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Abstract: Concrete structures often fail to perform their original functions due to problems such
as deterioration and damage over time. Therefore, various repair materials have been studied to
maintain deteriorated concrete structures. This study experimentally investigated the mechanical
properties of high-early-strength cement-based repair materials for spraying. For spraying, the
cement-based materials should have adoptable fluidity and strength: 200 ± 100 mm for flow; 20 MPa
at 24 h and 40 MPa at 28 days for compressive strength, and 8 MPa at 28 days for flexural strength.
Wollastonite mineral fibers (3–5 wt.%) and styrene–butadiene (SB) latex (5–7 wt.%) were studied to
enhance this requirement. Fluidity was evaluated by flow test and measuring the heat of hydration;
mechanical properties were evaluated in terms of compressive and flexural strength. The cement-
to-silica sand ratio (C:S ratio) was also applied differently to adjust the pot life of polymer cement-
based material (1:1 and 1:1.5) as a binder. Because wollastonite mineral fibers and SB latex affect
workability, the water-to-binder ratio was regulated to reach the target flow according to the amount
of wollastonite mineral fibers and SB latex. Regardless of the C:S ratio, all studied mixtures met
the target 28 day compressive strength at 24 h, decreasing in strength with increasing amounts of
wollastonite mineral fibers and latex. Flexural strength also fulfilled the target value, and it increased
with increasing amounts of wollastonite mineral fibers and latex, unlike compressive strength. The
optimal mix proportion of high-early-strength cement-based repair materials constituted 3 wt.%
wollastonite mineral fibers and 5 wt.% SB latex as the binder in a C:S ratio of 1:1.5.

Keywords: fiber-reinforced cement-based materials; mechanical properties; repair materials; SB latex;
wollastonite mineral fiber

1. Introduction

Concrete structures are constructed to satisfy the required performance under various
environmental conditions [1,2]. However, in numerous cases, they often fail to fulfill their
original functions due to issues such as deterioration and damage over time [3]. The degra-
dation of concrete can occur due to external environmental factors, such as carbonation,
salt damage, chemical erosion, cracks, and freezing damage, and internal factors, such as
alkali–aggregate reaction [4,5]. These factors combine to cause the deterioration of concrete
such as cracks and peeling/exfoliation [6]. Because structural stability is eventually affected
when exposed to continued deterioration, certain improved repair techniques are needed.

The lifetime of infrastructure can preferably be extended via repair, rather than by
constructing new structures, provided that the safety of the structure can be ensured [7].
Accordingly, there is increasing interest in the development of repair materials and con-
struction methods for deteriorated concrete structures. Various types of polymer-modified
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mortar are generally applied for concrete repair [1]. Such repair materials can provide
excellent mechanical properties and durability [8]. Notably, polymer-modified mortar can
be applied by spraying, which is a commonly used method for repair. However, there
is a strong likelihood of cracking when the spray method is used, and the crack can in-
crease permeability and lead to a decrease in durability [9]. Therefore, the crack control of
polymer-based repair material needs to be enhanced.

Ultrarapid hardening cement was evaluated in a study to obtain high early strength,
in spite of a higher heat of hydration than Type I cement. The higher heat of hydration not
only develops strength rapidly, but also leads to cracks [10]. Thus, wollastonite mineral
fiber was used as reinforcing fiber to control cracks, and styrene–butadiene (SB) latex was
used to provide sufficient fluidity for enhancing clogging by fiber balls [11]. It is known
that reinforcing fibers improve the resistance to cracking of cement-based materials; thus,
fiber-reinforced cement-based materials can suppress the occurrence and growth of cracks
through fiber debonding, failure, and bridging effects [12–14]. However, fiber balling
reduces not only the workability but also the strength of concrete. On the other hand,
wollastonite mineral fibers can solve this problem because it has a smaller aspect ratio than
synthetic fibers and steel fibers used in existing fiber-reinforced concrete [15–18].

The SB latex polymer is expected to improve watertightness, carbonation, and resis-
tance to freezing and thawing by improving the pore structure of the cement repair mate-
rial [11]. Furthermore, it decreases the amount of rebound, thereby improving performance
and adhesion to the existing structure without the thickener commonly used to enhance
bonding for sprayed material. Through these advantages, it is possible to increase the con-
struction speed and shorten the construction period compared to conventional materials.

This study aimed to evaluate the fluidity and mechanical properties of high-early-
strength cement-based repair materials (HERM) by adding wollastonite mineral fibers
and SB latex for the spray method. Furthermore, the effects of the amount of wollastonite
mineral fibers and SB latex were also investigated.

2. Experimental Plan
2.1. Materials

Table 1 presents the chemical composition of the ultrarapid hardening cement used
in this study. The physical properties of silica sand used as the fine aggregate are listed in
Table 2. Wollastonite mineral fiber was used as reinforcement, with an aspect ratio ranging
from 3 to 20, and its physical properties are shown in Table 3. The properties of the SB latex
polymer are presented in Table 4. Figure 1 shows the studied materials.

Table 1. Chemical composition of ultrarapid hardening cement (Gmaxrefid Co., Ltd., Namyangju,
Gyeonggido, Republic of Korea).

Chemical Composition (%) Blaine Fineness
(cm2/g) Specific Gravity

SiO2 Al2O3 Fe2O3 CaO MgO K2O SO3

13 ± 3 17.5 ± 3 3> 50 ± 3 2.5> 0.21 14 ± 3 5400 2.95

Table 2. Physical properties of silica sand (Samwon Chemical Co., Ltd., Seoul, Republic of Korea).

No. Size (mm) Density (g/mm3) (20 ◦C) Organic Impurities Finess Modulus

6 ≤0.3 2.62 Nil 1.95
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Table 3. Properties of wollastonite mineral fiber (Samwon Chemical Co., Ltd., Seoul, Republic of Korea).

