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Abstract: Metasurface-based research with phase-change materials has been a prominent and rapidly
developing research field that has drawn considerable attention in recent years. In this paper, we
proposed a kind of tunable metasurface based on the simplest metal–insulator–metal structure,
which can be realized by the mutual transformation of insulating and metallic states of vanadium
dioxide (VO2) and can realize the functional switching of photonic spin Hall effect (PSHE), absorption
and beam deflection at the same terahertz frequency. When VO2 is insulating, combined with the
geometric phase, the metasurface can realize PSHE. A normal incident linear polarized wave will be
split into two spin-polarized reflection beams traveling in two off-normal directions. When VO2 is in
the metal state, the designed metasurface can be used as a wave absorber and a deflector, which will
completely absorb LCP waves, while the reflected amplitude of RCP waves is 0.828 and deflects. Our
design only consists of one layer of artificial structure with two materials and is easy to realize in the
experiment compared with the metasurface of a multi-layer structure, which can provide new ideas
for the research of tunable multifunctional metasurface.

Keywords: tunable metasurface; vanadium dioxide; geometric phase; photonic spin Hall effect

1. Introduction

A metasurface is a kind of ultra-thin two-dimensional plane composed of periodic
arrangements of artificial electromagnetic units, whose thickness is much smaller than
the working wavelength. It is one of the popular research areas in the field of artificial
electromagnetic materials. Compared with traditional metamaterials, metasurfaces have
lower loss, thinner thickness, and other advantages. Their unit structure design has high
flexibility and tunability, which is easier to process and prepare. After the unremitting
exploration of researchers, metasurfaces have shown a wide range of application prospects
in many fields, such as metalenses [1,2], waveplates [3], vortex beam generators [4], beam
deflection [5], and photonic spin Hall effect (PSHE) [6]. However, most of the current meta-
surfaces can only achieve a single function, while multifunctional metasurfaces require
increasing thickness and complexity, and the function is fixed once determined [7,8]. There-
fore, how to integrate multiple functions in one device and dynamically switch functions
according to different needs is a very challenging and valuable research direction. This can
not only simplify the device structure but also expand the application scope.

In order to achieve the tunability and multifunctionality of metasurfaces [9–12], many
researchers have used tunable materials, such as semi-insulator [13], graphene [14–16],
and liquid crystal [17,18]. These materials allow metasurfaces to have different optical
properties under different conditions, such as tuning of Fano resonance [19], beam steer-
ing [17,18], holography [20], and sensing. One of the effective ways to realize switchable
metasurfaces is to incorporate standard metasurfaces with phase-change materials (PCMs),
such as chalcogenide GeSbTe (GST) alloys [21–23] and VO2 [24–27]. However, how to
use a single-layer structure of a tunable metasurface to achieve switching between two
completely different functionalities is still largely unexplored.
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In this paper, we present a novel approach to incorporate VO2, a material that exhibits
phase transition behavior, into a reflective metasurface with only one artificial structure
layer. VO2 is a material that responds to temperature changes, and it undergoes a phase
transition from a monoclinic insulating phase to a rutile metallic phase at around 68 ◦C,
which leads to significant variations in its conductivity and permittivity. By exploiting
this property, we can manipulate the optical functions of the metasurface at different
temperatures by applying thermal control. The metasurface that we design is composed of
a metal substrate, a dielectric isolation layer, and an artificial structure made of VO2 and
gold on the top surface. In particular, when VO2 is at low temperature, it is in an insulating
phase, and the metasurface can generate photonic spin Hall effect, which means that it
can split the linearly polarized wave of normal incidence into two circular polarization
reflected beams, which propagate in two directions deviating from the normal. When VO2
is at a high temperature, it is in a metallic phase, and the metasurface can achieve spin-
selective absorption and deflection of circularly polarized light, which means that it can
absorb the left-handed polarized light and deflect the right-handed polarized light by about
23.7◦. This effect can be used for polarization filtering and switching. The metasurface
structure that we propose is very simple and elegant: it only consists of one layer of
artificial structure with two materials, which offers an effective route to realize tunable
multifunctional metasurfaces.

