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Abstract: A bimodular material is a kind of material that presents two elastic moduli in tension and
compression. In classical thermoelasticity, however, the bimodular material is rarely considered due
to its complexity in analysis. In fact, almost all materials will present, more or less, bimodular charac-
teristics, and in some cases, the mechanical properties of materials cannot be fully utilized simply
by ignoring the bimodular characteristics. In this study, the thermal stress problem of bimodular
curved beams under the action of end-side concentrated shear force is analytically and numerically
investigated, in which the temperature rise modes in a thermal environment are considered arbitrary.
Using the stress function method based on compatibility conditions, a two-dimensional solution
of thermoelasticity of the bimodular curved beam subjected to end-side concentrated shear force
was obtained. The results show that the solution for a bimodular curved beam with a thermal effect
can be reduced to that of a bimodular curved beam without a thermal effect. At the same time, the
numerical simulation for the problem verifies the correctness of the theoretical solution. The results
may serve as a theoretical reference for the refined analysis and optimization of curved beams in a
thermal environment.

Keywords: thermal stress; bimodular materials; curved beams; tension and compression; concen-
trated shear force

1. Introduction

Curved beams, as one common load-bearing and connecting component, are widely
used in the fields of mechanical engineering and civil engineering. With the development of
material technology, the consideration of the material characteristics of these components is
no longer satisfied by the traditional assumption of a single modulus of elasticity [1–3]. In
the academic and engineering fields, the bimodular characteristics of materials have gradu-
ally been paid attention. On the other hand, these curved beam components sometimes
need to serve in certain high-temperature environments, so it is necessary to investigate
their problems with thermal stress. In this study, we used theoretical and numerical meth-
ods to investigate the thermal stress problems of bimodular curved beams in order to make
a valuable contribution to the thermal stress field of bimodular materials and structures. To
this end, the next review will be conducted from the following aspects: we will begin with
the bimodular materials model and the analysis of bimodular structures, next will be the
development of the theory of thermoelasticity, and lastly, on the basis of the review, the
shortcomings of the existing research are analyzed to propose the problem to be solved in
this study.

Many studies have indicated that some materials [4–6], such as graphite, ceramics,
rubber, concrete, and certain biomedical materials, under the same tensile and compressive
stresses have different tensile and compressive strains. Jones [1] referred to these materials
as bimodular or multimodulus materials. In the theoretical analysis of the engineering
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field, two kinds of bimodular material models are widely used. One is the Bert model [2],
based on a positive-negative signature of longitudinal fiber strain. This model is generally
used when analyzing orthotropic materials and laminated composites [7–9]. Another
is the Ambartsumyan model, which was established on the principle of positive and
negative signs of principal stress [3], and is mainly suitable for the analysis of isotropic
materials. Existing studies have shown that the application of the Ambartsumyan model to
structural analysis is of special interest because it is the judgment of the principal stress
that determines whether a certain point in the structure is tensile or compressive. Our work
is thus based on the latter model of principal stress.

For the description of the stress-strain relation, two broken straight lines were used by
Ambartsumyan [3] to linearize a real bimodular model, which was originally nonlinear,
as shown in Figure 1, where (a) is the real case and (b) and (c) are the bilinear models. In
Figure 1, the principal stress is σ, and the principal strain is ε. For this model, the basic
assumptions are as follows. (1) The research object is continuous, elastic, isotropic, and
homogeneous. (2) The material satisfies the small deformation assumption. (3) When the
material is stretched along a certain principal direction, the Young’s modulus is E+, and
the Poisson’s ratio is µ+. When the material is compressed, the corresponding quantities
are E− and µ−. (4) For three-dimensional problems, when the three principal stresses
are all positive or negative, the equilibrium equation, geometric equation, and physical
equation are basically the same as those of classical elasticity. However, when the signs of
the three principal stresses are different, except for the physical equation, the remaining two
equations are the same as the classical elastic equation. (5) µ+/E+ = µ−/E−, this ensures
the symmetry of the compliance matrix in the application of the finite element method.
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According to the above bimodular material model, the constitutive relationship of
the bimodular material is based on the positive and negative signs of the determined
principal stresses, thus meaning that the principal stresses are known in advance. In the
vast majority of cases, however, the principal stress is usually obtained as a final result
rather than as a known condition before the solution. In addition, it is difficult to describe
the elastic coefficients experimentally under complex stress states. Analytical solutions
can be obtained in some simple cases, although they only deal with bending beams and
plates [10–12]. In complex problems, we have to resort to finite element methods using
iterative techniques [13–16].

In the theory of thermoelasticity [17], it is generally assumed that the material constitut-
ing an elastic body is completely elastic, homogeneous, and isotropic, so the conventional
analysis in classical elasticity [18] can also be used for thermoelastic analysis. For example,
the Lame equation in thermoelasticity is formulated with the displacement component as
the basic variable and solved by the conventional method of classical elasticity. However, if
the bimodular effect of the material is newly incorporated into the original thermoelasticity,
the existing analysis will more or less encounter difficulties. Thus, for a specific problem,
our work may be focused on what and how much the impact of the bimodal effect on
existing results is.
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With the development of thermoelastic theory, some generalized thermoelastic models
have been proposed for transient responses in many applications, such as low temperature
and ultra-fast laser heating, where the classical thermoelastic theory fails. Some represen-
tative theories in this regard are shown in [19–22]. It is important to note that Green and
Lindsay’s theory has been used in many types of media, among which Marin et al. [23]
used it in dipolar thermoelastic bodies. On the other hand, in addition to the development
of the theory itself, it is also very important to apply the theory to analyze engineering
components, or more specifically, to analyze the thermoelastic behavior of engineering
structures, such as nanobeams [24], microbeams [25], composite beams [26], and laminated
beams [27]. Obviously, bimodular material beams, including straight and curved beams,
should also be investigated in thermoelastic analysis of structures.

Following this demand, some scholars have carried out research on bimodular beams
in a thermal environment [28–31]. Wen et al. [28] first obtained a two-dimensional ther-
moelastic solution of a bimodular beam under thermal and mechanical loads, where the
Duhamel similarity theorem was used to transform the thermoelastic problem into a pure
elastic problem. For the thermal stress problem of the bimodular functionally graded
beam, the displacement method based on the Duhamel similarity theorem is no longer
applicable, so Xue et al. [29] used the stress method to obtain one-dimensional and two-
dimensional thermal stress solutions under different temperature rise modes. For metal
bars, Guo et al. [30] used the commonly used strain suppression method to derive a one-
dimensional thermal stress expression and, at the same time, used the Duhamel similarity
theorem to derive the two-dimensional thermoelastic solution. Unfortunately, the above
works are limited to straight beams; relatively little research has been found on curved
beams. As indicated above, curved beams are important components of a special shape
with an initial curvature. Compared to the analysis of straight beams, the analysis of curved
beams is more or less complicated due to the presence of the initial curvature.

