interiors, constant sub-grain size, and sub-grain border misorientation, as
shown in Figure 8. These low-angle boundaries evolve into high-angle boundaries during
a continual dynamic recrystallization process, resulting in a fine-grained structure [61–63].
Regardless of composition, the extreme turbulence of the material in a semi-solid state
around the pin causes the particles in the SZ to fragment [33,64].
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Figure 10. Optical Micrographs of particle distribution in the stir zone, (a) T1—5 wt%,
(b) T2—10 wt%, (c) T3—15 wt%.
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Figure 11. TEM images, (a) ultrafine grains in sample T1, (b) disc-shaped precipitates in sample
T2, (c) hybrid particle cluster with precipitates in sample T3, (d) Mg2Si precipitates in sample T1,
(e) Hybrid particles in sample T2, and (f) Hybrid reinforcement cluster in sample T3.

Grain development kinematics are greatly influenced by the curvature radius and
grain borders’ mobility. Due to the pressure differential across the border, grain boundaries
tend to move towards the center of curvature [65]. An equilibrium condition can be
established when grain boundaries are straight, the angle at the triple points is close to
120, and such a microstructure will withstand more heat cycles. As demonstrated in Field
Emission Scanning Electron Microscopy pictures (Figure 10), the grains in the friction stir
processed (FSPed) material is equiaxed with clearly defined straight grain boundaries
in the current work, and the banded contrast observed shows that the boundaries are in
equilibrium [66,67]. Mg2Si precipitates are formed and represented in the disc (plate-shaped
β precipitate), as shown in Figure 11a–f.

From the microstructure, it can be understood that reinforcement particles are dis-
tributed inside the Al-matrix and the likelihood that various defects will be created. The
incorporation of hybrid ceramic particles produced a homogeneous zone in SZ, as seen
in Figure 10a through Figure 10c. According to microstructural investigations, significant
grain structural refinements were seen during FSP, which can be linked to the occurrence
of several dynamic recrystallization (DRX) mechanisms.

4. Conclusions

• The Al hybrid surface composites were successfully manufactured. The different
mechanical characterization tests (tensile, microhardness, and wear) were performed,
then detailed microstructure investigations were performed using SEM, OM, and TEM
techniques. The most critical outcomes are as follows:

• FSP performs a significant role in grain refinement in the stir zone of processed
samples. The EDS analysis confirmed the presence of the reinforcement particles in
the composites.
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• The increase in hybrid reinforcement content from 5 wt% to 15 wt% enhanced tensile
strength and Young’s modulus while decreasing elongation, which implies that the
structure became more brittle., i.e., Sample T3 exhibited the highest tensile strength
with a reduction in elongation, compared to samples T1 and T2. The ductile fracture
occurred in sample T1 due to the deeper dimples observed in fracture SEM images,
which was the result of higher Elongation (%) compared to that in samples T2 and T3.

• The stir zone’s microhardness was studied. The heat-affected and the thermomechanical-
impacted zones were analyzed, and the stir zone exhibited a higher hardness due
to grain refinement. Sample T3 exhibited the lowest wear rate due to the increased
hardness compared to samples T1 and T2. The worn surfaces exhibited adhesion wear.
Wear grooves were observed with debris.

• SEM and TEM micrographs revealed the hybrid particles’ existence and bonding,
which are the main reasons for the increase in hardness.

• The data presented in this study will be useful in developing several hybrid surface
composites for future aerospace and automotive applications.
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