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Abstract: U-Mo alloys were considered to be the most promising candidates for high-density nuclear
fuel. The uniaxial tensile behavior of nanocrystalline U-10Mo alloys with average grain sizes of
8–23 nm was systematically studied by molecular dynamics (MD) simulation, mainly focusing on
the influence of average grain size on the mechanical properties and deformation mechanisms. The
results show that Young’s modulus, yield strength and ultimate tensile strength follow as average
grain size increases. During the deformation process, localized phase transitions were observed in
samples. Grain boundary sliding and grain rotation, as well as twinning, dominated the deformation
in the smaller and larger grain sizes samples, respectively. Increased grain size led to greater
localized shear deformation, resulting in greater stress drop. Additionally, we elucidated the effects of
temperature and strain rate on tensile behavior and found that lower temperatures and higher strain
rates not only facilitated the twinning tendency but also favored the occurrence of phase transitions
in samples. Results from this research could provide guidance for the design and optimization of
U-10Mo alloys materials.

Keywords: mechanical properties; deformation mechanism; molecular dynamics; U-Mo alloy;
deformation twinning; phase transition

1. Introduction

Uranium (U) is the primary component of nuclear fuels. The Reduced Enrichment for
Research and Test Reactors (RERTR) Program began to advance in the late 1970s, which
primarily aimed to replace highly enriched uranium (HEU) fuels in reactors with low
enriched uranium (LEU) fuels, thereby reducing the use of nuclear materials and the risk of
proliferation [1–4]. Higher fuel density is required at lower uranium enrichment levels to
keep reactors performing. The most potential candidate for high-density fuels is considered
to be U-Mo alloy [5–10], which exhibits much higher uranium density and thermal conduc-
tivity than traditional fuels used in reactors, as well as lower neutron capture cross-section,
better irradiation behavior and tolerable swelling reaction. Adding molybdenum (Mo)
stabilizes the high-temperature cubic γ-U phase, which enhances its irradiation behavior,
such as dimensional stability [11]. Furthermore, the increase in molybdenum concentration
leads to higher mechanical stability [12]. Uranium alloy containing 10 wt% molybdenum
(U-10 wt.% Mo) has attracted attention from researchers due to its small thermal expansion
coefficient and high thermal conductivity [13–16].

Compared with coarse-grained materials, nanocrystalline (NC) metals exhibit much
higher strength or hardness, enhanced toughness, decreased elastic modulus and ductility,
providing great value for applications in engineering materials and structures, becoming
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the impetus for extensive research [17–19]. Grain refinement leading to polycrystalline
metals with novel and unique mechanical properties has been widely reported. According
to Kim et al. [20], both ductility and elastic modulus reduced with decreasing grain size.
Tensile tests on NC Zn were performed by Zhang et al. [21] at room temperature, and
they found that the smaller the grain size, the greater the yield strength, but the worse
the ductility. In addition, the Hall–Petch effect was weakened or even destroyed when
the grain size of nanocrystals was smaller than their critical grain size [22,23]. Hence, it is
necessary to establish a scaling law between the mean grain size and mechanical parameters
in NC materials.

In metals and alloys, deformation twinning and dislocation slip were recognized as
two main and competing modes of plastic deformation [24]. Strain rate and temperature
considerably impact the tendency of deformation twinning. It was proved that higher
strain rates and lower temperatures facilitate the formation of deformation twinning in
nanomaterials [25–27]. The ductility of nanomaterials can be increased or decreased by
twinning. Abundant twin boundaries can act as preexisting dislocation nucleation positions,
thus enhancing the ductility of structures with relatively few slip systems [28]. Conversely,
deformation twins may cause the destruction of grain boundaries, thus reducing the
extensibility of the material [29–31].

