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Abstract: The hot deformation behaviors of a Ti46Al2Cr2Nb alloy were investigated at strain rates of
0.001–0.1 s−1 and temperatures of 910–1060 ◦C. Under given deformation conditions, the activation
energy of the TiAl alloy could be estimated as 319 kJ/mol. The experimental results were predicted
by different predictive models including three constitutive models and three data-driven models.
The most accurate data-driven model and constitutive model were an artificial neural network
(ANN) and an Arrhenius type strain-compensated Sellars (SCS) model, respectively. In addition, the
generalization capability of ANN model and SCS model was examined under different deformation
conditions. Under known deformation conditions, the ANN model could accurately predict the flow
stress of TiAl alloys at interpolated and extrapolated strains with a coefficient of determination (R2)
greater than 0.98, while the R2 value of the SCS model was smaller than 0.5 at extrapolated strains.
However, both ANN and SCS models performed poorly under new deformation conditions. A hybrid
model based on the SCS model and ANN predictions was shown to have a wider generalization
capability. The present work provides a comprehensive study on how to choose a predictive model
for the flow stress of TiAl alloys under different conditions.

Keywords: TiAl alloy; hot-deformation behavior; data-driven model; generalization capability

1. Introduction

TiAl based alloys are elevated-temperature structural materials with a high specific
strength, great specific modulus, good creep resistance, outstanding elevated temperature
strength, and great oxidation resistance [1–4]. TiAl alloys are potential materials in au-
tomotive and aerospace industries due to the aforementioned excellent properties [5,6].
However, the hot workability of TiAl alloys is limited, which inhibits them from being
broadly employed for desirable applications [7–9]. Understanding the hot-deformation
behaviors of TiAl alloys is critical to define optimal thermomechanical processing con-
ditions within the limitation of workability. Therefore, many efforts have been put into
constructing predictive models for the hot-deformation behaviors of TiAl alloys [7,10–13].

In the past decades, the hot-deformation behaviors of TiAl alloys and other alloys
at elevated temperatures have been examined, and predictive constitutive models have
been developed on the basis of these investigations [14,15]. For instance, Kong et al. [11]
employed the Arrhenius type constitutive model to predict the peak stress of Ti-48Al-
2Cr-4Nb-0.2Y alloys under deformation temperatures of 1100–1250 ◦C at strain rates of
0.01–1 s−1, which suggested the optimal processing temperature and strain rate in the range

Materials 2023, 16, 4987. https://doi.org/10.3390/ma16144987 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma16144987
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-3923-6315
https://doi.org/10.3390/ma16144987
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma16144987?type=check_update&version=1


Materials 2023, 16, 4987 2 of 16

of 1200–1230 ◦C and 0.01–0.05 s−1, respectively. Cheng et al. [10] proposed a constitutive
model involving different softening mechanisms, and the resulting predictive model could
give an accurate estimate of the flow stress of a high-Nb-containing TiAl alloy. Sun et al. [16]
examined and described the hot-deformation behaviors of powder metallurgy (PM) TiAl
alloys with the Arrhenius type model. They found that the PM TiAl alloy exhibited some
flow instability at strain rates higher than 0.01 s−1, indicating that the processing strain rate
should be slower than 0.01 s−1.

Recently, more and more date-driven models such as artificial neural networks
(ANNs) [17–19], support vector machines (SVMs) [20], random forests (RFs) [21], and Gaus-
sian process regressors (GPRs) [22] have been developed to predict the hot-deformation
behaviors of alloys with the development of machine learning techniques. Ge et al. [17]
utilized the ANN model and Arrhenius type model to predict the hot-deformation behavior
of a high-Nb-containing TiAl alloy with β + γ phases. Their results revealed that ANN
models were more accurate than Arrhenius type models in predicting the hot-deformation
behaviors of TiAl alloys. However, most of the predictive models proposed have been
based on the Arrhenius type model and ANN model. The performance of other constitutive
models and data-driven models have rarely been reported. A comprehensive comparison
of different predictive models is needed. In addition, the generalization capabilities of the
predictive models have only been examined under known deformation conditions, and
the performance of predictive models under unknown deformation conditions should be
investigated as well. Furthermore, the combination of ML model and mechanism-based
constitutive models has not been considered in previous work.

