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Abstract: Mercaptopurine is one of the drugs used in the treatment of acute lymphoblastic leukemia.
A problem with mercaptopurine therapy is its low bioavailability. This problem can be solved by
preparing the carrier that releases the drug in lower doses but over a longer period of time. In this
work, polydopamine-modified mesoporous silica with adsorbed zinc ions was used as a drug carrier.
SEM images confirm the synthesis of spherical carrier particles. The particle size is close to 200 nm,
allowing for its use in intravenous delivery. The zeta potential values for the drug carrier indicate
that it is not prone to agglomeration. The effectiveness of drug sorption is indicated by a decrease
in the zeta potential and new bands in the FT-IR spectra. The drug was released from the carrier
for 15 h, so all of the drug can be released during circulation in the bloodstream. The release of the
drug from the carrier was sustained, and no ‘burst release’ was observed. The material also released
small amounts of zinc, which are important in the treatment of the disease because these ions can
prevent some of the adverse effects of chemotherapy. The results obtained are promising and have
great application potential.

Keywords: acute lymphoblastic leukemia; 6-mercaptopurine; polydopamine; drug delivery; zinc

1. Introduction

The most common pediatric malignancy is acute lymphoblastic leukemia (ALL) [1].
This disease is responsible for approximately 25% of all childhood cancers and 75–80%
of childhood leukemias [2,3]. Survival and cure rates have improved over the past few
decades due to the optimal use of antileukemic drugs [4,5]. One of the drugs used in
this disease is 6-mercaptopurine (MERC) [6]. MERC is a drug with anti-inflammatory,
immunosuppressive, and cytotoxic properties, and its action is dose-dependent. In high
doses, it has immunosuppressive and cytotoxic properties, while in small doses, it acts
as an anti-inflammatory drug [7,8]. This drug is also used in other diseases: ulcerative
colitis and Crohn’s disease [9,10]. A problem with MERC therapy is its low bioavailability,
ranging from 10% to 50%, with an average value of 16% [11]. The low bioavailability is due
to the short plasma half-life of MERC, which is approximately 1 to 3 h [12]. This problem
can be solved by preparing the drug delivery system that releases the drug in lower doses
but over a longer period of time. Many modern drug delivery systems have been described
in the literature in the last few years. An interesting example are polysialic acid-based drug
delivery systems [13]. These systems have been used, for example, in the delivery of drugs
in the treatment of cancer and rheumatic and neurological diseases. Particularly important
drug delivery systems are those that release the drug in response to stimuli [14]. The
stimuli that affect drug release can be divided into: internal stimuli (reactive oxygen species,
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enzyme, shear stress, and pH) and external stimuli (light, ultrasound, and magnetism).
Stimuli-responsive drug delivery systems have been used, for example, in the treatment
of atherosclerosis [14]. The use of drug delivery systems is particularly important for the
stimulator of interferon genes. The stimulator of interferon genes shows promising clinical
activity in infectious diseases and tumors [15]. However, the lack of targeting capability
and intracellular stability of the stimulator of interferon genes agonists severely limits
the therapeutic efficacy [15]. Recently, drug delivery systems (e.g., liposomes, polymeric
nanoparticles) have overcome these delivery barriers.

Scientists have already tried to create drug delivery systems for MERC. Part of the
proposed carriers are based on the formation of disulfide bonds between the carrier and
the drug [16]. An example is the UiO-66-(SH)2 metal organic framework-based drug carrier
prepared by Gong et al. [17]. In another publication, Talib et al. prepared biotinylated
carbon dots nanoparticles as a drug delivery system [18]. The major disadvantage of the
glutathione-sensitive drug delivery system is that the drug will only be released in the
presence of a sufficient amount of glutathione. If the amount of glutathione is insufficient,
the drug will be strongly bound to the carrier and will be removed from the body with it.
The drug is also delivered using another metal organic framework. Mosavi et al. prepared
NMOF-5 coated with chitosan and used it as a carrier [19]. In another work, Kaur et al.
obtained a carrier based on a zeolitic imidazolate framework with the drug encapsulated
inside the particle [20]. In both cases, the release is related to the dissolution of the metal
organic framework.