Artificial defects are difficult to avoid in the preparation of nanomaterials, and the
above defects mask the inherent mechanical properties of materials. Consequently, molecu-
lar dynamics (MD) simulation has evolved into a powerful tool for exploring their mechan-
ical characteristics and deformation mechanisms and has been widely used in nanoscale
studies. Thus far, MD simulations have offered important insights into the deformation
mechanisms of nanocrystalline metals. Our previous research on Mo [32] showed that
the combination of grain rotation and twinning could promote grain coalescence and
growth and improve the ductility in small-sized grains. The simulation results of the tensile
process for NC Ni by Van Swygenhoven et al. [33,34] showed that movements such as
grain boundaries slip and grain rotation occurred during the deformation process without
cracks. The grain boundaries sliding and dislocations emission dominate the plasticity
deformation of smaller and larger-sized grains, respectively. Pan et al. [35] observed that
stress-induced phase transitions from the bcc structure to fcc and hcp structure occurred
locally during the deformation of NC Ta, and the hcp structure was derived from the fcc
structure. Fang et al. [36] found that for NC Cu, grain rotation caused grain growth, and
strain hardening behavior was only observed in small-sized grains. Yamakov et al. [37]
investigated the complex interactions between dislocation and grain boundary process dur-
ing the plastic deformation of NC Al and revealed three twinning nucleation mechanisms,
including heterogeneous and homogeneous nucleation.

However, the fundamental mechanical properties and deformation mechanisms of
NC U-10Mo alloys have rarely been using MD simulations, yet this is much needed. In
this study, polycrystalline U-10Mo alloy models with average grain sizes of 8–23 nm
were established. We carried out MD simulations on the uniaxial stretching of samples
to investigate their mechanical characteristics and deformation patterns during tension,
taking into account the effects of grain size, temperature and strain rate. Additionally,
atomic displacement and local shear strain were also investigated. These simulation
results can offer theoretical guidance for the material design and engineering application
of U-10Mo alloys, aiming to improve their properties and expand their applications. The
article is organized as follows: Section 2 introduces our simulation method and model.
Section 3 presents and thoroughly discusses the simulation results. Conclusions are given
in Section 4.

2. Simulation Method and Model

To determine how the mechanical characteristics and deformation mechanisms of NC
U-10Mo alloys were affected by grain size, a series of periodic 3D polycrystalline models
with various sizes were constructed using the Atomsk code [38] based on the Voronoi
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construction method [39]. The crystal unit was a body-centered cubic (bcc) structure, and
its orientations were x-[100], y-[010] and z-[001]. Periodic boundary conditions (PBC) were
applied in three directions to eliminate boundary effects. All samples were made up of six
grains, but the average grain size changed from 8 nm to 23 nm. The correlation between the
number of grains n and the average grain size d was given by the following equation [40]:

n =

[
6V
πd3

]
(1)

where V is the volume of the simulated sample, and the notation [ ] indicates round.
The simulation systems’ lengths changed between 11.7168 and 33.6858 nm to regulate
the average grain size. Each grain’s geometrical characteristics and orientation were kept
constant, thereby obtaining self-similar samples. The number of atoms in simulated systems
ranged from 67,770 to 1,697,944 as the mean grain size increased. Detailed information
on the initial atomic models is provided in Supplementary Table S1. The initial atomic
structures of NC U-10Mo alloys with average grain sizes d = 8 and 23 nm are exhibited in
Figure 1. Notably, U-10Mo alloy in this study was expressed by mass percentage; that is,
U-10Mo alloy represented U-10 wt.% Mo alloy.
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Figure 1. Atomic illustrations of polycrystalline U-10Mo alloys with different grain sizes of d = 8 nm
and d = 23 nm. Uniaxial tensile loading is applied in the X-direction.

The interaction between atoms was described using Angular-Dependent Potential
(ADP) for U-Mo, which was recently developed by Starikov et al. [41]. The Newtonian
motion equation was integrated using the Verlet-velocity integration algorithm [42] with
a 0.001 ps time step. Before loading, all simulated models were completely balanced for
100 ps at 300 K temperature and zero pressure in the NPT ensemble. By this balancing, the
system would have enough time to obtain an appropriate locally balanced structure. The
system’s temperature and pressure were calibrated using a Nose/Hoover thermostat [43]
and a Nose/Hoover barostat [44], respectively. After equilibrium, the uniaxial stretching
load was imposed by slightly scaling in the x-direction at every timestep, and the maximum
elongation in the x-direction was 50%. During tensile deformation, the strain rate exerted
on the sample was 5 × 108 s−1. Moreover, the y- and z-direction can move flexibly to keep
zero pressure. Throughout the deformation procedure, the temperature was maintained
at room temperature. The common neighbor analysis (CNA) method [45,46] was used
to distinguish atomic structure as well as to study defects evolution during stretching
processes. All simulations were carried out via the widely used open-source software
package LAMMPS [47], and all atomic configuration images in this study were exported
using the visualization tool OVITO [48].
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3. Results and Discussion
3.1. Scaling Laws of Mechanical Properties