In the present work, the hot-deformation behaviors of TiAl alloys at strain rates
of 0.001–0.1 s−1 and temperatures of 910–1060 ◦C were examined. The experimental
results were predicted via three constitutive models and three machine learning (ML)-
based models. The prediction accuracies on the training data of six predictive models
were checked and compared. In addition, the generalization capability of the Arrhenius
type constitutive model and the ANN model was investigated under various conditions.
Moreover, we propose an ML–mechanism hybrid model to improve the generalization
capability of conventional constitutive models and pure data-driven models.

2. Experiments

A TiAl commercial alloy made by the Institute of Metal Research, Chinese Academy
of Science (Shenyang, China) was utilized in this study. The nominal composition was Ti-
46Al-2Cr-2Nb (at. %), and the microstructure consisted of γ-TiAl and α2-Ti3Al phases [23].
The cylindrical samples with a dimension of 15 × Φ 8 mm were compressed by a Gleeble-
3800 thermomechanical simulation machine, and only axial homogeneous stresses were
considered during the compression. The recommend strain rate of TiAl alloys should be
smaller than 0.1 s−1 [11,13], and the proposed deformation conditions are listed in Table 1.
Each TiAl specimen was heated from room temperature to the test temperature at a rate of
10 ◦C/s, held for 180 s, and then compressed to 50% true strain at the preset strain rate.

Table 1. The deformation conditions performed on the Gleeble-3800.

Deformation Temperature (◦C) Strain Rate (s−1)

910 0.001, 0.005, 0.01, 0.05, 0.1
970 0.001, 0.005, 0.01, 0.05, 0.1
1030 0.001, 0.005, 0.01, 0.05, 0.1
1060 0.001, 0.005, 0.01, 0.05, 0.1

The true stress–strain curves obtained at different deformation conditions are given in
Figure 1. The stress–strain curve macroscopically represents the competition between work
hardening and softening, which can be observed in Figure 1 [24]. The work hardening
phenomenon caused by dislocation multiplications was dominant at the first stage of
deformations, and the flow stress increased toward the peak accordingly. Then, the work
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softening was more significant than the work hardening, leading to a decrease in the flow
stress. The work softening mainly resulted from the dynamic recrystallization due to the
low stacking fault energy in TiAl alloys [11]. The decrease in flow stress was associated
with the higher deformation temperature and the slower strain rate, indicating that the
flow stress was sensitive to the deformation conditions [25].
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Figure 1. True stress–strain curves of a TiAl alloy when deformed at the elevated temperature of
(a) 910 ◦C, (b) 970 ◦C, (c) 1030 ◦C, and (d) 1060 ◦C.

3. Predictive Models for Hot Deformation of TiAl Alloys

The flow stresses at eight strains of ε = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, and 0.4
were extracted to fit three constitutive models and three ML models. The fitness of each
predictive model was evaluated via the root-mean-squared error (RMSE) and the coefficient
of determination (R2) expressed as follows.

RMSE =
√

1
n (yi − ŷi)

2 (1)

R2 = 1− ∑n
i=1(yi−ŷi)

2

∑n
i=1(yi−y)2 (2)

where y is the mean of the actual value yi, and ŷi is the corresponding prediction. A greater
R2 and a smaller RMSE mean a more accurate model.

3.1. Modified Johnson–Cook (MJC) Model

The Johnson–Cook (JC) model is widely employed in commercial finite element soft-
ware to evaluate flow stresses of metals at high strain rates and various temperatures [26].
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The JC model has been revised to Equation (3) considering the coupling effects of the
strain (ε), strain rate (

.
ε in s−1), and deformation temperature (T in K) on flow stresses

(σ in MPa) [27,28].