More recently, He et al. [31] first investigated a bimodular curved bar under pure
bending in a thermal environment; the application of this problem may be easily found
in mechanical engineering. For example, if a certain portion between two adjacent cross-
sections of a ring is cut out (see Figure 2a), joining the ends of the ring again by welding
or another means gives a ring with an initial stress, that is, there is stress in the ring in the
absence of an external force. In Figure 2, r1 and r2 are the inner radius and outer radius
of the ring, respectively, and θ denotes the small angle measuring the portion of the ring
that was cut out. Obviously, the closing of the ring requires the application of two bending
moments at the two ends of the ring, as shown in Figure 2b. The real problem finally
returns to a bimodular curved bar under pure bending in a thermal environment, and the
stress state is axisymmetric. But more general cases may be found in lifting machines and
other cases, for example, a hook made from bimodular materials in a thermal environment,
as shown in Figure 3a. In this case, the mechanical model is simplified as a curved beam
with an end-side concentrated shear force, as shown in Figure 3b. Obviously, due to the
existence of concentrated shear force, the solving problem has not been an axisymmetric
one; more importantly, the corresponding solving method has thus changed much.

In our previous study aiming at the pure bending problem [31], it was found that the
thermoelastic plane stress problem with a bimodular effect can also be transformed into a
purely elastic problem under known body forces and known surface forces, which is the
familiar Duhamel similarity theorem. However, once the beam is no longer under pure
bending but under transverse bending, the axisymmetric stress state in pure bending is
no longer maintained, as shown in Figure 3. In this case, the previous method based on
displacement is no longer applicable, and a new solving method must be resorted to.

Aiming at this more general case of curved beams, in this study, we analytically and
numerically investigated a bimodular curved beam under the action of end-side concen-
trated shear force in a thermal environment. To this end, the whole paper is organized
as follows. The problem is briefly described in Section 2 first, and the mechanical model
established on the subarea of tension and compression is also given. Section 3 is the an-
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alytical solving process of the mechanical problem proposed, using the stress function
method based on compatibility conditions but not the displacement method. In Section 4,
the numerical simulation is conducted to verify the correctness of the theoretical solution.
The bimodular effect on stress distribution is discussed in Section 5, and Section 6 contains
the concluding remarks.
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2. Problem

A curved beam with a rectangular section type was subjected to the concentrated
shear force P at one end and was fully fixed at another end, as shown in Figure 4. The
polar coordinate system rOθ and the rectangular coordinate system xOy were combined to
describe this problem. For any point of the beam, its polar radius was denoted by r and
its polar angle by θ, whose positive rotation direction was defined as: from the positive
half x-axis to the positive half y-axis; that is, the positive rotation direction was clockwise,
as shown in Figure 4b. The inner radius of the curved beam was denoted by r1, the outer
radius by r2, and the curvature radius of the neutral layer by ρ, which was unknown
at present. Due to the constraint of the structure, under a certain temperature field, the
expansion and contraction caused by temperature changes will not be able to develop
freely, resulting in the so-called thermal stress. Without loss of generality, we assume the
temperature change is only along the radial direction, this is, T = T(r); in fact, this simple
case is also very common in real problems. For example, in a ring or cylinder in a thermal
environment in mechanical engineering, its heat distribution generally changes along the
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radial direction; thus, there are many thermal phenomena like this. In Figure 4b, mn stands
for any cross-section whose section type is as shown in Figure 4a, in which the height of
the cross-section is denoted by h and the width of the cross-section by b. Bounded by the
neutral layer, the whole beam, or the cross-section, was divided into two parts; the bottom
of the cross-section, or the outer part of the whole beam, was tensile, while the top of the
cross-section, or the inner part of the whole beam, as shown by the shadowed area, was
compressive, as shown in Figure 4. In Figure 4a, h1 and h2 denote the tensile height and the
compressive height of the section, respectively; A1 and A2 denote the tensile area and the
compressive area of the cross-section, respectively; E+ and E− denote the tensile modulus
and compressive one, respectively.
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The basic assumptions used in this study are as follows. (i) The initial neutral layer
depends only upon the bending moment produced by shear force, having nothing to
do with the external thermal environment. (ii) Like the common analysis for shallow
beams, the bending is limited to in-plane small deflection bending without torsion. (iii) The
temperature varies only along the radial direction of the curved beam, resulting in T = T(r),
as indicated before. (iv) It is assumed that the material properties are independent of
temperature, or alternatively, if they are dependent on temperature, we may take a constant
average value to describe this dependency. The occurrence of creep, relaxation, and phase
transformation of the material is not considered in this work. Among the four assumptions,
only assumption (ii) aligns with the Euler-Bernoulli beam theory, while assumptions (i),
(iii), and (iv) differ from the Euler-Bernoulli beam theory.

Under the action of end-side concentrated shear force, a further deflection inward
will occur in the curved beam, thus forming compression for the inside part and tension
for the outside part of the beam. The elastic modulus for the inside part was taken as E−

while the modulus for the outside part was taken as E+ accordingly, as indicated before.
In this study, we neglected the differences between the tensile and compressive Poisson’s
ratios. There were two main reasons for this practice. The first was that, if neglecting the
difference in tension and compression, the whole derivation process was slightly simple,
but another important reason was based on the fact that the influence of the Poisson’s ratio
on the results is small; thus, the moderate simplification is rational, and many other works
were based on this simplification. The same practice was followed for the line expansion
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coefficient α, also neglecting the differences in tension and compression. In a word, for
modulus of elasticity, we considered E+ and E−; while for Poisson’s ratio and the line
expansion coefficient, we only had µ and α.

For the realization of the tension-compression subarea, we needed to determine the
position of the unknown neutral layer of the beam under pure bending first. The solution
was obtained in our previous study [31], which gave:

E+

E− (r2 − ρ) + ρ − r1 −
E+

E− ρ ln
r2

ρ
− ρ ln

ρ

r1
= 0. (1)

If the values of E+, E−, r1, and r2 are given, we may use Equation (1) to determine the
unknown neutral layer, that is, the curvature radius of this layer, ρ, and finally, the simplified
mechanical model based on the subarea of tension and compression is thus constructed.

3. Theoretical Solution
3.1. Application of the Stress Function Method

First, we gave the physical equation of two-dimensional thermoelasticity. As indicated
before, the problem was a representative plane stress problem concerning the thermal
effect. Under a polar coordinate system, the strain components of a plane stress problem
are denoted by εr, εθ , and γrθ , and the corresponding stress components are denoted by σr,
σθ , and τrθ ; the physical equation in two-dimensional thermoelasticity will give [18]:

εr =
1

E+/− (σr − µσθ) + αT
εθ = 1

E+/− (σθ − µσr) + αT

γrθ = 2(1+µ)
E+/− τrθ

, (2)

in which α is the thermal expansion coefficient, T is the temperature change, µ is the
Poisson’s ratio, and E+/− stands for the tensile Young’s modulus and compressive modulus.
For the time being, there is no way to determine in advance whether the stress state of any
point is tensile or compressive.