Figure 2 provides predicted stress–strain curves for NC U-10Mo alloys with average
grain sizes of 8, 10, 12, 14, 17 and 23 nm. For simplicity, only six representative curves are
displayed. The stress–strain curves of all simulated samples are supplied in Figure S1 of
the Supplementary Materials. It was observed that all stress–strain curves showed analo-
gous trends and could be clearly distinguished into three distinct phases of deformation:
(1) Polycrystalline materials exhibit linear elastic behavior during the initial deformation
stage. (2) As strain increases, materials yielding and non-linear plastic behavior is observed
until samples reach ultimate tensile strength (UTS). (3) After reaching UTS, there is a stress
drop in the curve, followed by the materials entering a uniform plastic flow area, showing
excellent overall plasticity. This sudden stress drop has often been observed in nanocrys-
tals experiments due to the perfusion nucleation and proliferation of defects in perfect
nanocrystals after yielding. Interestingly, for larger-sized samples, the stress reduction
following peak stress appears to be more significant, which is discussed later.
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From stress–strain curves, several typical mechanical parameters were extracted for
investigation. Young’s modulus E is acquired by fitting the curve slope over a strain range
of 0% to 2%, and yield strength σs is obtained from the stress of 0.002 offset strain, defining
UTS σb as the peak stress in the curve. Detailed mechanical parameters for all tested poly-
crystalline U-10Mo alloys at 300 K can be found in Table S1 of the Supplementary Materials.

Abundant investigations on conventional polycrystalline metals have disclosed the
dependence of Young’s modulus on grain size. For instance, the linear correlation between
E and d for nanocrystals was reported by Nan et al. [49]. Previous experiments and MD sim-
ulations have observed the proportionate relationship between E and d−1 in conventional
metals, such as Mo [50], Pt [51] and Cu [52]. In order to disclose the similar correlation in
NC U-10Mo alloys, Figure 3a displays Young’s modulus E for NC U-10Mo alloys with vari-
ous average grain sizes. As can be seen, the E value rises as the average grain size increases.
For instance, when d rises from 8 nm to 23 nm, E improves by 19.3%, from 54.71 GPa to
65.25 GPa, agreeing with the experimental value of 65 GPa by Ozaltun et al. [1]. Further-
more, we observed that E and d−1 have a nearly linear relationship in accordance with the
following formula:

E = 71.047 − 130.739d−1 (2)
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The linear model’s R-squared (R2) value is 0.9822, indicating that it closely approxi-
mates the outcomes of our MD simulation.

After the size-dependence of Young’s modulus has been determined, the relationship
between average grain size and strength, which includes yield strength and UTS, is focused
on. Figure 3b shows the variation in yield strength σs and UTS σb as d−1/2, respectively.
With growing average grain size, both mechanical parameters rise monotonically. As d
changes from 8 nm to 23 nm, for instance, the yield strength and UTS increase from 1.64 and
3.06 to 2.13 and 4.20, representing an increase of 29.9% and 37.3%, respectively. Notably, the
relationship between two parameters and d−1/2 verifies an inverse Hall–Petch effect; that is,
the strength reduces as grain size decreases. This phenomenon is further supported by the
tensile stress–strain curves of all samples (refer to Figure S1). Similar inverse Hall–Petch
effect has been found when the average grain size of nanocrystalline metals and alloys is
below their critical size [51,53,54].
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Figure 3. (a) Relationship between Young’s modulus E at 300 K and the reciprocal of mean grain size
d−1 of polycrystalline U-10Mo alloys. (b) Variations in yield strength and UTS with the reciprocal
of the square root of the mean grain size d−1/2. (c) Evolution of fractions of atoms in grain cores
and grain boundaries with the reciprocal of mean grain size d−1. (d) Relationship between Young’s
modulus and fraction of atoms in grain cores.