An interesting alternative to this type of carrier may be carriers that release the drug
under the influence of human body fluids. Due to the interaction with MERC, such a
carrier should contain zinc in its structure [21]. The material that can most likely be used
for this application is polydopamine-coated mesoporous silica [22,23]. Mesoporous silica is
a drug carrier widely used by scientists around the world. Until now, mesoporous silica
has been used for active substances such as fucoxanthin and curcumin [24–27]. The silica
surfaces in these publications were modified, for example, with polyphenols, fucoidan, and
alginates, which contributed to improving the properties of the carrier. Another type of
modification of mesoporous silica is modification with polydopamine. Polydopamine is
a biological polymer inspired by mussels [28]. It is used in biomedical applications due
to its low cytotoxicity and exceptional biocompatibility [29]. Such carriers have already
been used in the administration of avermectin, desipramine, minocycline, quercetin, and
doxorubicin [30–35]. The use of carriers resulted in the prolonged release of drugs. To the
knowledge of the authors of this work, this carrier has never been used as a carrier for
MERC. This is surprising because this carrier has a very high potential due to the possibility
of adsorbing zinc ions on its surface to which the drug can then attach [36]. Furthermore,
the supply of zinc ions in the ALL treatment is very important because these ions can
prevent some of the adverse effects of chemotherapy in children with leukemia, improving
their quality of life [37]. Low blood levels of zinc are often noted in ALL and could be
supplemented to some extent by the carrier [38].

The preparation of a carrier based on mesoporous silica coated with polydopamine,
zinc ions, and the adsorbed drug may bring many benefits in the treatment of ALL. This
material has not been previously described in the literature. Mesoporous silica is considered
non-toxic and is used in drug delivery, so it is an ideal material on which polydopamine will
be deposited [33,34]. Polydopamine, on the other hand, is a material modeled on natural
organisms, and its biocompatibility with respect to the human body has been proven [39].
Zinc ions are considered toxic in some reports in the literature, but toxicity occurs only
at high concentrations, whereas in low concentrations, is an essential trace element for
humans [40,41]. These ions are increasingly used in biomaterials due to their properties
that support processes in the human body [42,43]. Importantly, the effectiveness of these
ions in therapy against ALL has been proven [37,38]. The last component of such a system
is the active substance. Mercaptopurine is a drug that has been proven to work against
ALL [2]. Combining the release of zinc and mercaptopurine in a controlled manner from
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a biocompatible carrier can achieve a double therapeutic effect. This type of material has
not been described in the literature so far and may result in significant progress in the
development of ALL treatment. The only material with a similar effect is the carrier in the
form of zinc zeolite, shown previously by us, in which mercaptopurine was retained and
released in a controlled manner [7].

In this work, a drug carrier for mercaptopurine was prepared on the basis of meso-
porous silica coated with polydopamine. Zinc ions were adsorbed on the surface of the
polydopamine-coated silica. The drug was retained on the carrier surface by the interaction
with zinc. As a result of drug–carrier interactions, the release will be slow, which may
increase the bioavailability of the drug. The material was characterized both before and
after drug sorption. The study determined whether the drug was adsorbed and at what
time it was released. The mechanism of drug adsorption is shown in Figure 1.
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2. Materials and Methods
2.1. Chemical Compounds

Cetyltrimethylammonium bromide (CTAB, 99%), ammonia solution (25%), tetraethyl
orthosilicate (TEOS, 98%), dopamine hydrochloride (DA), zinc nitrate hexahydrate (98%),
6-mercaptopurine (MERC), tris (hydroxymethyl) aminomethane (TRIS), (99.8%), sodium
chloride (99%), sodium bicarbonate (99%), sodium sulfate (99%), potassium phosphate
dibasic trihydrate (99%), and potassium chloride (99%) were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Hydrochloric acid (36–38%) was purchased from Avantor Perfor-
mance Chemicals (Gliwice, Poland). The materials were used without further purification.

2.2. Preparation of Polydopamine-Modified Mesoporous Silica

The synthesis of polydopamine-modified mesoporous silica was carried out according
to the methodology proposed by Shen et al. [30]. Co-condensation was used during the
synthesis [30,44]. In the first step of synthesis, CTAB (0.9 g), ammonia solution (6.8 mL,
wt = 25%), ethanol (60 mL), and deionized water (300 mL) were added to the flask. All
ingredients were mixed with a mechanical agitator at a temperature of 70 ◦C for 30 min.
Then, TEOS (2.84 g) was added dropwise to the solution. After stirring for 5 min, DA
(65.0 mg) was added to the solution and left for 24 h. The resulting material was centrifuged
(3000 rpm) for 5 min, washed with ethanol, and dried at 60 ◦C. The next step was to wash
the material in an ethanolic solution of ammonium nitrate (10 mg/mL, 400 mL) at 60 ◦C for
8 h. After 8 h, the material was centrifuged. The washing step was repeated three times
to remove impurities. Finally, the material was washed three times with pure ethanol,
centrifuged, and dried at 60 ◦C for 24 h.