σ =
(

B0 + B1ε + B2ε2 + B3ε3)(1 + Cln
.
ε
∗)exp

[(
λ1 + λ2ln

.
ε
∗)T∗

]
(3)

where
.
ε
∗
=

.
ε/

.
ε0 with

.
ε0 being the reference strain rate, T∗ = T − T0 with T0 being the

reference temperature, and B0, B1, B2, C, λ1, and λ2 are material constants.
Here, the slowest strain rate 0.001/s and lowest deformation temperature 910 ◦C were

assumed to be reference values. At the reference deformation conditions, Equation (3) can
reduce to

σ =
(

B0 + B1ε + B2ε2 + B3ε3) (4)

The cubic polynomial fitting of the σ–ε plot performed in Figure 2a yielded the values
of B0, B1, B2, and B3 as 357.428 MPa, 789.865 MPa, −6346.85 MPa, and 8412.79 MPa,
respectively.
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Figure 2. (a) Cubic polynomial fitting of σ and ε at the temperature of 910 ◦C and the strain rate
of 0.001 s−1. (b) Linear relationship between σ

B0+B1ε+B2ε2+B3ε3 and ln
.
ε
∗ at the temperature of 910 ◦C,

the red line is the average fitting line.

At the reference temperature, Equation (3) can be expressed as

σ′ = 1 + Cln
.
ε
∗ (5)

In which σ′ = σ
B0+B1ε+B2ε2+B3ε3 , and the constant C thus can be estimated as 0.3171 by

averaging the slopes of the σ′–ln
.
ε
∗ plot at different strain rate, as shown in Figure 2b.

Equation (3) can also be rewritten as
σ′

(1+Cln
.
ε
∗)
= exp

[(
λ1 + λ2ln

.
ε
∗)T∗

]
(6)

Taking the natural logarithm on both sides of Equation (6) gives

ln
[

σ′

(1+Cln
.
ε
∗)

]
=λT∗ (7)

where λ = λ1 + λ2ln
.
ε
∗ can be obtained by averaging the slopes of the ln

[
σ′

(1+Cln
.
ε
∗)

]
versus

T∗ plot at various strain rates.
As shown in Figure 3a–e, the λ values were −0.00594, −0.00571, −0.00542, −0.00406,

and −0.00356 when the strain rate was 0.001/s, 0.005/s, 0.01/s, 0.05/s, and 0.1/s, respec-
tively. Next, the values of λ1 and λ2 can be drawn from the λ–ln

.
ε
∗ plot in Figure 3f as

−0.00408 and 0.000242, respectively. In summary, the material constants in the MJC model
for the TiAl alloy are given in Table 2.
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Table 2. Fitting material constants in the MJC model for the TiAl alloy.

B0 (MPa) B1 (MPa) B2 (MPa) B3 (MPa) C λ1 λ2

357.428 789.865 −6346.85 8412.79 0.3171 −0.00408 0.000242

3.2. Modified Zerilli–Armstrong (MZA) Model

The Zerilli–Armstrong (ZA) model was proposed to describe the deformation be-
havior of alloys at temperatures lower than 0.6Tm (Tm is the melting temperature) [29].
Samantaray et al. [30] modified the original ZA model to predict the flow stress of metals
and alloys at elevated temperatures over 0.6Tm. The MZA model can be expressed as
Equation (8).

σ = (C1 + C2εn)exp
[
−(C3 + C4ε)T∗ + [C5 + C6T∗]ln

.
ε
∗] (8)

where C1–C6 and n are material constants. The reference strain rate and reference temperature
are the same as the MJC model. At the reference strain rate, Equation (8) can reduce to

σ = (C1 + C2εn)exp[−(C3 + C4ε)T∗] (9)

Taking the natural logarithm on both sides of Equation (9) gives

lnσ = ln(C1 + C2εn)− (C3 + C4ε)T∗ (10)