As is well known, since the atomic arrangement density within the grains is often
greater than that on the grain boundaries, the number of bonding atoms within the grains
is larger than that at the grain boundaries, such that the binding energy within the grains is
higher than that at the grain boundaries, which leads to the higher Young’s modulus of
the atoms in the grains compared with the atoms at the grain boundaries. It has directive
significance to explore the influence of the fraction of atoms in grains on Young’s modulus.
Figure 3c shows the variation in the fraction of atoms in grains ϕg and grain boundaries
ϕgb with d−1, respectively. We observed that with increasing average grain size, the ϕgb
value reduces while the ϕg value increases. Moreover, ϕgb and ϕg are nearly perfectly
linear with d−1.
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Young’s modulus E is shown in Figure 3d as a function of the fraction of atoms in
grains ϕg. Likewise, there is a linear relationship between E and ϕg. According to previous
investigations focusing on polycrystalline metals, Young’s modulus of grain boundary
cannot achieve a third of that grain [52]. Based on a linear constitutive theory, Gao et al. [55]
proposed a formula predicting Young’s modulus of nanocrystals:

E =
1

ϕg
Ecore

+
ϕgb
EGB

(3)

where E is Young’s modulus of polycrystalline samples, and Ecore and EGB are Young’s
modulus of grain core and GBs components, respectively. Assuming the fraction of atoms
in grain cores is 1, Equation (2) is evolved into E = Ecore. Then we can fit the relationship
between Young’s modulus E and the fraction of atoms in grains ϕg by Equation (3), as
demonstrated by the blue line in Figure 3d. The fitting result shows that Young’s modulus
of grain boundary is about 34.8 GPa, which is about 48.9% of that of the grain, 71.049 GPa.
According to Figure 3d, it seems that the linear fit is better to describe the relationship
between E and ϕg than Equation (3). The values of R2 for linear fit and Equation (3) are
0.98115 and 0.94621, respectively, confirming the observation. In summary, the conclusion
can be drawn that the proportion of atoms in grains improves as the average grain size
increases, resulting in a higher Young’s modulus for NC U-10Mo alloys, consistent with
previous results obtained by simulations [36,50,56,57]. We can believe that the fundamental
reason for the significant increase in Young’s modulus with grain size is the larger fraction
of atoms in grains, which supports the higher Young’s modulus. Moreover, this can be
regarded as an essential characteristic of nanocrystals when the grain size is only dozens
of nanometers.

3.2. Deformation Processes

In order to investigate the deformation mechanism and microstructure evolution of
polycrystalline U-10Mo alloys, the atomic structures of two typical samples with d = 11
and 23 nm, which, respectively, represent small and large grain sizes, were selected for
comparison, as illustrated in Figure 4. Grain boundary migration was observed at 7% strain.
Following the yield point, twins begin to appear to release stress. The twinning embryo
is initially formed by [111]/6 shearing dislocations on (112) planes, occurring at the grain
boundary. Twins are mainly nucleated by the continuous emission of Shockley partials
from the grain boundaries. Subsequently, the twin bands are blocked by the opposite
grain boundaries and thickened by layer-by-layer lateral parallel growth so that grains are
split into many smaller subgrains. The evolution of a typical twin band is captured inside
pink circles. For the 11 nm sample, the main deformation is grain boundary sliding and
twin formation and growth. Additionally, we also observed that grain boundaries have a
tendency to expand with increasing strain during small-size deformation gradually. For
a relatively large sample of 23 nm, the deformation process is roughly the same as for a
small size sample but slightly different. As shown in Figure 4b, twins appear earlier, and
the number of twins develops more.