2. The Design of the Tunable Multifunctional Metasurface

As shown in Figure 1, we illustrate the design of the basic unit of our tunable meta-
surface, which consists of three layers of different materials and structures. The top layer
is composed of a phase-change material arc structure and gold strip structure, which are
the key elements for achieving phase transition and optical modulation. The middle layer
is a polyimide (PI) spacer layer, which serves as a buffer and a thermal insulator between
the top and bottom layers. The bottom layer is a gold substrate, which provides a strong
reflection and stable support for the whole structure. The geometric parameters of the unit
structure are as follows: the period is P = 50 µm, the angular sizes of the long arc and short
arc structures are α = 72◦ and β = 44◦, respectively, the radii of the inner and outer arcs are
r1 = 16 µm and r2 = 23 µm, respectively, the thicknesses of the arc and gold strip structure
are both h = 4 µm, the thickness of the bottom gold substrate is d = 0.5 µm, the thickness
of polyimide is t = 14 µm, and the width of gold strip structure is m = 3 µm.
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Figure 1. Design principle and structural parameters of the designed switchable multifunctional
metasurface. (a) The illustration of the switchable multifunctional metasurface; (b,c) the schematic of
the metasurface structural parameters.

In this work, we employ VO2 as the phase-change material, which can switch between
insulating and metallic states under different stimuli, such as temperature, electric field,
or light intensity. VO2 has a phase transition temperature of around 68 ◦C. Below this
temperature, VO2 is in an insulating phase, with a conductivity of σ = 200 S/m. Above
this temperature, VO2 is in a metallic phase, with a conductivity of σ = 2× 105 S/m. The
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conductivity of VO2 can revert to the initial value if the temperature is lowered gradually.
Moreover, VO2 can also undergo phase transition by other means, such as optical excitation
and voltage application, which makes it a very suitable material for our purpose.

We use the finite difference time domain (FDTD) method for numerical simulations in
this work. For the unit structure of metasurfaces, we select periodic boundary conditions
(PBCs) in the x and y directions and perfectly matched layer (PML) in the z direction as
the boundary conditions. For the far-field functions of the metasurface, we select PML as
the boundary condition in all three directions: x, y, and z. The dielectric constants of VO2
before and after phase transition follow the Drude model:

ε(ω) = ε’ + ε” = ε∞ −
[

σω2
p(σ0)

σ0(ω2 + iγω)

]
(1)

where the high-frequency dielectric constant is ε∞ = 12, the collision frequency is
γ = 5.75× 1013 rad/s, σ0 = 3× 105 S/m, ωp(σ0) = 1.4× 1015 rad/s.

The Drude model can also be used to characterize the relative dielectric constant
of gold [28]. The parameters of the model are ε∞ = 1, the plasma frequency ωp_Au =

1.37× 1016 rad/s, and the collision frequency γAu = 1.2× 1014 rad/s.
In this research, we aim to create a tunable metasurface that can switch between

different functions by controlling the temperature. VO2 can achieve a reversible phase
transition from monoclinic to metallic tetragonal structure under specific stimuli, such
as temperature change [24,29] and voltage application [26,30,31]. Here, we control the
phase transition of VO2 by varying the temperature. By crossing the critical temperature
of about 68 ◦C, we can switch between different functionalities. Moreover, in our design,
all the structures are on a single layer above the surface, which simplifies the fabrication
and manipulation.