2.3. Zinc Adsorption on Polydopamine-Modified Mesoporous Silica

Zinc cations adsorption was carried out by mixing 30 mL of 0.1 M zinc nitrate solution
with 1 g of polydopamine-modified mesoporous silica for 24 h. Then, the material was
centrifuged (8000 rpm). The whole process was repeated three times. Subsequently, the
material was washed three times with distilled water to remove excess zinc nitrate and
then dried in an oven for 24 h at 60 ◦C.

The material after ion adsorption was named mSiO2-PDA-Zn.

2.4. Mercaptopurine Sorption

MERC sorption was initiated by introducing 15 mg of mSiO2-PDA-Zn into a 2 mL
vial. Each vial was filled with 1 mL of MERC solution at a concentration of 0.015 mg/mL
(the drug was dissolved in 0.1 M TRIS-HCl buffer at pH = 7.4). The samples were mixed on
a laboratory rotator mixer (speed 50 rpm) for one week at room temperature. The carriers
were then centrifuged (10 min at 4500 rpm). The fluid was tested using UV-Vis to determine
the amount of the drug retained, while the carrier was characterized by other techniques
and used in the drug release step. Five repetitions were made.

The material after MERC sorption was named mSiO2-PDA-Zn-MERC.
Sorption was also tested for the unmodified material, but it was not effective, and the

results for this type of material are not presented.

2.5. MERC Release

mSiO2-PDA-MERC samples (15 mg) were placed in a vial with 1 mL of simulated
body fluid (SBF) with a pH of 7.4 and a temperature of 36.6 ◦C. The amount of the drug
released was measured after each hour using UV-Vis spectroscopy. Each time, the samples
were centrifuged (10 min with 4500 rpm), and the SBF was replaced with a new portion
to supply new ions. The addition of a new portion of SBF imitates blood flow, and this
method was used due to the potential use of the material in intravenous administration.
Three repetitions were made. The composition of the SBF is given in Table S1.
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2.6. Characterization of the Carrier

The morphology of the samples was analyzed using a Scanning Electron Microscope
Quanta FEG 250 (FEI) equipped with an EDS Octane SDD detector (EDAX). The structure
of bulk samples and EDS mapping analyses were conducted in the Low Vacuum mode at
the pressure of 70 Pa with an accelerating voltage of 10 kV, while the structure of individual
mSiO2-PDA-Zn carriers was visualized after deposition from water dispersion at the silicon
wafer and realized in the high vacuum mode, with an accelerating voltage of 30 kV. The
size distribution and Zeta potential analyses were performed using a Zetasizer Nano ZS
analyzer (Malvern Instruments Ltd.) operating at room temperature. Size distribution
analyses were realized by a Dynamic Light Scattering (DLS) technique using non-invasive
backscatter technology, with a 173◦ detection angle. All DLS and Zeta potential mea-
surements were performed in a deionized water environment at a pH equal to 7. The
tested material (1 mg/mL) was sonicated in an ultrasonic bath in distilled water for 3 min.
Five repetitions were made for each material. Fourier-Transform Infrared Spectroscopy
(FT-IR) analysis was performed using a Vertex70 spectrometer (Bruker Optics). The ma-
terials were tested using a single reflection diamond ATR crystal. The tests were carried
out in the spectral range of 4000–800 cm−1, with a resolution of 4 cm−1 and 32 scans for
signal accumulation. Elemental analysis was performed on the FLASH 2000 elemental
analyzer. Thermogravimetric analysis was conducted using the TGA 4000 analyzer (Perkin
Elmer), with a 20 mL/min nitrogen flow and 10 ◦C/min heating rate. The UV-Vis spec-
trophotometer UV-2600 (Shimadzu, Japan) was applied for the determination of the MERC
concentration during the sorption and release process. Measurements were made in the
range of 300–400 nm (λ max = 320 nm). Zinc ion release measurements were carried out on
a mass spectrometer with induction-induced plasma ICP-MS NexION 300d (PerkinElmer).
The liquid samples were subjected to quantitative analysis. For this purpose, a calibration
curve was made, and the zinc concentration was determined on the basis of it. To examine
the statistically significant differences, one-way variance analysis was carried out at the
significance level of 0.05. All calculations were performed with the use of Statistica 13.1
software (TIBCO Software).