In Figure 4, we also observed that phase transitions of U-10Mo alloys from ‘bcc to fcc
(hcp)’ occur locally, which has been observed previously in the literature [35,50]. According
to the CNA results, the largest fractions of fcc and hcp atoms in all samples are about 4% and
1.4%, respectively, so we only discussed the fcc phase transition further. Supplementary
Figure S2 displays the variation in the fraction of fcc atoms with strain for d = 11 and
23 nm samples. For atomic structure transition, the presence of a large number of fcc atoms
is transient. Specifically, the fcc atoms in the 23 nm sample begin to increase significantly
at a strain of 0.03. At 0.07 strain, there are already a large number of fcc atoms in the
sample, and subsequently, the fcc atoms begin to decrease until their proportion drops
to approximately 1%. In order to provide more local space for their adjacent bcc atoms,
some bcc atoms must convert to locally fcc atoms when a significant number of bcc atoms
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convert to amorphous atoms, thereby lowering the energy barrier for transforming bcc
atoms to amorphous atoms [58]. When U-10Mo alloy atoms are subjected to a sufficiently
high applied stress load, the energy-raising ‘bcc to fcc’ transformation process is possible.
When other plastic deformation paths are blocked or inhibited, highly steady bcc structures
can be forcefully changed to reduce local stress concentration. However, twinning shear is
more likely to occur to form twinning when two parallel {112} twin planes occur, leading to
the low-priority of the high-cost ‘bcc to fcc’ deformation route [59], which explains why
the fcc phase transition gradually decreases after the appearance of twins. In addition,
amorphous atoms have greater potential energies than other regions, and those energies
rise with increasing strain, resulting in the expansion of twin bands during stretching, as
shown in the pink circles in Figure 4.
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Figure 5 illustrates atomic displacement vector diagrams of polycrystalline U-10Mo
alloys with grain sizes of 11 and 23 nm at a strain level of 10%. The displacement vector for
each atom points from its original position to its present location, and the movement trends
of atoms are depicted by arrows drawn in various colors. The blue lines in Figure 5a,b
represent grain boundaries and twin bands, respectively, with the red arrows indicating
the overall movement trend of each grain. Different movement trends between the grains
were captured, indicated by yellow and pink arrows, respectively. Grains spin and glide
if the binding force between grains is lower than the shear stress, indicating the presence
of grain rotation [51,60,61]. The atomic displacement vector can be used to identify such
grain rotation, shown as red arrows in the diagram. In small-sized samples, grain rotation
and grain boundary slipping were identified, which facilitates deformation. In contrast, for
a sample with large grain size, grain rotation and grain boundary slipping are also present,
yet it is twin bands growth and sliding that is the main deformation behavior, which likely
results in a stress fall after achieving UTS (see Figure 2).

In order to further explore the phenomenon that the greater the grain size, the more
significant the stress reduction after achieving UTS, the stress–strain curve and local atomic
deformation for d = 9 and 23 nm samples were contrasted, as shown in Figure 6. Obviously,
a more significant stress drop is captured in the 23 nm sample after reaching the maximum
value. By using the initial configuration before uniaxial stretching as a reference to quantify
the localized atomic shear deformation, the following formula [50] was used to calculate
the atomic von Mises shear strain, which was calculated from the six components of the
atomic strain tensor:
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ηMises
i =

√
η2

yz + η2
xz + η2

xy +
(ηyy − ηzz)

2 + (ηxx − ηzz)
2 + (ηxx − ηyy)

2

6
(4)

where ηMises
i is the von Mises shear strain per atom, and η is the Green–Lagrangian

strain tensor calculated by the atomic strain module in OVITO. The region with rela-
tively large ηMises

i value indicates that a large, localized plastic deformation of the atom
has occurred [62]. The atomic deformation process at ε = 0.1 is depicted by the insets
in Figure 6. Shear deformation is concentrated at grain boundaries for the 9 nm sample,
whereas it is focused at grain boundaries and on twin bands for the 23 nm sample, with
more severe shear strain occurring inside the twin bands. Stored strain energy can be
released by the formation of twins in grains, resulting in sharp stress, which decreases
behavior after reaching UTS. The nucleation of the twin starts from the grain boundary,
in accordance with the observations in Figure 4. Therefore, it can be concluded that the
coupling effect of grain boundary sliding, grain rotation and twins in grains contributes to
the deformation process of NC U-10Mo alloys. For large-sized grains, the development of
twins is the major deformation mechanism, while the deformation of small-sized grains is
predominated by grain boundary sliding and grain rotation.
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Furthermore, for all samples, the average von Mises shear strain was computed, and
for brevity, the correlation between average shear strain and stretching strain for five typical
samples is presented in Figure 7. After reaching UTS, samples with larger grain sizes show
greater average shear strain values at the same strain, which means there is more shear
deformation. Hence, it can be concluded that samples with larger grain sizes suffer from
more severe local plastic deformation, which drives down the stress, resulting in a greater
stress drop following peak stress.
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3.3. Effect of Temperature

In this section, temperature dependency of the mechanical performance and defor-
mation mechanisms of NC U-10Mo alloys is explored, which is also of interest. Tensile
stress–strain curves for d = 22 nm sample at six various temperatures are displayed in
Figure S3 in the Supplementary Materials. Six curves were observed exhibiting extremely
similar tensile behaviors. However, its mechanical properties fluctuate with temperature.
Figure 8a–d describe the evolution of the four mechanical parameters with temperature for
d = 8, 11 and 22 nm samples, respectively. The flow stress σf is determined as a mean stress
over the strain range 0.2–0.5. As can be seen from the diagram, four mechanical parameters
appear to be linearly related to temperature, decreasing with increasing temperature. For
instance, in the case of an 11 nm sample, Young’s modulus, yield strength, UTS and flow
stress all fall when the temperature rises from 100 to 1100 K, increasing from 66.35, 2.08, 3.21
and 2.36 GPa to 37.92, 0.95, 1.30 and 1.11 GPa, respectively. We can conclude that high tem-
peratures weaken the mechanical performance of NC U-10Mo alloys. The diffusion ability
of atoms enhances, and the bond energies between the atoms decrease as the temperature
rises, allowing the atoms to move more easily under external loads [63,64]. Consequently,
high temperature will reduce the deformation resistance of the atoms, resulting in a lower
Young’s modulus and strength.