In this study, the stress function method was adopted to solve the thermoelastic
problem. From Figure 4, it is easy to see that the bending moment acting on any cross-
section of the beam is:

M = Py = Pr sin θ, (3)

this means M is proportional to sinθ, while the normal stress σθ is proportional to M, and
also due to σθ = ∂2 ϕ/∂r2, in which ϕ is the stress function; thus, we may prescribe the
stress function is also proportional to sinθ, this gives:

ϕ+/−(r, θ) = f+/−
1 (r) sin θ + f+/−

2 (r), (4)

in which, f+/−
1 (r) and f+/−

2 (r) are two undetermined functions with respect to r. The
superscript ‘+/−’ denotes the so-called tension and compression, and in some cases, they
will naturally separate; this is easily seen in our next application to boundary conditions
as well as continuity conditions. In fact, there is an implicit assumption here that due to
T = T(r), the corresponding stress function in Equation (4) is also axisymmetric, that is,
f+/−
2 (r) holds true. If a more complicated temperature distribution is considered here, for

example, T = T(r,θ), the corresponding stress function in Equation (4) should be assumed
as f+/−

2 (r, θ). In addition, the structural form of the stress function shows that the final
stress is a superposition of two effects, that is, the load effect and the temperature effect.
In the stress function, the first term, f+/−

1 (r) sin θ, stands for the stress from the external
load effect, while the second term, f+/−

2 (r), represents the temperature effect, and the two
effects are independent of each other. Specifically, if we let f+/−

2 (r) be zero, we may obtain
the solution of a bimodular curved beam without a thermal effect. Or vice versa, if we let
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f+/−
1 (r) sin θ be zero, obviously, we may obtain the solution of a bimodular curved beam

without a load effect.
The stresses may be expressed in terms of the stress function as:

σr
+/− = 1

r
∂ϕ+/−

∂r + 1
r2

∂2 ϕ+/−

∂θ2

σθ
+/− = ∂2 ϕ+/−

∂r2

τrθ
+/− = − 1

r
∂2 ϕ+/−

∂r∂θ + 1
r2

∂ϕ+/−

∂θ = − ∂
∂r

(
1
r

∂ϕ+/−

∂θ

) . (5)

Substituting Equation (4) into Equation (5), we have
σr

+/− = sin θ

[
1
r

d f+/−
1 (r)

dr − 1
r2 f+/−

1 (r)
]
+ 1

r
d f+/−

2 (r)
dr

σθ
+/− = sin θ

d2 f+/−
1 (r)
dr2 +

d2 f+/−
2 (r)
dr2

τrθ
+/− = cos θ

[
1
r2 f+/−

1 (r)− 1
r

d f+/−
1 (r)

dr

] . (6)

Also, substituting Equation (6) into Equation (2), the strains expressed in terms of stress
function are 

ε+/−
r = 1

E+/−

{
sin θ

[
1
r

d f+/−
1 (r)

dr − 1
r2 f+/−

1 (r)
]

+ 1
r

d f+/−
2 (r)

dr − µ

[
sin θ

d2 f+/−
1 (r)
dr2 +

d2 f+/−
2 (r)
dr2

]}
+ αT

ε+/−
θ = 1

E+/−

{
sin θ

d2 f+/−
1 (r)
dr2 +

d2 f+/−
2 (r)
dr2

−µ

[
sin θ

r
d f+/−

1 (r)
dr − sin θ

r2 f+/−
1 (r) + 1

r
d f+/−

2 (r)
dr

]}
+ αT

γ+/−
rθ = 2(1+µ)

E+/− cos θ

[
1
r2 f+/−

1 (r)− 1
r

d f+/−
1 (r)

dr

]
. (7)

In addition, the strains need to satisfy the following compatibility equation:(
1
r2

∂2

∂θ2 − 1
r

∂

∂r

)
ε+/−

r +

(
∂2

∂r2 +
2
r

∂

∂r

)
ε+/−

θ −
(

1
r2

∂

∂θ
+

1
r

∂2

∂r∂θ

)
γ+/−

rθ = 0. (8)

Substituting Equation (7) into Equation (8), we have

1
E+/−

(
1
r2

∂2

∂θ2 − 1
r

∂
∂r

)[
sin θ

r
d f+/−

1 (r)
dr − sin θ

r2 f+/−
1 (r)

]
− µ

E+/−

(
1
r2

∂2

∂θ2 − 1
r

∂
∂r

)[
sin θ

d2 f+/−
1 (r)
dr2

]
+ 1

E+/−

(
∂2

∂r2 +
2
r

∂
∂r

)[
sin θ

d2 f+/−
1 (r)
dr2

]
− µ

E+/−

(
∂2

∂r2 +
2
r

∂
∂r

)[
sin θ

r
d f+/−

1 (r)
dr − sin θ

r2 f+/−
1 (r)

]
− 2(1+µ)

E+/−

(
1
r2

∂
∂θ +

1
r

∂2

∂r∂θ

)[
cos θ

r2 f+/−
1 (r)− cos θ

r
d f+/−

1 (r)
dr

]
− µ

E+/−

(
1
r2

∂2

∂θ2 − 1
r

∂
∂r

)[
d2 f+/−

2 (r)
dr2

]
+ α
(

1
r2

∂2

∂θ2 − 1
r

∂
∂r

)
[T(r)]

+ 1
E+/−

(
∂2

∂r2 +
2
r

∂
∂r

)[
d2 f+/−

2 (r)
dr2

]
+ 1

E+/−

(
1
r2

∂2

∂θ2 − 1
r

∂
∂r

)[
1
r

d f+/−
2 (r)

dr

]
− µ

E+/−

(
∂2

∂r2 +
2
r

∂
∂r

)[
1
r

d f+/−
2 (r)

dr

]
+ α
(

∂2

∂r2 +
2
r

∂
∂r

)
[T(r)] = 0

. (9)

The left of Equation (9) seems to be complicated and hard to deal with, containing the
partial differential with respect to r and θ. But after simple computation, we can definitely
get an expression like the form Asinθ + B, in which A and B stand for two functions only
related to r. In this case, for any θ, if this expression is equal to zero, that is, Asinθ + B = 0,
obviously, we have A = 0 and B = 0. In fact, this process is referred to as the separation
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of variables in mathematics. According to this conclusion, for any θ, Equation (9) always
holds; thus we have

− µ

E+/−

(
− 1

r
∂
∂r

)[
d2 f+/−

2 (r)
dr2

]
+ α
(
− 1

r
∂
∂r

)
[T(r)]

+ 1
E+/−

(
∂2

∂r2 +
2
r

∂
∂r

)[
d2 f+/−

2 (r)
dr2

]
+ 1

E+/−

(
− 1

r
∂
∂r

)[
1
r

d f+/−
2 (r)

dr

]
− µ

E+/−

(
∂2

∂r2 +
2
r

∂
∂r

)[
1
r

d f+/−
2 (r)

dr

]
+ α
(

∂2

∂r2 +
2
r

∂
∂r

)
[T(r)] = 0

(10)

and
1

E+/−r2

[
1
r2 f+/−

1 (r)− 1
r

d f+/−
1 (r)

dr

]
+ µ

E+/−r2

[
d2 f+/−

1 (r)
dr2

]
+ 1

E+/−

(
1
r

∂
∂r

)[
1
r2 f+/−

1 (r)− 1
r

d f+/−
1 (r)

dr

]
+ µ

E+/−

(
1
r

∂
∂r

)[
d2 f+/−

1 (r)
dr2

]
+ 1

E+/−

(
∂2

∂r2 +
2
r

∂
∂r

)[
d2 f+/−

1 (r)
dr2

]
− µ

E+/−

(
∂2

∂r2 +
2
r

∂
∂r

)[
1
r

d f+/−
1 (r)

dr − 1
r2 f+/−

1 (r)
]

+ 2(1+µ)
E+/−

(
1
r2 +

1
r

∂
∂r

)[
1
r2 f+/−

1 (r)− 1
r

d f+/−
1 (r)

dr

]
= 0

. (11)

For the two ends of Equation (10), multiplying rdr and integrating with respect to r,
we have

(1+µ)r
E+/−

d
dr

[
1
r

d f+/−
2 (r)

dr

]
+ r

E+/−
d
dr

[
d2 f+/−

2 (r)
dr2 − µ

r
d f+/−

2 (r)
dr + αTE+/−

]
= A+/−. (12)

in which A+/− is an integral constant. Next, for the two ends of Equation (12), we make the
same mathematical operation, that is, multiplying r−1dr and integrating with respect to r:

1
E+/−

[
1
r

d f+/−
2 (r)

dr

]
+

1
E+/−

[
d2 f+/−

2 (r)
dr2 + αTE+/−

]
= A+/− ln r + B+/−. (13)

in which B+/− is another integral constant. After the simplification, we have

1
r

d
dr

[
r

d f+/−
2 (r)

dr

]
= A+/− ln r + B+/− − αTE+/−. (14)

Note that in Equation (14), because E+/− is also a constant, the original integral terms
A+/−E+/− and B+/−E+/− have been changed to the new A+/− and B+/− for convenience.