3. Results
3.1. Characterization of Synthesized Materials Using SEM Analysis

To confirm the effectiveness of the synthesis of polydopamine-modified mesoporous
silica, we carried out SEM imaging (Figure 2). The synthesized drug carrier has a typical
spherical shape, which is consistent with the results obtained by Shen et al. [30]. Only
spherical particles are visible in the photo, which means that polydopamine has not formed
in other forms, except for the mesoporous silica structure. The images obtained by SEM
at a lower magnification do not show significant differences in the morphology of the
mSiO2-PDA-Zn carrier before and after drug sorption (Figure 2). As the agglomeration of
the carrier means that it should not be used for intravenous delivery [45,46], we analyze
the morphology of the water dispersion of mSiO2-PDA-Zn carriers. Higher-magnification
SEM images, obtained from dispersion deposited on the silicon wafer, reveal that the
spherical-shape particles do not form huge aggregates, which was confirmed by DLS (see
below). Only the flat, interconnected particles are visible in both samples, which can be
the result of sample drying. In some places, the surface of the carrier with the drug is not
as smooth, which most likely indicates the partial precipitation of the drug on its surface.
However, it is worth noting that we do not see any crystalline structures that are not bound
to the carrier. The lack of carrier agglomeration and nonprecipitation of the drug is very
important, as these phenomena could result in the inability to use this material in the
delivery of MERC [47,48].
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Figure 2. SEM images for the mSiO2-PDA-Zn carrier before and after the sorption of MERC.

3.2. Determination of the Number and Distribution of Elements Using EDS Analysis

The number and distribution of elements in the synthesized materials were determined
using EDS (Figure 3). Both samples contain the same elements: silica, oxygen, carbon,
nitrogen, and zinc. Oxygen and silicon come from mesoporous silica—the main component
of this carrier, which is indicated by the number of these elements. Both materials contain
carbon and nitrogen, which are the constituents of polydopamine. Small amounts of zinc
were also noted. Such a small amount of zinc is consistent with the results described
by Shen et al. [30]. Based on the X-ray photoelectron spectroscopy (XPS) results, they
determined that 0.34% Zn is on the surface. The greater content compared to that in this
work is due to the fact that the EDS technique determines the ion content deeper than the
XPS technique [49,50]. Zinc ions are on the surface, so their amount in the presented work
is smaller. It is worth noting that the presented maps do not show any agglomeration of
any of the elements. This is important because it indirectly indicates that the prepared
materials are homogeneous, which is very important for materials with potential drug
release applications.
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3.3. Determination of the Zeta Potential and Particle Size of Synthesized Materials

The size of the prepared materials was also determined using DLS analysis, in addi-
tion to SEM analysis. The susceptibility of the materials to particles agglomeration was
determined using the zeta potential analysis. The results of both analyses are presented in
Table 1. The results obtained indicate, to some extent, the effectiveness of obtaining a poly-
dopamine layer on the surface of the mesoporous silica because the silica synthesized by
this procedure without the addition of polydopamine has a zeta potential close to −20 mV
and a particle size of about 330 nm [30]. The values obtained in this work are closer to those
of the materials with a polydopamine layer [30]. On the basis of the zeta potential results, it
can also be seen that the mSiO2-PDA-Zn material tends to agglomerate slightly more than
the mSiO2-PDA-Zn-MERC material. This indicates the effectiveness of coating the carrier
with a drug layer. The drug layer does not have adhesive properties like the polydopamine
layer. The zeta potential value for the material mSiO2-PDA-Zn-MERC is close to −30 mV, a
value indicating that the material does not agglomerate at a neutral pH [51,52]. The results
of the particle size distribution may seem illogical, as the samples after the sorption of
the drug reduce in size. This is due to the fact that carrier particles without the drug are
more likely to slight agglomeration, so the final averaged results are higher for them. Most
importantly, the particle size of the mSiO2-PDA-Zn-MERC material is close to 200 nm, and
therefore, the material can be used intravenously [47,48]. The differences in particle size
can also be explained by the results shown in Figure 4. As you can see for both samples, we
have two visible peaks, the first one around 200 nm and the second one around 5000 nm.
The occurrence of the second peak affects the increase in the average particle diameter
as well as the value of the polydispersity index. The value of the polydispersity index is
lower for mSiO2-PDA-Zn-MERC (0.226) than for mSiO2-PDA-Zn (0.563) (Table 1). This
indicates that the particle sizes for the mSiO2-PDA-Zn-MERC material are more similar to
each other, which is consistent with the conclusions obtained from the analysis of Figure 4.
From the SEM results, it could be seen that the carrier particles are generally of the same
shape and size, so most likely, simply filtering or sonicating the carrier suspension prior to
the formulation would solve the problem of the presence of large particles.