For plastic deformation of NC U-10Mo alloys, an important control parameter is
temperature, which deserves further investigation. To assess the dependence of the twin-
ning trend on temperature, Figure 9 compares the atomic structures of the samples at
four temperatures when the strain is 15%. Suppression of twins in the sample was ob-
served with increasing working temperature. Lower flow stresses may be responsible
for the reduced twinning tendency at higher temperatures [26]. Supplementary Figure S4
shows the evolution of the fraction of grain boundary atoms with strain for samples with
grain size d = 22 nm at different temperatures. We observed that the fraction of grain
boundary atoms rises with decreasing temperature during the plastic deformation phase,
which provides further evidence that low temperatures increase the twinning tendency.
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According to Zhao et al. [65], nanostructured Cu does not deform through twins at ambient
temperature, while many deformation twins are generated at liquid nitrogen temperature,
confirming that low temperature does facilitate twins in nanomaterials.
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Figure 9. Snapshots of atomic configurations of NC U-10Mo alloys with a mean grain size of 22 nm
at strains of 15%, deformed at temperatures of (a) 100 K, (b) 300 K, (c) 500 K and (d) 700 K. Atoms are
colored according to the structure determined by CNA. Blue, green, red and white atoms correspond
to BCC, FCC, HCP and other structures, respectively.
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We tracked the development of fcc and hcp atoms during the tensile process for the
d = 22 nm sample at various temperatures, illustrated in Figure 10a,b. Compared to hcp
atoms, fcc atoms at identical temperatures have a much higher maximum fraction. Notably,
obvious phase transitions only occur at room temperature and below, owing to the fact
that at higher temperatures, thermal activation allows the atoms to rearrange themselves
to accommodate plastic strain without the need for phase transformations. However,
this process is thermally forbidden at lower temperatures, so the rearrangement of atoms
becomes difficult, and the probability of phase transition becomes higher, which may
mean that the phase transition observed at lower temperatures is essentially displacive
(diffusionless) due to the lower atomic mobility [66].
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temperatures of NC U-10Mo alloys with grain size of 22 nm. The applied strain rate is 5 × 108 s−1.

3.4. Effect of Strain Rate

The mechanical properties of nanomaterials were also shown to be significantly in-
fluenced by strain rate [67–70], so it is of guiding significance to research the mechanical
properties of NC U-10Mo alloys at different strain rates before drawing conclusions. NC
U-10Mo alloy with d = 20 nm was chosen to investigate the impact of strain rates, which
were set to 1 × 108, 5 × 108, 1 × 109 and 5 × 109 s−1, respectively. As demonstrated in
Figure 11a, analogous tensile behavior was observed under different strain rates. As a result
of relaxation at lower strain rates, a slightly serrated behavior was observed in the plastic
flow stage of the sample with a strain rate of 1 × 108 s−1. During the elastic deformation
phase, as strain rates rise, nanocrystalline U-10Mo alloys can withstand greater stress loads
and show improved strength. Figure 11b,c give the values of Young’s modulus, UTS,
flow stress and yield strength under four strain rates. A positive correlation between the
mechanical parameters and strain rate was observed, similar to previous studies [50,56,67].
This was attributed to the fact that it was more difficult for the samples to fully release
energy at higher strain rates, leading to enhanced mechanical properties.