For the two ends of Equation (14), multiplying rdr and integrating with respect to r,
and then multiplying r−1dr and integrating with respect to r, we have (note that T = T(r))

f+/−
2 (r) = −αE+/−

∫ 1
r

∫
Trdrdr + A+/−

2 ln r + B+/−
2 r2 ln r + C+/−

2 r2 + D+/−
2 . (15)

in which the integral ∫
r ln rdr =

r2

2
ln r − 1

4
r2 + C, (16)

is used, and the integral constants A+/−
2 , B+/−

2 , C+/−
2 , and D+/−

2 have been combined
and simplified.

Similarly, for Equation (11), we have the same operation and obtain

f+/−
1 (r) = A+/−

1 r3 + B+/−
1 /r + C+/−

1 r ln r + D+/−
1 r. (17)
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in which the integral constants A+/−
1 , B+/−

1 , C+/−
1 , and D+/−

1 have been combined and
simplified, and the constant term in f+/−

1 (r) has been omitted because there is no influence
on the stress.

Substituting Equations (15) and (17) into Equation (4), the stress function expressed in
terms of undetermined constants will become

ϕ+/−(r, θ) = sin θ
(

A+/−
1 r3 + B+/−

1 /r + C+/−
1 r ln r + D+/−

1 r
)

−αE+/−∫ 1
r
∫

Trdrdr + A+/−
2 ln r + B+/−

2 r2 ln r + C+/−
2 r2 + D+/−

2

. (18)

Substituting Equation (18) into Equation (5), the stresses expressed in terms of undeter-
mined constants become

σr
+/− = sin θ

(
2A+/−

1 r − 2B+/−
1
r3 +

C+/−
1
r

)
− E+/−α

r2

(∫ r
r1

Trdr
)
+

A+/−
2
r2 + B+/−

2 (1 + 2 ln r) + 2C+/−
2

σθ
+/− = sin θ

(
6A+/−

1 r + 2B+/−
1
r3 +

C+/−
1
r

)
+ E+/−α

r2

(∫ r
r1

Trdr − Tr2
)
− A+/−

2
r2 + B+/−

2 (3 + 2 ln r) + 2C+/−
2

τrθ
+/− = − cos θ

(
2A+/−

1 r − 2B+/−
1
r3 +

C+/−
1
r

)
. (19)

According to our previous study [31], due to the temperature variation, T is always positive;
the thermal stress, in this case, will correspond to the compressive state. Thus, E+/− should
be changed to E−. In addition, among the above integral operations, the upper bound must
be the variable r and the lower bound of the integral can be arbitrarily chosen. If we take
different lower bounds, there is only a difference in the integral constant. In our study, the
inner and outer radius of the curved beam were denoted by r1 and r2, respectively; thus,
the lower bound of the integral should be r1 while an integral constant, D, was added to
the stress. Finally, we have

σr
+/− = sin θ

(
2A+/−

1 r − 2B+/−
1
r3 +

C+/−
1
r

)
− E−α

r2

(∫ r
r1

Trdr + D
)
+

A+/−
2
r2 + B+/−

2 (1 + 2 ln r) + 2C+/−
2

σθ
+/− = sin θ

(
6A+/−

1 r + 2B+/−
1
r3 +

C+/−
1
r

)
+ E−α

r2

(∫ r
r1

Trdr + D − Tr2
)
− A+/−

2
r2 + B+/−

2 (3 + 2 ln r) + 2C+/−
2

τrθ
+/− = − cos θ

(
2A+/−

1 r − 2B+/−
1
r3 +

C+/−
1
r

)
. (20)

There were, in total, thirteen undetermined constants, and they are A+/−
1 , B+/−

1 , C+/−
1 and

A+/−
2 , B+/−

2 , C+/−
2 as well as D. Due to the fact that the number of undetermined constants

is much more than in the case without thermal stress or the case without a bimodular effect,
the determination process of these unknown constants is also much more complicated than
before. However, by using boundary conditions on the inner and outer edges, as well as
continuity conditions on the neutral layer, this problem was still solved successfully.

3.2. Boundary Conditions and Continuity Conditions

First, let us consider the main boundary condition on the inner edge of the curved
beam. Since the inner side of the curved beam is always in compression, the superscript,
‘+/−’, in Equation (20) is naturally taken as the superscript ‘−’, which gives

σ−
r = 0, τ−

rθ = 0, at r = r1. (21)
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Substituting Equation (20) into Equation (21), we have
σr

− = sin θ

(
2A−

1 r1 −
2B−

1
r1

3 +
C−

1
r1

)
+

A−
2 −E−αD

r1
2 + B−

2 (1 + 2 ln r1) + 2C−
2 = 0

τrθ
− = − cos θ

(
2A−

1 r1 −
2B−

1
r1

3 +
C−

1
r1

)
= 0

. (22)

For any θ, Equation (22) always holds. Obviously, we finally have 2A−
1 r1 −

2B−
1

r1
3 +

C−
1

r1
= 0

A−
2

r1
2 + B−

2 (1 + 2 ln r1) + 2C−
2 = E−α

r1
2 D

. (23)

Similarly, the main boundary condition on the outer edges gives

σ+
r = 0, τ+

rθ = 0, at r = r2. (24)

Note that the outer side of the curved beam is always in tension; thus, the superscript is
naturally taken as ‘+’. Substituting Equation (20) into Equation (24), we have

σ+
r = sin θ

(
2A+

1 r2 −
2B+

1
r2

3 +
C+

1
r2

)
− E−α

r2
2 J1 +

A+
2 −E−αD

r2
2 + B+

2 (1 + 2 ln r2) + 2C+
2 = 0

τ+
rθ = − cos θ

(
2A+

1 r2 −
2B+

1
r2

3 +
C+

1
r2

)
= 0

. (25)

Obviously, we have  2A+
1 r2 −

2B+
1

r2
3 +

C+
1

r2
= 0

A+
2

r2
2 + B+

2 (1 + 2 ln r2) + 2C+
2 = E−α

r2
2 (J1 + D)

, (26)

in which
J1 =

∫ r2

r1

Trdr. (27)

In addition, using the de Saint-Venant Principle at the free end of the beam will give
the following three conditions:

∫ r2
ρ σ+

θ dr +
∫ ρ

r1
σ−

θ dr = 0∫ r2
ρ σ+

θ rdr +
∫ ρ

r1
σ−

θ rdr = 0∫ r2
ρ τ+

rθ dr +
∫ ρ

r1
τ−

rθ dr = P
b

, at θ = 0. (28)