3. Results and Discussion
3.1. VO2 Is in the Insulating State

When VO2 is in the insulating state at room temperature, it has high reflectivity
and low absorption for visible and near-infrared light. In this case, we can design our
structure as a Pancharatnam–Berry (PB) phase metasurface, which can realize the PSHE [32].
A PB phase metasurface is a flat optical device that can manipulate the extra phase of
incident circularly polarized light by controlling the rotation angle of subwavelength unit
structures, thereby achieving various optical functions, such as polarization conversion,
beam deflection, holographic imaging, orbital angular momentum generation, and so
on [33]. When the linearly polarized light is incident on a PB phase metasurface, it splits
into two spin-polarized reflected or transmitted beams, which acquire opposite PB phases
due to the geometric phase difference between the unit structures. This leads to the lateral
separation of photons with different spin states. This effect originates from the spin–orbit
coupling of photons, which describes the interaction between the photon’s spin angular
momentum and its orbital angular momentum.

To achieve PB phase metasurface, we first need to design a subwavelength unit
structure that can function as a half-wave plate for circularly polarized light. The half-wave
plate is a device that can change the polarization state of an incident electromagnetic wave
by introducing a phase difference of π between two orthogonal components, such as x-
and y-polarization. The structure we designed can function as a half-wave plate because its
reflection coefficients for x- and y-polarization have equal magnitudes but opposite phases.
By rotating our designed half-wave plate unit structures, we can introduce an additional
phase that is twice the rotation angle, which enables us to manipulate any wavefront. By
combining the PB phase design with the metasurface, we can achieve a simple structure, a
wide working bandwidth, and powerful control over circularly polarized light.

As shown in Figure 2a, in the frequency range of 2.45–2.82 THz, the reflection ampli-
tudes of x- and y-polarizations with normal incidence are almost equal, and the reflection
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amplitude values are greater than 0.9. Figure 2b indicates that, in the frequency range of
2–3 THz, the phase difference condition ∆ϕ =

∣∣ϕyy − ϕxx
∣∣= 180◦ is approximately satisfied.
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Figure 2. At room temperature, the simulated spectra of (a) reflection amplitude and (b) phase of the
metasurface under the normal incidence of terahertz waves (x- and y- polarizations); (c) calculated
PCR for polarization angles ρ of 45◦, 50◦, and 55◦; (d) calculated PCR for polarization angles ρ from
0◦ to 90◦ in the frequency range of 1.5–3.5 THz.

In order to verify the effect of the half-wave plate, we calculated the polarization
conversion rate (PCR) of the structure, which can measure how much the polarization
state of the reflected wave deviates from that of the incident wave. The formula for PCR is
provided by [34]:

PCR =

∣∣ryx
∣∣2

|rxx|2 +
∣∣ryx

∣∣2 (2)

where rxx, and ryx are the reflection coefficients for different combinations of the incident
and reflected polarization.

The polarization angle ρ is the angle between the incident polarization and the x-axis
of the metasurface. By adjusting ρ, we can control the polarization state of the reflected
wave. The higher the PCR value, the more the reflected wave deviates from the incident
wave in polarization. It can be seen from Figure 2c,d that, when ρ is between 40◦ and 60◦,
PCR can reach above 0.9. The optimal polarization angle for achieving maximum PCR is
ρ = 50◦, and the PCR can reach above 0.99. It can be seen that the designed half-wave plate
is quite consistent with the expected design.

Based on the principle of the PB phase, we can make the phase shift of the reflected
light cover the range of 0–2π by adjusting the local orientation η of the upper patch of
the unit structure from 0 to π. By rotating the unit structures, we design a 24 × 24 array
structure as a PSHE metasurface, which consists of six unit structures as a supercell. The
supercell covers the gradient phase range of 2π by arranging the six unit structures in a
phase gradient manner. The supercell is a periodic arrangement of unit structures that
forms the basic building block of a metasurface. The principle of PSHE and the wave plate
design are shown in Figure 3a. When the linearly polarized light is incident perpendicularly
on our designed metasurface, which acts as a half-wave plate, the reflected light becomes
two separated LCP and RCP beams.
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Figure 3. (a) The principle of PSHE and the wave plate design. The upper patch of each unit structure
has a local orientation η that varies from 0 to π. When the linearly polarized light is incident on the
metasurface, it splits into two circularly polarized beams with opposite PB phases; (b) the simulated
PSHE efficiency as a function of wavelength and incidence angle; (c,d) the normalized angular
distribution of the scattered wave intensity of LCP and RCP at different wavelengths. The deflection
angle θr of the spin-polarized waves is determined by the phase gradient ξ of the metasurface, which
varies with wavelength according to Equation (4).