Table 1. Zeta potential, particle diameter (by number), and polydispersity index (PDI) of the obtained
materials. Particle diameters were determined by DLS.

Zeta Potential (mV) Particle Diameter (nm) PDI

mSiO2-PDA-Zn −27.7 203.0 0.563
mSiO2-PDA-Zn-

MERC −29.5 163.2 0.226
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3.4. Analysis of Synthesized Materials Using the FT-IR Technique

The efficiency of carrier synthesis and drug adsorption was also confirmed by FTIR
analysis (Figure 5). In both materials, there is a wide band at the wavenumber of ap-
proximately 3300 cm−1 that is attributed to the stretching vibrations of Si-OH and water
adsorbed on the carrier surface [53]. The band at the wavenumber of 1630 cm−1 is also
attributed to the adsorbed water, while the band located at 950 cm−1 is attributed to the
bending vibrations of Si-OH. Two characteristic peaks of the asymmetric stretching vi-
bration of Si-O-Si appeared at 1056 cm−1 and 800 cm−1 [22]. The effectiveness of silica
modification with polydopamine is confirmed by the bands at 1455 cm−1 (N-H stretching
vibration) and 1390 cm−1 (phenolic C-O-H bending vibration) [31,54]. The small bands
of PDA are also located at 1510 cm−1 (N-H shearing vibration) and at 1347 cm−1 (CH2
bending vibration) [22,55]. The spectra for the carrier before and after zinc sorption are
similar. As seen in the presented spectra, new bands appear after drug sorption, confirming
the drug’s effective sorption on the carrier surface. The band after drug sorption at the
wavenumber of 1524 cm−1 can be attributed to the N-H bending vibration, while the band
at 1470 cm−1 can be attributed to the N-H stretching vibration [56,57].
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3.5. Elemental Analysis of Synthesized Materials

The amount of nitrogen, carbon, and hydrogen in the synthesized materials was
determined by elemental analysis (Table 2). The amount of nitrogen in mSiO2-PDA-Zn
could not be determined using this technique. This is most likely due to the fact that the
content of this element is too low. In polydopamine, the nitrogen content is approximately
seven times lower than that of carbon; therefore, it may be too small to be determined
in this material [58]. Nitrogen was successfully determined for the material after drug
sorption. The amount of nitrogen in the drug structure is greater than that in polydopamine.
This is because there is more nitrogen in the drug than in polydopamine, and the carbon-
to-nitrogen ratio is approximately one [59]. After the sorption of the drug, an increase in
the amount of carbon was also observed, which may indicate, to some extent, that the
polydopamine layer does not degrade during the sorption process. The hydrogen present
in the materials comes from not only the carrier and the drug but also from the absorbed
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water. The increase in the amount of nitrogen and carbon after drug sorption is statistically
significant.

Table 2. Elemental analysis of the carrier before and after drug sorption.

N C H

mSiO2-PDA-Zn 0 3.08 ± 0.04 1.74 ± 0.25
mSiO2-PDA-Zn-MERC 0.81 ± 0.01 4.53 ± 0.14 1.06 ± 0.11

3.6. Characterization of Materials Using Thermogravimetric Analysis

Both materials were also characterized using thermogravimetric analysis (Figure 6,
Table 3). As can be seen from the diagram, mSiO2-PDA-Zn is less stable than mSiO2-PDA-
Zn-MERC. This is surprising, since the material with the adsorbed drug should degrade to
a greater extent than that without the adsorbed drug. As can be seen, mSiO2-PDA-Zn has a
large weight loss in the range of 30–150 ◦C and the next after reaching 350 ◦C. In the case of
mSiO2-PDA-Zn-MERC, there is another starting at about 250 ◦C.
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Table 3. Weight loss in the temperature ranges for mSiO2-PDA-Zn and mSiO2-PDA-Zn-MERC.