Substituting Equation (20) into Equation (28), we have, after the integration operation[
rσ+

r
]r2

ρ
+
[
rσ−

r
]ρ

r1
= r2σ+

r
∣∣
r=r2

− ρσ+
r
∣∣
r=ρ

+ ρσ−
r
∣∣
r=ρ

− r1σ−
r
∣∣
r=r1

= 0, (29)

A+
2 ln r2

ρ + B+
2
(
r2

2 ln r2 − ρ2 ln ρ
)
+ C+

2
(
r2

2 − ρ2)
+A−

2 ln ρ
r1
+ B−

2
(
ρ2 ln ρ − r1

2 ln r1
)
+ C−

2
(
ρ2 − r1

2) = E−αJ2 + E−αD ln r2
r1

, (30)

and

A+
1
(
r2

2 − ρ2)+ B+
1

(
1
r2

2
− 1

ρ2

)
+ C+

1 ln r2
ρ + A−

1
(
ρ2 − r2

1
)
+ B−

1

(
1
ρ2 − 1

r2
1

)
+ C−

1 ln ρ
r1

= − P
b , (31)

in which
J2 =

∫ r2

r1

1
r

∫ r2

r1

Trdrdr (32)
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and Equation (29) have been naturally satisfied according to the above boundary conditions
and the subsequent continuity conditions.

At the neutral layer, the continuity conditions give:

σ+
r = σ−

r , σ+
θ = σ−

θ = 0, at r = ρ. (33)

Substituting Equation (20) into Equation (33), we have

sin θ

(
2A+

1 ρ − 2B+
1

ρ3 +
C+

1
ρ

)
+

A+
2

ρ2 + B+
2 (1 + 2 ln ρ) + 2C+

2

= sin θ

(
2A−

1 ρ − 2B−
1

ρ3 +
C−

1
ρ

)
+

A−
2

ρ2 + B−
2 (1 + 2 ln ρ) + 2C−

2

(34)

and

sin θ

(
6A+

1 ρ +
2B+

1
ρ3 +

C+
1
ρ

)
+ E−α

ρ2

(∫ ρ
r1

Trdr + D − Tρ2
)
− A+

2
ρ2 + B+

2 (3 + 2 ln ρ) + 2C+
2

= sin θ

(
6A−

1 ρ +
2B−

1
ρ3 +

C−
1
ρ

)
+ E−α

ρ2

(∫ ρ
r1

Trdr + D − Tρ2
)
− A−

2
ρ2 + B−

2 (3 + 2 ln ρ) + 2C−
2

= 0

. (35)

For any θ, Equation (34) always holds. Obviously, we have the following two relations: 2A+
1 ρ − 2B+

1
ρ3 +

C+
1
ρ = 2A−

1 ρ − 2B−
1

ρ3 +
C−

1
ρ

A+
2

ρ2 + B+
2 (1 + 2 ln ρ) + 2C+

2 =
A−

2
ρ2 + B−

2 (1 + 2 ln ρ) + 2C−
2

. (36)

Similarly, for any θ, Equation (35) always holds; thus, we have the following three relations:
6A+

1 ρ +
2B+

1
ρ3 +

C+
1
ρ = 6A−

1 ρ +
2B−

1
ρ3 +

C−
1
ρ = 0

D = T(ρ)ρ2 −
∫ ρ

r1
Trdr

− A+
2

ρ2 + B+
2 (3 + 2 ln ρ) + 2C+

2 = − A−
2

ρ2 + B−
2 (3 + 2 ln ρ) + 2C−

2 = 0

. (37)

Up to now, we obtained Equations (23), (26), (30), (31), (36) and (37), in which there are,
in total, thirteen relations containing A+/−

1 , B+/−
1 , C+/−

1 and A+/−
2 , B+/−

2 , C+/−
2 as well as

D. By using these relations, it is possible for us to determine the thirteen undetermined
constants. The detailed solving process may be referred to in Appendix A.

4. Numerical Simulation and Comparison

The software ABAQUS6.14.4 was used to conduct the numerical simulation, in which
the subroutine UMAT was also adopted because there was no bimodular material model in
this software. First, we needed to compile the subroutine UMAT for the next call and then
establish the numerical computation model, in which the related parameters during the
numerical simulation are listed in Table 1. The whole computational process is described
as follows.

(i) The establishment of a solid model of curved beam, according to the geometrical sizes
of the curved beam from Table 1, also see Figure 5a;

(ii) The editing of materials data, including thermal expansion coefficient, the tensile and
compressive moduli, and Poisson’s ratios;

(iii) The setting of incremental steps;
(iv) The editing of boundary conditions, one end of the beam is free, and another is fully

fixed, see Figure 5b;
(v) The input of the temperature field, in which the temperature rise pattern is defined as

T(r) = T0 − T0(r−ρ)3/(0.5 h)3, ρ is the curvature radius of the neutral layer, h is the
thickness of the curved beam and T0 is initial temperature rise, as shown in Table 1.

(vi) The input of the end-side concentrated shear load, please see Figure 5b;
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(vii) The grid division, in which the mesh was generated using hexahedral elements C3D20
for better accuracy, please see Figure 5a;

(viii) The call of. the UMAT subroutine;
(ix) The output of computational results.

Table 1. Given values in numerical simulation.

Physical Quantities Taken Values

inner radius, r1 800 mm
outer radius, r2 1000 mm
thickness of the curved beam, h 200 mm
width of curved beam, b 80 mm
tensile modulus, E+ 3 × 108 Pa
compressive modulus, E− 2 × 108 Pa
tensile Poisson’s ratio, µ+ 0.3
compressive Poisson’s ratio, µ− 0.3
concentrated shear force, P 50 KN
thermal expansion coefficient, α 1.6 × 10−9/◦C
initial temperature rise, T0 100 ◦C
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For the convenience of comparison to the theoretical solution, we selected five inspec-
tion points on a certain cross-section of the curved beam. To avoid the negative influences
from the fixed end and free end of the beam, the midspan of the curved beam (θ = π/4)
was selected. The five inspection points (1# to 5#) were located from the outer edge layer to
the inner edge layer, with equal space, as shown in Figure 6.
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Figure 7 shows the stress nephogram of the whole curved beam, including the cir-
cumferential stress and the radial stress. Figure 8 shows the stress nephogram of the
cross-section at θ = π/4, also including the circumferential stress and the radial stress. From
the results of the numerical simulation, the stress values of the five key points were obtained
and listed in Tables 2 and 3, in which Table 2 shows the comparisons of the circumferential
stress and Table 3 corresponds to the comparisons of the radial stress. The theoretical
results were also computed via Equation (20) and listed in Tables 2 and 3. It is also easily
found from Tables 2 and 3 that the radial stress is much smaller than the circumferential
stress; both the theoretical solution and numerical simulation give the same conclusion,
which explains why the radial stress is generally neglected in one-dimensional problems
since it is negligibly small.

From Tables 2 and 3, it is easy to see that the theoretical results are grossly close to
the ones from the numerical simulation, with the bigger errors occurring at the inner edge
for the circumferential stress. Please refer to inspection point 5# in Table 2; this is mainly
due to the influence of the boundary. The overall difference may come from many factors,
including the determination of a neutral layer, the differences between the two solution
methods themselves, and the precision of the numerical simulation (element selection and
grid division, for example). Despite the differences, it is a representation of the real result.
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Table 2. Comparisons of circumferential stress.