To explore how strain rate affects the deformation of nanocrystalline U-10Mo alloys,
Figure 12 compares the atomic structure of the d = 20 sample at four strain rates when the
strain is 17.5% to evaluate the dependency of twinning tendency on strain rate. As observed
in the graph, the formation of twins is facilitated by a high strain rate, in accordance with
experimental results [27,71]. For example, comparing the twin trends in the pink circles in
Figure 12, we can see that the number of twins at a 5 × 109 s−1 strain rate is much more
than that at 1 × 108 s−1 strain rate. The rise in flow stress is primarily responsible for the
increase in twinning tendency at lower temperatures and higher strain rates [26].
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Figure 11. Influence of strain rate on the tensile behaviors of polycrystalline U-10Mo alloys with a
grain size of 20 nm at 300 K: (a) Comparison of stress–strain curves at different strain loading rates
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(c) Variations in yield strength, UST and flow stress with strain rate.
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Figure 12. Snapshots of atomic configurations of NC U-10Mo alloys with a mean grain size of 20 nm
at strains of 17.5%, deformed at strain rates of (a) 1 × 108, (b) 5 × 108, (c) 1 × 109 and (d) 5 × 109 s−1.
Atoms are colored according to the structure determined by CNA. Blue, green, red and white atoms
correspond to BCC, FCC, HCP and other structures, respectively.

Figure 13a,b depict the dependence of the fraction of fcc and hcp atoms on strain for
four distinct stain rates, respectively. It is observed that for the same strain rate, the number
of atoms undergoing the fcc phase transition far exceeds that undergoing the hcp phase
transition. Furthermore, we find that increasing the strain rate improves the fcc and hcp
atomic fraction maximum and delays the fcc atomic fraction maximum to larger strains
significantly. This is reasonable because a too-large strain rate will make atoms significantly
deviate from their original positions and make it difficult to return to the equilibrium
positions, resulting in lattice distortion and causing more phase transitions.
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4. Conclusions

In this study, MD simulation was used to carry out uniaxial tensile tests on nanocrys-
talline U-10Mo alloys with average grain sizes ranging from 8 to 23 nm. How the mechanical
characteristics and deformation processes were affected by the average grain size was in-
vestigated. Moreover, the influences of temperature and strain rate on tensile behavior
were also discussed. The key findings of this paper are as follows:

(1) Mechanical properties (including Young’s modulus, yield strength and UTS) mono-
tonically improved as increasing average grain size. The inherent reason for Young’s
modulus increasing with mean grain size was that atoms located in grains occupied a
larger proportion.

(2) During deformation, localized phase transitions from bcc to fcc (hcp) were observed
in polycrystalline U-10Mo alloys. Grains will spin and glide if the binding force
between grains is lower than the shear stress. The coupling effect of grain boundary
sliding and grain rotation as well as the development of twinning, contributed to the
deformation process. The former is the main deformation mechanism in small-sized
grains, while the deformation of large-sized grains is predominated by the latter.

(3) For larger-sized samples, the local plastic deformation was more serious, which
promoted the decrease in stress, leading to a more obvious stress reduction after
reaching the peak.

(4) Rising temperature weakened the mechanical properties of polycrystalline U-10Mo
alloys while increasing the tensile strain rate caused the opposite. Lower temperatures
and higher strain rates not only facilitated the twinning tendency but also favored the
occurrence of phase transitions in samples.

Notably, the number of grains used in this investigation was insufficient to obtain
valid statistics on the NC U-10Mo alloys, such that these conclusions should be tested
using a system containing more grains in future simulations. Our simulations and de-
tailed discussions will contribute to a greater comprehension of mechanical behavior and
deformation mechanisms of polycrystalline U-10Mo alloys, which can help to determine
their deformation and damage behavior under different stress and temperature conditions,
thereby assessing their reliability and durability in various engineering applications. More-
over, understanding their microstructure will allow the development of new alloy design
and preparation methods to improve their strength, plasticity and toughness, thereby
expanding their application scope and effectiveness.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma16134618/s1, Figure S1: Uniaxial tensile stress–strain curves
of nanocrystalline U-10Mo alloys with various grain sizes of (a) 8–15 nm and (b) 16–23 nm; Figure
S2: Fraction of fcc atoms in NC U-10Mo alloys with the mean grain size of 11 nm and 23 nm at
strains ranging from 0% to 10%, deformed at 300 K and a strain rate of 5 × 108 s−1; Figure S3: Tensile
stress–strain curves for NC U-10Mo alloys with a grain size of 22 nm for different temperatures at a
strain rate of 5 × 108 s−1; Figure S4: The evolution of the fraction of grain boundary atoms with strain
for samples with grain size d = 22 nm at different temperatures; Table S1: Mechanical properties of
nanocrystalline U-10Mo alloys with different grain sizes at 300 K and the strain rate of 5 × 108 s−1.
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