As shown in Figure 4a, the intercept I1 = ln(C1 + C2εn) and slope S1 = −(C3 + C4ε)
are obtained by the linear fitting of the lnσ–T∗ plot at a certain strain. Since exp I1 =
C1 + C2εn, the power fitting of the exp I1–ε plot in Figure 4b can yield the value of C1, C2,
and n as 462.186, −700.252, and 1.5701, respectively. In addition, the linear fitting of the
S1 – ε plot in Figure 4c yielded the value of C3 and C4 as 0.00591 and 0.00013, respectively.
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Taking the natural logarithms on both sides of Equation (8) yields Equation (11)

lnσ = ln(C1 + C2εn)− (C3 + C4ε)T∗ + (C5 + C6T∗)ln
.
ε
∗ (11)

At each deformation temperature, see Figure 5a–d, S2 = C5 + C6T∗ was obtained
by averaging the slopes of the lnσ–ln

.
ε
∗ plot. Then, C5 and C6 was calculated as 0.1580

and 0.00055 with the linear fitting of the S2 –T∗ plot shown in Figure 6. Table 3 lists the
evaluated material constants of the MZA model for TiAl alloys.
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Table 3. Fitting material constants in the MZA model for the TiAl alloy.

C1 (MPa) C2 (MPa) n C3 C4 C5 C6

462.186 −700.252 1.5701 0.00591 0.00013 0.1580 0.000551

3.3. Arrhenius Type Model

Sellars et al. [31] proposed an Arrhenius type model expressed as Equation (12) to
predict the flow stress during hot deformation.

.
ε = A[sinh(ασ)]nexp

(
− Q

RT

)
(12)

in which σ is the peak stress or flow stress at a given strain ε, R is the universal gas constant,
α, A and n are material constants, and Q is the activation energy (kJ/mol). Here, we take
the peak stress as an example to demonstrate the definition of material constants α, n, A,
and Q.

Taking the natural logarithm on both sides of Equation (13) gives

ln[sinh(ασ)] = 1
n ln

.
ε− 1

n

(
ln A− Q

RT

)
(13)

The value of 1/n is obtained by averaging the slopes of the ln[sin h(ασ)]–ln
.
ε plot

under various temperatures. In addition, α is an adjustable constant to ensure a linear
and parallel regression of Equation (13) [31]. The present work utilized the Bayesian
optimization to determine the value of α [22]. The average R2 value of Equation (13)
reached the maximum 0.9920 when α was 0.002532. Correspondingly, n was deduced as
6.444 in Figure 7a.
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Equation (13) is equivalent to Equation (14) expressed as

Rnln[sinh(ασ)] = Q· 1T + R
(
ln

.
ε− ln A

)
(14)

With the adjusted α value, Q thus can be evaluated as the average slope of
Rnln[sin h(ασ)] – 1/T plots at various strain rates in Figure 7b. The activation energy
of the present TiAl alloy calculated by the peak stress was 319 kJ/mol, which was greater
than the TiAl self-diffusion activation energy (260 kJ/mol) [32], and similar to other re-
ported TiAl alloys (~350 kJ/mol) [33]. The addition of Cr and Nb increased the activation
energy, and thus hindered the hot deformation of TiAl alloys.

With a known activation energy, the Zener–Hollomon (Z) parameter given as
Equation (15) can describe the effect of the strain rate and temperature on the defor-
mation behaviors.

Z =
.
ε·exp

(
Q
RT

)
(15)

Combining Equations (13) and (15) gives the following formula

ln Z = ln A + nln[sinh(ασ)] (16)

Thus, ln A was determined as the interception of the ln Z–ln[sin h(ασ)] plot, see
Figure 7c. According to the definition of an inverse hyperbolic sine function, the flow
stress at different strains can be predicted via Equation (17).

σ = 1
α ln

[(
Z
A

) 1
n
+

√(
Z
A

) 2
n
+ 1

]
(17)

Obviously, the original Sellars model, i.e., Equation (17), ignores the influence of strain
on elevated-temperature flow behaviors [34]. Since significant strain effects on flow stresses
were observed in the present TiAl alloy, a strain-compensated Sellars (SCS) model should
be developed. Similarity, the values of material constants α, n, Q, and lnA at eight given
strains can be calculated and listed in Table 4.