To calculate the efficiency of PSHE, we use numerical simulation software to simulate
the designed wave plate. By integrating the power over the angular region spanned by
the reflection mode [35], we can quantitatively estimate the PSHE efficiency, as shown in
Figure 3b. According to our simulation, the PSHE efficiency ranges from 69.5% to 78.33%
in the frequency range of 2 THz to 3 THz. We also simulated the normalized angular
distribution of the scattered wave intensity of LCP and RCP, as shown in Figure 3c,d, where
the deflection angle θr of the spin-polarized waves can be obtained from the generalized
Snell’s law [36]

θr = sin−1(sin θi + ξ/k0) (3)

where θi is the incidence angle, k0 = ω/c is the vacuum wave vector and the phase
gradient ξ = 2π/nP. n is the number of unit structures in a superlattice and P is the
period of the unit structure. In our work, we have normal incidence, so we can obtain a
simplified formula:

θr = sin−1
(

λ

nP

)
(4)

where λ is the wavelength of the incident light.
From Equation (4), we can see that the deflection angle θr of the spin-polarized waves

depends on the wavelength of the incident light, and also on the number of meta-atoms
n and the period P of the metasurface. When the linearly polarized light is incident at
2.8 THz, according to Equation (4), the deflection angle θr of the reflected LCP should be
−20.92◦, and the actual simulation result is −20.9◦, while the deflection angle θr of the
reflected RCP should be 20.92◦, and the actual simulation result is 20.8◦. We can see that the
simulation results agree well with the theoretical results, and the PSHE efficiency reaches
78.33% at 2.8 THz. From the above analysis, we can conclude that, when VO2 is in the
insulating state, our designed metasurface can achieve the expected function very well.
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3.2. VO2 Is in the Metallic State

Figure 4a shows when VO2 reaches the phase transition temperature and is in the
metallic state. In this case, the same metasurface design can realize the spin-selective
absorption of circularly polarized light and the deflection of the reflected beam. In our
design, when LCP light is incident, the metasurface will almost completely absorb the
incident LCP light without reflection. However, when RCP light is incident, the reflected
wave has high reflectivity and undergoes deflection. This means that the metasurface can
act as a spin filter that selectively absorbs or reflects different spin states of light.
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We demonstrate the spin-selective absorption of circularly polarized light by simulat-
ing the performance of the unit structure, as shown in Figure 4b. At the working frequency
of 2.5 THz, when the incident light is RCP, the unit structure reflects 69% of the light with
the same polarization (RRR), while almost no light is reflected when the incident light is
LCP (RLL ≈ 0). This result confirms that the unit structure can effectively distinguish
between different circular polarizations at the working frequency of 2.5 THz, while, for
RCP illumination, the main multipole excitation in the unit structure is an electric dipole.
However, for LCP illumination, the excitation of antiparallel currents in the nanostructures
results in not only the minimization of electric dipole response but also the generation of
a pair of parallel magnetic dipoles along the wave propagation direction, which leads to
vanishingly small far-field emission [37].