Inspection Points Theoretical Solution
(Pa)

Numerical Simulation
(Pa)

Absolute Errors
(Pa)

1# 69.251 64.677 4.574
2# 22.783 23.779 0.996
3# −4.049 −4.492 0.443
4# −25.209 −26.713 1.504
5# −76.767 −65.952 10.815

Table 3. Comparisons of radial stress.

Inspection Points Theoretical Solution
(Pa)

Numerical Simulation
(Pa)

Absolute Errors
(Pa)

1# 0 −0.171 0.171
2# −2.359 −2.823 0.464
3# −3.108 −3.327 0.219
4# −2.696 −3.528 0.832
5# 0 −0.123 0.123

5. Bimodular Effect on Stress Distribution

In the previous section, the theoretical solution was verified by numerical simulation.
In this section, we used the theoretical solution to investigate the bimodular effect on stress
distribution. For this purpose, we let the ratio of the tensile modulus to the compressive
modulus be parameter β, that is,

β =
E+

E− , (38)

and then we kept the compressive modulus constant (for example, E− = 2 × 108 Pa, see
Table 1) while changing the tensile modulus (for example, E+ = 4 × 108 Pa, 3 × 108 Pa,
2 × 108 Pa, 1.5 × 108 Pa and 1 × 108 Pa), that is, β is taken as 2.0, 1.5, 1.0, 0.75, and
0.50, according to Equation (38). In the real computation, other given values may refer
to Table 1. For different moduli cases, the circumferential stress distribution on the cross-
section (which is near the fixed end) is shown in Figure 9, and the stress values of the five
inspection points are listed in Table 4 for further reference.
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Table 4. Circumferential stress values of inspection points.

Inspection
Points

σθ (Pa)

β = 2.0 β = 1.5 β = 1.0 β = 0.75 β = 0.5

1# 114.972 108.562 100.952 96.362 90.932
2# 41.095 41.819 41.904 41.543 40.715
3# −7.198 −3.865 2.765 7.101 11.384
4# −39.905 −40.226 −40.269 −39.715 −37.683
5# −101.219 −105.653 −113.143 −119.475 −130.076

By observing Figure 9, it can be found, first, that all lines are composed of two seg-
ments, which reflects well the different moduli characteristics of tension and compression.
Secondly, when β = 1.0, this case corresponds to the classical material of the same modulus;
the expression of the stress component in the tensile region is consistent with that in the
compressive region, as shown in Figure 9, in which the curve is continuous and smooth at
the neutral layer. For other cases of β, the continuity of the curves is still there, but they are
not smooth, especially for the cases of β = 2 and β = 2, in which a clear turn can be observed
at the neutral layer. In addition, it can be found that with a decrease in different moduli
coefficients, β, the tensile elastic modulus gradually decreases. Thus, the height of the
tensile zone gradually increases, and the slope of the stress curve gradually decreases (with
respect to the horizontal stress axis), while in the compressive zone, it shows completely
opposite changes. Such a synchronous change makes the beam maintain the equilibrium of
stress on the cross-section.

6. Concluding Remarks

In this study, the thermal stress problems of bimodular curved beams under the action
of end-side concentrated shear force were analytically and numerically investigated, in
which the temperature rise modes of the curved beam in a thermal environment were
considered to be arbitrary. The three important conclusions can be drawn as follows.

(i) In the previous problem of pure bending the displacement method based on the
displacement potential function was used. While in existing, more general, problems
of end-side concentrated shear force, since the displacement method was no longer
applicable, the stress method based on compatibility equation was used to solve the
problems. The comprehensive application of the two methods improves, to a certain
extent, the thermoelastic problem of bimodular materials and structures.

(ii) During the obtainment of the theoretical solution, the number of undetermined con-
stants was much more than in the case without thermal stress or the case without a
bimodular effect. But, via stress continuity conditions on the neutral layer and bound-
ary conditions on the inner and outer edges, this problem was still solved successfully.

(iii) The theoretical solution obtained can be reduced to the solution of a bimodular curved
beam without thermal stress. At the same time, the numerical simulation for the same
problem verifies the correctness of the theoretical solution.

The theoretical solution presented in this study may be used in the refined analysis
and optimized design of bimodular curved bars in a thermal environment. The method
proposed in this study can be extended to the thermal stress problems of similar structures,
namely, arch and shell structures with initial curvature. The relative work is in progress.
In addition, the results of this study can be further applied to the analysis of viscoelastic
materials, especially under a high-temperature environment [32,33]. Viscoelasticity is the
joint property of elasticity and viscosity, and thus it describes materials with both fluid and
solid properties simultaneously. If the solid properties of the materials present obviously
different elastic properties in tension and compression, their bimodular characteristic
should be given some attention.
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Appendix A

In the main text, Equations (23), (26), (30), (31), (36) and (37) were used to determine
the thirteen undetermined constants, A+/−

1 , B+/−
1 , C+/−

1 and A+/−
2 , B+/−

2 , C+/−
2 as well as

D. First, among these relations, we found seven equations containing A+/−
2 , B+/−

2 , C+/−
2

and D, and they are from the second relation of Equations (23) and (26), Equation (30), the
second relation of Equation (36), as well as the last two relations of Equation (37), which
are listed in order as follows:

A−
2

r1
2 + B−

2 (1 + 2 ln r1) + 2C−
2 = E−α

r1
2 D

A+
2

r2
2 + B+

2 (1 + 2 ln r2) + 2C+
2 = E−α

r2
2 (J1 + D)

A+
2 ln r2

ρ + B+
2
(
r2

2 ln r2 − ρ2 ln ρ
)
+ C+

2
(
r2

2 − ρ2)
+A−

2 ln ρ
r1
+ B−

2
(
ρ2 ln ρ − r1

2 ln r1
)
+ C−

2
(
ρ2 − r1

2) = E−αJ2 + E−αD ln r2
r1

A+
2

ρ2 + B+
2 (1 + 2 ln ρ) + 2C+

2 − A−
2

ρ2 − B−
2 (1 + 2 ln ρ)− 2C−

2 = 0

− A−
2

ρ2 + B−
2 (3 + 2 ln ρ) + 2C−

2 = 0

− A+
2

ρ2 + B+
2 (3 + 2 ln ρ) + 2C+

2 = 0

D = T(ρ)ρ2 −
∫ ρ

r1
Trdr

. (A1)

where 
E−α
r2

2 (J1 + D) = F1
E−α
r1

2 D = F2

E−αJ2 + E−αD ln r2
r1

= F3

. (A2)

A+/−
2 , B+/−

2 , C+/−
2 may be determined as

A+
2 = −4F3P1

R ρ2r2
2
(

ln r2
ρ − 1

)
+ K1

R

A−
2 = −4F3P2

R ρ2r1
2
(

ln r1
ρ − 1

)
+ K2

R

B+
2 = 2F3P1

R
(
ρ2 + r2

2)+ K3
R

B−
2 = 2F3P2

R
(
ρ2 + r1

2)+ K4
R

C+
2 = − F3P1

R
[
ρ2(3 + 2 ln ρ) + r2

2(1 + 2 ln r2)
]
+ K5

R
C−

2 = − F3P2
R
[
ρ2(3 + 2 ln ρ) + r1

2(1 + 2 ln r1)
]
+ K6

R

, (A3)

in which 
P1 = r1

2 − ρ2 + 2r1
2 ln(ρ/r1)