Table 4. The value of material constants of α (MPa−1), n, Q (kJ/mol), and lnA (s−1) for TiAl alloys at
different strains.

Strain
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

α 0.00694 0.00606 0.00472 0.00383 0.00315 0.00275 0.00257 0.00252
n 2.6420 2.4198 2.6484 2.8438 3.0079 3.1105 3.1633 3.2133
Q 328.78 328.24 314.93 299.42 284.08 275.56 268.11 264.35

lnA 21.946 22.750 22.554 22.109 21.692 21.692 21.516 21.489

Generally, the fifth polynomial function is employed to estimate the material constant
with different strains. As can be seen in Figure 8, the fifth polynomial function could fit the
estimated material constants well (R2 > 0.98). Therefore, Equation (18) represents the SCS
model of TiAl alloys, and the corresponding parameters are given Table 5.

σ = 1
αε

ln

( .
ε·exp

(
Qε
RT

)
Aε

) 1
nε

+

√√√√( .
ε·exp

(
Qε
RT

)
Aε

) 2
nε

+ 1


αε = α0 + α1ε + α2ε2 + α3ε3 + α4ε4 + α5ε5

nε = n0 + n1ε + n2ε2 + n3ε3 + n4ε4 + n5ε5

Qε = Q0 + Q1ε + Q2ε2 + Q3ε3 + Q4ε4 + Q5ε5

ln Aε = A0 + A1ε + A2ε2 + A3ε3 + A4ε4 + A5ε5

(18)
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Table 5. The coefficients of the polynomial fitting of material constants.

αε (MPa−1) nε Qε (kJ/mol) lnAε (s−1)

α0 = 0.0063 n0 = 3.9754 Q0 = 300.92 A0 = 18.613
α1 = 0.0412 n1 = −44.982 Q1 = 979.24 A1 = 105.21

α2 = −0.7224 n2 = 452.30 Q2 = −10089 A2 = −936.46
α3 = 3.5140 n3 = −1919.6 Q3 = 35579 A3 = 3591.7

α4 = −7.4003 n4 = 3787.0 Q4 = −56055 A4 = −6397.1
α5 = 5.8484 n5 = −2854.9 Q5 = 33581 A5 = 4347.1

Figure 9 compares the performance of the SCS model, MJC model, and MZA model.
For more details of the three constitutive models, please see Gao et al. [35]. As can be
seen, the SCS model significantly outperformed the other two constitutive models with
a much greater R2 value and an RMSE smaller than 35 MPa. Hence, the SCS model is
recommended for simulating the flow behavior of TiAl alloys.
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Figure 9. The predicted flow stress of the (a) MJC model, (b) MZA model, and (c) SCS model versus
measured stresses.

3.4. Data-Driven Models

Since the above three constitutive models might not accurately predict the flow behav-
iors when the stress instability occurs, data-driven models were introduced.

Three ML models including ANN, SVR, and RF models were trained for predicting
the flow stress of the considered TiAl alloys. Before constructing the ML models, a feature
standardization was employed to standardize the features, i.e., the strain, strain rate, and
temperature, given by

x′ = x − x
σx

(19)

where x and x are the actual value and average actual value of the features, respectively,
and σx is the standard deviation of the features.

There are various hyperparameters that can determine the architecture of the three
aforementioned ML algorithms, listed in Table 6, which are efficient in practice [36]. We
used the grid search to determine these hyperparameters based on a tenfold cross-validation.
The extracted data were equally and randomly divided into ten folds. Each ML model was
trained on the training set formed by nine folds and validated on the remaining one. This
process was repeated ten times, and the cross-validation R2 (CV-R2) was obtained as the
mean of ten validation results. The CV-R2 is regarded as an estimation of the generalization
capability, and the application of a cross-validation thus can avoid overfitting.

Table 6. The hyperparameters of three data-driven models.