30–150 ◦C 150–800 ◦C

mSiO2-PDA-Zn 16.1% 10.6%
mSiO2-PDA-Zn-MERC 8.2% 11.4%
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To understand more precisely why the greatest mass loss occurs for the mSiO2-PDA-
Zn material, derivative thermogravimetric curves should be analyzed (Figure 6). As can
be seen in Figure 6, the weight loss for mSiO2-PDA-Zn is greater up to a temperature of
150 ◦C; therefore, it is only due to the higher water content. The higher water content
also explains the higher hydrogen content found in the elemental analysis (Table 2). The
results obtained also indicate the effectiveness of the formation of the polydopamine
layer and drug sorption. A weight loss at about 360 ◦C for the material mSiO2-PDA-Zn
indicates the presence of polydopamine [60]. For the material mSiO2-PDA-Zn-MERC, the
weight loss starts earlier. The mass reduction step at 325 ◦C for mSiO2-PDA-Zn-MERC
probably corresponds to the decomposition of MERC, and these results are similar to those
described by Doriani et al. [61]. The low weight loss for mSiO2-PDA-Zn-MERC at about
240 ◦C indirectly indicates the presence of a complex between mercaptopurine and zinc,
as extensively described in the publication of Sharfalddin et al. [21]. To better determine
the mass loss of materials with the exclusion of water, the mass loss was calculated in two
ranges: 30–150 ◦C and 150–800 ◦C (Table 3). In the first range, a greater loss is observed for
mSiO2-PDA-Zn. In the second range, for mSiO2-PDA-Zn, the loss is 8.2%, and for mSiO2-
PDA-Zn-MERC, the loss is 11.4%, which indicates the effectiveness of drug retention.

3.7. Drug Sorption

During the research, the ability of the synthesized carrier to retain MERC was checked.
The maximum amount of the drug that could be adsorbed was 4.6 µg ± 0.5 (Figure 7). The
amount of the adsorbed drug is statistically significant.
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Figure 7. Sorption of mercaptopurine on the surface of the mSiO2-PDA-Zn carrier. mSiO2-PDA-Zn-
MERC is the amount of the drug remaining after sorption. “Mercaptopurine” means the starting
solution before the sorption of the drug on the carrier. The difference between the two values indicates
the amount of the drug retained.

3.8. Release of the Drug and Zinc Ions from the Carrier

More important information than the amount of the drug adsorbed is how much of
the drug will be released and at what time. In the case of MERC, it is important that the
carrier provides sustained drug release that may increase bioavailability. As can be seen in
Figure 8, the carrier presented in this work released the drug over 15 h. The amount of the
drug released after 15 h is approximately 66% of the total amount retained in the carrier.
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After this hour, no drug was released, or it was released in too small of an amount to be
determined by the technique used. The variation between the results can be considered
as small, as it is, on average, below 1.5%, which is important because the drug from any
amount of the carrier should be released at a comparable dose to counteract possible
inflammation and toxic reactions. The highest amount of the drug was released in the first
hour (~25%). Based on the release profile obtained, it was confirmed that this carrier affects
the sustained release of the drug and is not characterized by the “burst release” found in
many types of carriers [62].
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During the research, the amount of zinc released from the carrier was also determined
(Figure 8). As can be seen from the graph, zinc is gradually released. This is very important,
as the uncontrolled rapid release of zinc can disrupt zinc homeostasis, leading to protein
dysfunction [63,64]. From these results, it can be seen that both the drug and ions are not
released in high doses. The number of ions is so low that it will not cause side effects
during intravenous delivery and, therefore, can only have a positive effect on the patient’s
health [65–67]. As can be seen from the zinc ion release curve, it will continue to be released
after 24 h, but its doses are not toxic to the human body [65].

4. Conclusions

In the presented work, it was possible to obtain the drug carrier, which was polydopamine-
modified mesoporous silica with adsorbed zinc ions. The carrier is a biocompatible material,
which has already been described by many research teams. The carrier was used for the first
time as a material with potential use in the sustained release of mercaptopurine. The results
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presented confirm the effective preparation of the spherical carrier particles. No impurities
were observed in the obtained material; the carrier did not agglomerate before and after
sorption. Due to its size (100–150 nm), the carrier can be used to deliver drugs intravenously.
The release of the drug was for 15 h, so the drug will be released into the bloodstream. Zinc
ions were also released from the carrier in small doses. The results obtained are promising
and have great application potential. The release of both mercaptopurine and zinc ions
may provide a dual therapeutic effect against ALL. The material obtained in the next stages
of research should be tested in vitro and in vivo to determine its effect on cells.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ma16124358/s1, Table S1: Composition of the SBF used in this work
(1000 mL of the SBF).
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