P2 = r2
2 − ρ2 + 2r2

2 ln(ρ/r2)
Q1 = 4r1

2ρ2 ln(ρ/r1)[ln(ρ/r1) + 2] + r1
4 + 2r1

2ρ2 − 3ρ4

Q2 = 4r2
2ρ2 ln(ρ/r2)[ln(ρ/r2) + 2] + r2

4 + 2r2
2ρ2 − 3ρ4

R = P2Q1 − P1Q2

, (A4)
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and
K1 = ρ2r2

2[4F2r1
4 − F1r1

4 + F1ρ2r1
2 + 3F1ρ2r2

2 − 4F2ρ2r2
2

−3F1r1
2r2

2 + 8F2r1
4 ln ρ − 4F2r1

4 ln r1 − 4F2r1
4 ln r2 + 4F2r1

4 ln2 ρ
+2F1ρ2r1

2 ln ρ + 2F1ρ2r2
2 ln ρ − 4F2ρ2r1

2 ln ρ − 2F1ρ2r1
2 ln r1

−8F1r1
2r2

2 ln ρ − 2F1ρ2r2
2 ln r2 + 4F2ρ2r1

2 ln r2 + 6F1r1
2r2

2 ln r1
+2F1r1

2r2
2 ln r2 − 4F2r1

4 ln ρ ln r1 − 4F2r1
4 ln ρ ln r2 + 4F2r1

4 ln r1 ln r2
−4F1ρ2r1

2 ln(ρ/r1) + 4F2ρ2r1
2 ln(ρ/r1)− 4F1r1

2r2
2 ln2 ρ

+4F1r1
2r2

2 ln ρ ln r1 + 4F1r1
2r2

2 ln ρ ln r2 − 4F1r1
2r2

2 ln r1 ln r2
−4F1ρ2r1

2 ln(ρ/r1) ln ρ + 4F2ρ2r1
2 ln(ρ/r1) ln ρ

+4F1ρ2r1
2 ln(ρ/r1) ln r1 − 4F2ρ2r1

2 ln(ρ/r1) ln r2]

(A5)

K2 = ρ2r2
2[F2r2

4 − 4F1r2
4 + 4F1ρ2r2

2 − 3F2ρ2r1
2 − F2ρ2r2

2

+3F2r1
2r2

2 − 8F1r2
4 ln ρ + 4F1r2

4 ln r1 + 4F1r2
4 ln r2 − 4F1r2

4 ln2 ρ
+4F1ρ2r2

2 ln ρ − 2F2ρ2r1
2 ln ρ − 2F2ρ2r2

2 ln ρ − 4F1ρ2r2
2 ln r1

+2F2ρ2r1
2 ln r1 + 8F2r1

2r2
2 ln ρ + 2F2ρ2r2

2 ln r2 − 2F2r1
2r2

2 ln r1
−6F2r1

2r2
2 ln r2 + 4F1r2

4 ln ρ ln r1 + 4F1r2
4 ln ρ ln r2 − 4F1r2

4 ln r1 ln r2
+4F1ρ2r2

2 ln(r2/ρ)− 4F2ρ2r2
2 ln(r2/ρ) + 4F2r1

2r2
2 ln2 ρ

−4F2r1
2r2

2 ln ρ ln r1 − 4F2r1
2r2

2 ln ρ ln r2 + 4F2r1
2r2

2 ln r1 ln r2
+4F1ρ2r2

2 ln(r2/ρ) ln ρ − 4F2ρ2r2
2 ln(r2/ρ) ln ρ

−4F1ρ2r2
2 ln(r2/ρ) ln r1 + 4F2ρ2r2

2 ln(r2/ρ) ln r2]

(A6)

K3 = [F1ρ2r2
4 + 2F1ρ4r2

2 + 2F2ρ2r1
4 − 2F2ρ4r1

2 − F1r1
2r2

4

−F1r1
4r2

2 + 2F2r1
4r2

2 − F1ρ2r1
2r2

2 − 2F2ρ2r1
2r2

2 + 2F2ρ2r1
4 ln ρ

+2F2r1
4r2

2 ln ρ + 2F1r1
2r2

4 ln r1 − 2F2r1
4r2

2 ln r1 + 2F2ρ4r1
2 ln(ρ/r1)

+2F1ρ4r2
2 ln(r2/ρ)− 4F1ρ2r1

2r2
2 ln(ρ/r1)− 2F1ρ2r1

2r2
2 ln(r2/ρ)

+2F2ρ2r1
2r2

2 ln(ρ/r1)− 2F1ρ2r1
2r2

2 ln ρ + 2F1ρ2r1
2r2

2 ln r1
−4F1ρ2r1

2r2
2 ln(ρ/r1) ln ρ − 4F1ρ2r1

2r2
2 ln(r2/ρ) ln ρ

+4F1ρ2r1
2r2

2 ln(ρ/r1) ln r1 + 4F1ρ2r1
2r2

2 ln(r2/ρ) ln r1]

(A7)

K4 = [−2F1ρ2r2
4 + 2F1ρ4r2

2 − F2ρ2r1
4 − 2F2ρ4r1

2 − 2F1r1
2r2

4 + F2r1
2r2

4

+F2r1
4r2

2 + 2F1ρ2r1
2r2

2 + F2ρ2r1
2r2

2 − 2F1ρ2r2
4 ln ρ − 2F1r1

2r2
4 ln ρ

+2F1ρ2r2
4 ln r2 + 2F2r1

4r2
2 ln ρ + 2F1r1

2r2
4 ln r2 − 2F2r1

4r2
2 ln r2

+2F2ρ4r1
2 ln(ρ/r1) + 2F1ρ4r2

2 ln(r2/ρ) + 2F1ρ2r1
2r2

2 ln(r2/ρ)
−2F2ρ2r1

2r2
2 ln(ρ/r1)− 4F2ρ2r1

2r2
2 ln(r2/ρ) + 2F2ρ2r1

2r2
2 ln ρ

−2F2ρ2r1
2r2

2 ln r2 − 4F2ρ2r1
2r2

2 ln(ρ/r1) ln ρ − 4F2ρ2r1
2r2

2 ln(r2/ρ) ln ρ
+4F2ρ2r1

2r2
2 ln(ρ/r1) ln r2 + 4F2ρ2r1

2r2
2 ln(r2/ρ) ln r2]

(A8)

K5 = −[3F1ρ4r2
2 + 3F2ρ2r1

4 − 3F2ρ4r1
2 − F1r1

4r2
2 + F2r1

4r2
2

−2F1ρ2r1
2r2

2 − F2ρ2r1
2r2

2 + 2F1ρ4r2
2 ln ρ + 5F2ρ2r1

4 ln ρ − 2F2ρ4r1
2 ln ρ

−F1r1
4r2

2 ln ρ − 3F2ρ2r1
4 ln r1 + F1ρ2r2

4 ln r2 + F2r1
4r2

2 ln ρ − F1r1
2r2

4 ln r2
−F2r1

4r2
2 ln r1 + 2F2r1

4r2
2 ln r2 + 3F2ρ4r1

2 ln(ρ/r1) + 3F1ρ4r2
2 ln(r2/ρ)