Model Hyperparameters Description

ANN model hidden_layers_sizes 10 means a single hidden layer with 10 neurons
8,8 means 2 hidden layers with 8 neurons at each hidden layer

SVR model
C Penalty parameter for the regularization

gamma Gamma value of the radial basis function kernel function

RF model
max_depth Maximum depth of each decision tree

n_estimators Number of decision trees in the RF model

As can be seen in Figure 10a,c,e, the cross-validated R2 (CV-R2) value of all three
data-driven models reached 0.97 and higher. The ANN model had the maximum CV-
R2 value of 0.9869 when it had three hidden layers, each of which contained 10 neu-
rons (marked with the white star in Figure 10a). In addition, the CV-R2 value for the
SVR model was maximized at 0.9728 when C = 100,000 and gamma = 0.2 (white star in
Figure 10c), and that for the RF model was maximized at 0.9779 when max_depth = 8 and
n_estimators = 100 (white star in Figure 10e). The tuned ANN model had the greatest CV-R2

value among the three ML models, indicating that it had the widest generalization capability.
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Figure 10. The grid search to tune hyperparameters of the (a) ANN model, (c) SVR model, and
(e) RF model. The corresponding predicted flow stress of the (b) tuned ANN model, (d) tuned SVR
model, and (f) tuned RF model versus the measured values.

Predictions of three data-driven models on eight given strains are illustrated in
Figure 10b,d,f versus the measured values. All data-driven models outperformed the
constitutive models with R2 value greater than 0.98. In particular, the ANN model had an
excellent prediction accuracy, as evidenced by an extremely high R2 value of 0.9986.
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4. Generalization Capability of Predictive Models

A good predictive model should have a high prediction accuracy and a wide gen-
eralization capability. Therefore, based on the prediction accuracy of three constitutive
models and three ML models on training data, only the generalization capabilities of the
SCS model and ANN model were further examined.

4.1. Generalization Capability at Interpolated and Extrapolated Strains

Figure 11a,b show the predicted stress–strain responses of the SCS model and ANN
model at interpolated strains (0.05 to 0.4 with an interval of 0.01). As expected, both the
constitutive model and ML model performed well at interpolated strains. The ANN model
had an extremely high R2 value greater than 0.998, and the SCS model had a slightly smaller
R2 value of 0.9642. However, as seen in Figure 11c,d, the accuracy of the two predictive
models decreased to varying degrees at extrapolated strains (0.41 to 0.5 with an interval
of 0.01). The ANN model still performed well at extrapolated strains with a high R2 value
of 0.9865, while the R2 value of SCS model was only 0.4623 at extrapolated strains.
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Figure 11. True flow stresses of TiAl alloys under given deformation conditions at interpolated strains
and corresponding values predicted by the (a) SCS model and (b) ANN model. True flow stresses
of TiAl alloys at extrapolated strains and corresponding values predicted by the (c) SCS model and
(d) ANN model.

The mechanism-based SCS model significantly underestimated the flow stress of TiAl
alloys at extrapolated strains. This can be explained by the fact that the deformation
mechanism of TiAl alloys at large strains might be different from those at small strains, and
a similar phenomenon was also reported in nickel-based superalloys [37]. Nevertheless,
the pure data-driven ANN model is independent of the mechanism and thus can accurately
predict the flow stress at extrapolated strains.
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4.2. Generalization Capability at Unknown Deformation Conditions

In addition, the stress–strain response under unknown deformation conditions listed
in Table 7 was also predicted by the SCS model and ANN model. Unfortunately, neither
predictive models could perform well under new deformation conditions; see Figure 12.
The R2 value of the SCS model and ANN model were 0.8539 and 0.6766, respectively.

Table 7. The new deformation conditions to examine generalization capabilities.