Next, we investigate the dependence of the circularly polarized light reflectance and
the reflected RCP phase on the rotation angle φ at the operating frequency of 2.5 THz.
Figure 4c shows that, when the incident light is LCP, the reflectance is always very low,
whereas, when the incident light is RCP, the reflectance of RCP stays almost constant at
around 0.7 within the rotation angle φ range. Furthermore, we achieve the phase control
of optical waves using the geometric phase: a supplementary phase of 2φ with reversed
spin is added to the circularly polarized optical wave upon reflection by a nanostructure
with a rotation angle of φ [38]. The phase of the reflected waves can be varied from 0 to 2π
by adjusting the rotation angle φ from 0 to π, while the amplitudes of the reflected waves
remain nearly unchanged.
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Therefore, by changing the phase state of VO2 from dielectric to metallic, without
altering the 24 × 24 array structure that we previously designed in Figure 3, we can still
generate a phase gradient along the x direction using the geometric phase, which can deflect
the reflected RCP light according to the generalized Snell’s law. As shown in Figure 4d, the
phase variation range of the six unit structures that form the supercell covers 2π, which
forms a phase gradient along the x direction.

Figure 5a illustrates that our tunable metasurface behaves as an absorber when LCP
light is incident. This means that the metasurface can convert the incident LCP light into
heat and reduce its reflection and transmission. We perform numerical simulations to
obtain the absorption rate as a function of frequency. The absorption rate is defined as
the ratio of the absorbed power to the incident power. Figure 5b displays the absorption
spectra for LCP and RCP incidents separately. The figure reveals that, when LCP light
is incident, its absorption reaches a maximum of 0.94 at 2.5 THz, which indicates a high
absorption efficiency. To investigate the absorption capability of LCP light as a function of
the rotation angle φ and frequency, we simulate the absorption of LCP light in the range of
2–3 THz, as shown in Figure 5c. The rotation angle φ is the angle between the x-axis and
the long axis of the nanorod. The calculation demonstrates that, with the variation in the
rotation angle φ, LCP light still demonstrates good absorption performance around 2.5 THz,
which shows that the absorption effect is robust against the orientation of the metasurface.
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Figure 5. (a) Schematic diagram of the metasurface function principle when LCP is incident; (b) ab-
sorption of the two polarizations of light when circularly polarized light is incident; (c) absorption
spectra as a function of frequency and rotation angle φ; (d) schematic diagram of the metasurface
function principle when RCP is incident; (e,f) electric field and far field diagrams when RCP is
incident. The direction of the black arrow indicates the direction of the RCP light that is incident
vertically and reflected by the metasurface.

Figure 5d shows that our tunable metasurface behaves as a deflector when RCP light
is incident. This means that the metasurface can change the direction of the reflected
RCP light without changing its polarization state. To investigate the deflection effect, we
simulate the electric field distribution and the far field radiation pattern of the reflected RCP
light when RCP light is incident, as shown in Figure 5e,f. The figure indicates that, when
RCP light is incident, the reflected RCP light deflects to the left by about 23.7◦, and the
deflection effect is good, with the deflection angle matching well with the theoretical value.
The deflection angle can be calculated by Equation (4), which shows that it is proportional
to the wavelength of the incident light and inversely proportional to the period of the
metasurface. This means that we can tune the deflection angle by changing the wavelength
of the incident light or the period of the metasurface. In our work, we also explored
whether impurities in VO2 have an effect on the performance of the structure [39], and the
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results show that this effect is actually very small and negligibly affects the performance of
our structure.

4. Conclusions

We have introduced a novel approach to design a tunable multifunctional metasurface
using VO2, a phase-change material that can switch between insulating and metallic states
under different temperatures. The metasurface consists of three layers: a metal substrate,
a dielectric spacer, and an artificial structure on the top surface. The artificial structure
is composed of a phase-change material arc structure and gold strip structure, which
can manipulate the optical functions of the metasurface at different temperatures. The
metasurface can achieve three different functions depending on the phase state of VO2:
when it is in the insulating state, it can act as a half-wave plate and generate PSHE; when it
is in a metallic state, it can achieve spin-selective absorption and deflection of circularly
polarized light. The proposed metasurface structure is simple and elegant and offers an
effective route to realize tunable multifunctional metasurfaces.
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