+2F2ρ2r1
4 ln2 ρ − 2F2ρ2r1

4 ln ρ ln r1 − 2F1r1
2r2

4 ln ρ ln r2
+2F2r1

4r2
2 ln ρ ln r2 + 2F1r1

2r2
4 ln r1 ln r2 − 2F2r1

4r2
2 ln r1 ln r2

−4F1ρ2r1
2r2

2 ln(ρ/r1)− 3F1ρ2r1
2r2

2 ln(r2/ρ) + F2ρ2r1
2r2

2 ln(ρ/r1)

+2F2ρ4r1
2 ln(ρ/r1) ln ρ + 2F1ρ4r2

2 ln(r2/ρ) ln ρ − 2F1ρ2r1
2r2

2 ln2 ρ
−5F1ρ2r1

2r2
2 ln ρ + 4F1ρ2r1

2r2
2 ln r1 − 2F2ρ2r1

2r2
2 ln r2

−8F1ρ2r1
2r2

2 ln(ρ/r1) ln ρ − 8F1ρ2r1
2r2

2 ln(r2/ρ) ln ρ
+4F1ρ2r1

2r2
2 ln(ρ/r1) ln r1 + 6F1ρ2r1

2r2
2 ln(r2/ρ) ln r1

+2F2ρ2r1
2r2

2 ln(ρ/r1) ln r2 − 4F1ρ2r1
2r2

2 ln(ρ/r1) ln2 ρ

−4F1ρ2r1
2r2

2 ln(r2/ρ) ln2 ρ + 2F1ρ2r1
2r2

2 ln ρ ln r1
+4F1ρ2r1

2r2
2 ln(ρ/r1) ln ρ ln r1 + 4F1ρ2r1

2r2
2 ln(r2/ρ) ln ρ ln r1]

(A9)
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K6 = −[−3F1ρ2r2
4 + 3F1ρ4r2

2 − 3F2ρ2r1
4 − F1r1

2r2
4 + F2r1

2r2
4

+F1ρ2r1
2r2

2 + 2F2ρ2r1
2r2

2 − 5F1ρ2r2
4 ln ρ + 2F1ρ4r2

2 ln ρ − 2F2ρ4r1
2 ln ρ

−F1r1
2r2

4 ln ρ − F2ρ2r1
4 ln r1 + 3F1ρ2r2

4 ln r2 + F2r1
2r2

4 ln ρ − 2F1r1
2r2

4 ln r1
+F1r1

2r2
4 ln r2 + F2r1

4r2
2 ln r1 + 3F2ρ4r1

2 ln(ρ/r1) + 3F1ρ4r2
2 ln(r2/ρ)

−2F1ρ2r2
4 ln2 ρ + 2F1ρ2r2

4 ln ρ ln r2 − 2F1r1
2r2

4 ln ρ ln r1 + 2F2r1
4r2

2 ln ρ ln r1
+2F1r1

2r2
4 ln r1 ln r2 − 2F2r1

4r2
2 ln r1 ln r2 + F1ρ2r1

2r2
2 ln(r2/ρ)

−3F2ρ2r1
2r2

2 ln(ρ/r1)− 4F2ρ2r1
2r2

2 ln(r2/ρ) + 2F2ρ4r1
2 ln(ρ/r1) ln ρ

+2F1ρ4r2
2 ln(r2/ρ) ln ρ + 2F2ρ2r1

2r2
2 ln2 ρ + 5F2ρ2r1

2r2
2 ln ρ + 2F1ρ2r1

2r2
2 ln r1

−4F2ρ2r1
2r2

2 ln r2 − 8F2ρ2r1
2r2

2 ln(ρ/r1) ln ρ − 8F2ρ2r1
2r2

2 ln(r2/ρ) ln ρ
+2F1ρ2r1

2r2
2 ln(r2/ρ) ln r1 + 6F2ρ2r1

2r2
2 ln(ρ/r1) ln r2 + 4F2ρ2r1

2r2
2 ln(r2/ρ) ln r2

−4F2ρ2r1
2r2

2 ln(ρ/r1) ln2 ρ − 4F2ρ2r1
2r2

2 ln(r2/ρ) ln2 ρ − 2F2ρ2r1
2r2

2 ln ρ ln r2
+4F2ρ2r1

2r2
2 ln(ρ/r1) ln ρ ln r2 + 4F2ρ2r1

2r2
2 ln(r2/ρ) ln ρ ln r2]

. (A10)

Second, we found six equations containing A+/−
1 , B+/−

1 , C+/−
1 which are from the

first relation of Equations (23) and (26), Equation (31), and the first relation of Equations
(36) and (37). They are listed in order as follows:

2A−
1 r1 −

2B−
1

r1
3 +

C−
1

r1
= 0

2A+
1 r2 −

2B+
1

r2
3 +

C+
1

r2
= 0

A+
1
(
r2

2 − ρ2)+ B+
1

(
1
r2

2
− 1

ρ2

)
+ C+

1 ln r2
ρ

+A−
1
(
ρ2 − r2

1
)
+ B−

1

(
1
ρ2 − 1

r2
1

)
+ C−

1 ln ρ
r1

= − P
b

2A+
1 ρ − 2B+

1
ρ3 +

C+
1
ρ − 2A−

1 ρ +
2B−

1
ρ3 − C−

1
ρ = 0

6A−
1 ρ +

2B−
1

ρ3 +
C−

1
ρ = 0

6A+
1 ρ +

2B+
1

ρ3 +
C+

1
ρ = 0

(A11)

where A+/−
1 , B+/−

1 , C+/−
1 may be determined as

A+
1 =

P(ρ6−2ρ4r1
2+ρ4r2

2+ρ2r1
4−2ρ2r1

2r2
2+r1

4r2
2)

2bS

B+
1 = − P(3ρ6−6ρ4r1

2−ρ4r2
2+3ρ2r1

4+2ρ2r1
2r2

2−r1
4r2

2)ρ2r2
2

2bS

C+
1 = − P(3ρ8−6ρ6r1

2+3ρ4r1
4+ρ4r2

4−2ρ2r1
2r2

4+r1
4r2

4)
bS

A−
1 =

P(ρ2+r1
2)(ρ2−r2

2)
2

2bS

B−
1 = − P(ρ2−r2

2)
2
(3ρ2−r1

2)ρ2r1
2

2bS

C−
1 = − P(ρ2−r2

2)
2
(3ρ4+r1

4)
bS

, (A12)

in which

S = 2ρ4r1
4 − 2ρ6r1

2 − 2ρ4r2
4 + 2ρ6r2

2 + 3ρ8 ln(ρ/r1) + 3ρ8 ln(r2/ρ)
+ρ4r1

4 ln(ρ/r1) + 3ρ4r1
4 ln(r2/ρ) + 3ρ4r2

4 ln(ρ/r1)− 6ρ6r1
2 ln(r2/ρ)

−6ρ6r2
2 ln(ρ/r1) + ρ4r2

4 ln(r2/ρ) + r1
4r2

4 ln(ρ/r1) + r1
4r2

4 ln(r2/ρ)
+2ρ2r1

2r2
4 − 2ρ2r1

4r2
2 − 2ρ2r1

4r2
2 ln(ρ/r1)− 2ρ2r1

2r2
4 ln(r2/ρ)

. (A13)
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