Deformation Temperature (◦C) Strain Rate (s−1)

940 0.001, 0.005, 0.01, 0.05
910, 970, 1030, 1060 0.025
910, 970, 1030, 1060 0.075
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As previously mentioned, the ANN model did not consider any deformation mecha-
nism. Therefore, the accuracy of the ANN model under unknown conditions decreased
by around 15% compared to that under known conditions. The underlying mechanism
under different conditions was similar. Hence, the performance of the SCS model under
unknown conditions was nearly the same as that under known conditions. That is, the SCS
model could predict the flow stress at small strains (<0.4) well, while its performance at
larger strains was extremely poor.

4.3. Improvement of Generalization Capability

Based on the generalization capability of the SCS model and ANN with different
inputs, we proposed a mechanism–ML hybrid model. The predictions of the ANN model
at large strains (0.45 and 0.5 here) were combined with the experimental results at small
strain (0.05–0.4) to determine the parameters of the SCS model. The obtained SCS model
based on hybrid inputs was termed as SCS-ANN model, and the fifth polynomial fits of
material constants for the SCS-ANN model are shown in Figure 13. The related parameters
of the SCS-ANN model are listed in Table 8.

At known deformation conditions, the R2 values of the SCS-ANN model when pre-
dicting the stress–strain response at interpolated and extrapolated strains were 0.9642 and
0.9139, respectively. The introduction of ANN predictions could significantly improve the
performance of the SCS models at extrapolated strains. For new deformation conditions,
the R2 value of the SCS-ANN model could reach 0.9, meaning a better generalization
capability than conventional constitutive models as well as data-driven models. The hybrid
SCS-ANN model is an accurate and generalized model for predicting the hot-deformation
behaviors of the considered TiAl alloys.
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Table 8. The coefficients of material constants based on experiments and ANN predictions.

αε (MPa−1) nε Qε (kJ/mol) lnAε (s−1)

α0 = 0.0070 n0 = 3.6195 Q0 = 308.23 A0 = 19.506
α1 = 0.0138 n1 = −31.751 Q1 = 737.87 A1 = 74.980

α2 = −0.3831 n2 = 289.51 Q2 = −7635.9 A2 = −615.03
α3 = 1.6848 n3 = −1050.2 Q3 = 25689 A3 = 2189.3

α4 = −2.9723 n4 = 1703.3 Q4 = −40648 A4 = −3847.3
α5 = 1.9065 n5 = −1018.7 Q5 = 27578 A5 = 2840.9

5. Conclusions

This work investigated the hot-deformation behaviors of TiAl alloys under different
loading strain rates at various deformation temperatures. The experimental results were an-
alyzed by three constitutive models including the MJC model, MZA model, and SCS model.
In addition, an ML-based ANN model, SVR model, and RF model were employed to predict
the hot-deformation behaviors as well. The following conclusion can be summarized.

(1) The hot-deformation behaviors of TiAl alloys were examined under different defor-
mation conditions. The flow stress of the TiAl alloys was found to be sensitive to the
deformation temperature and strain rates. The activation energy of Ti-46Al-2Cr-2Nb
was 319 kJ/mol, which was greater than the TiAl self-diffusion activation energy.

(2) The Arrhenius type SCS model had a better predictive accuracy than the MJC and
MZA models, with an R2 value of 0.9622 on the training data. As for the generalization
capability, the SCS model only performed well at interpolated strains under known
deformation conditions, and the corresponding R2 value was 0.9654. The R2 value of
SCS model at extrapolated strains or under new deformation conditions was smaller
than 0.7.
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(3) All three data-driven models performed better than the constitutive models, and the
ANN model performed the best with an extremely high R2 value of 0.9986. The ANN
model had a good generalization capability under known deformation conditions; the
R2 values at interpolated strains and extrapolated strains were 0.9984 and 0.9865, re-
spectively. However, the ANN model could not perform well under new deformation
conditions, with a corresponding R2 value of only 0.8539.

(4) For limited hot-deformation experimental data, the ANN model was recommended
to predict the flow behavior of TiAl alloys at larger strains. Then, predictions of
the ANN model were further combined with experimental results to construct an
ML–mechanism hybrid SCS-ANN model. The hybrid model was more accurate
than the pure data-driven model and mechanism-based model under unknown
deformation conditions.
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