Properties Values

Appearance White

Shape Acicular

Length (mm) 0.4–0.6

Transverse dimension (µm) 25–150

Range of aspect ratio 3–20

Coefficient of expansion (mm/mm/◦C) 6.5 × 10−6

Density (g/mm3) 2.9

Water solubility (g/100 cc) 0.0095

pH 9.9

Table 4. Properties of SB latex (Joongang polytech Co., Ltd., Yangsan, Gyeongnam Republic of Korea).

Solids
Content

(%)

Styrene
Content

(%)

Butadiene
Content

(%)
pH Density

(g/mm3)

Surface
Tension

(dyne/cm)

Particle
Size
(Å)

Viscosity
(cps)

49 34 ± 1.5 66 ± 1.5 11.0 1.02 30.57 1700 42
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Figure 1. Studied materials.

2.2. Mix Proportions

The properties of the HERM were evaluated by considering mix ratios such as C:S
ratios of 1:1 and 1:1.5, wollastonite mineral fiber contents of 0, 3, and 5 wt.% of the binder
(cement + silica sand), and SB latex contents of 0, 5, and 7 wt.% of the binder. The C:S
ratio used in the field (Dakyung Construction Co., Ltd., Guri, Gyeonggi, Republic of Korea)
was applied, which was determined by investigating the mixing ratio of repair materials
in Korea [19]. The SB latex and wollastonite mineral fiber were added to improve the
performance of the repair material. Considering the setting time, the amount of retarder
in all mix proportions was fixed at 1 wt.% of cement; the water/binder (W/B) ratio was
adjusted (without adding plasticizer) to obtain the target flow of 200 ± 10 mm required for
spraying. The designed compressive strength and flexural strength of the polymer mortar
are 40 MPa and 8 MPa at 28 days according to KS F 2476 [20]. The studied mix proportions
are listed in Table 5.
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Table 5. Mix proportions.

C:S
Ratio

Type of
Mix

W/B
(%)

Used Weight (kg/5 L) Used Weight (g/5 L)
Flow
(mm)Water

Binder (B) Wollastonite
Fiber

SB Latex Plasticizer Retarder
Cement Silica Sand

1:1

M0L0 16.87 1.63

4.84 4.84

0.00

0.00 0.00

96.8

205

M0L5 16.43 1.59 0.48 14.52 210

M0L7 13.43 1.30 0.68 20.33 210

M3L0 17.98 1.74

0.29

0.00 0.00 210

M3L5 16.01 1.55 0.48 14.52 195

M3L7 14.36 1.39 0.68 20.33 190

M5L0 18.90 1.83

0.48

0.00 0.00 210

M5L5 18.08 1.75 0.48 14.52 205

M5L7 16.43 1.59 0.68 20.33 205

1:1.5

M0L0 15.2 1.56

4.11 6.16

0.00

0.00 0.00

102.63

205

M0L5 12.2 1.25 0.51 15.39 210

M0L7 12.1 1.24 0.72 21.55 210

M3L0 16.1 1.65

0.31

0.00 0.00 210

M3L5 14.7 1.51 0.51 15.39 195

M3L7 14.3 1.47 0.72 21.55 190

M5L0 17.9 1.84

0.51

0.00 0.00 210

M5L5 16.2 1.66 0.51 15.39 205

M5L7 15.6 1.60 0.72 21.55 205

M5L0 17.9 1.84

0.51

0.00 0.00 210

M5L5 16.2 1.66 0.51 15.39 205

M5L7 15.6 1.60 0.72 21.55 205

2.3. Experimental Methods

In order to suggest a cement-based repair material that satisfies the requirement for
deteriorated concrete structures, using wollastonite mineral fibers and SB latex as additives,
workability and mechanical tests were conducted to experimentally determine the optimal
amount of SB latex and wollastonite mineral fiber.

2.3.1. Flow Test

The flow test was carried out according to KS F 2476 [20] to confirm the workability of
the repair material. Briefly, the flow cone was placed upright in the center of the flow table
and filled with two layers of mortar. Each layer was tamped 15 times over the entire surface;
the front tip of the tamping rod penetrated approximately half the depth of the lower layer,
while the upper layer was leveled with mortar [20]. The flow cone was immediately lifted
up, and then the flow table moved in a falling motion 15 times over an interval of 15 s [20];
the diameter of the spread was measured. The target flow value was 200 ± 10 mm to ensure
suitability for the spraying equipment. Figure 2 shows the flow value measurement.
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2.3.2. The Heat of Hydration Measurement

The hydration of cement is an exothermic process. Cement-based materials have
low thermal conductivity and, consequently, delay the heat of hydration dissipation to
the external environment. Notably, ultrarapid hardening cement hydrates with a higher
temperature of the heat of hydration develop early strength; however, the higher initial
internal temperature can lead to cracking [21,22]. The initial crack occurs in a local part
subjected to a big difference in temperature [21,22]. By measuring the heat of hydration,
the degradation of the strength of the repair materials, as well as the change in the internal
temperature of the cement-based materials, was confirmed and analyzed. A thermocouple
was embedded in the center of the cylindrical specimen sized Ø100 × 200 mm, and the
temperature was measured every 5 min for 24 h. Figure 3 shows the heat of the hydration
measurement setup.
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2.3.3. Compressive Strength

The compressive strength of the repair material was determined by KS L 5105 [23];
the target values were 20 MPa at 1 day and 40 MPa at 28 days, which correspond to
the repair material currently commercially available in Korea. A cubic specimen sized
50 mm × 50 mm × 50 mm was prepared and initially cured for 24 h. After initial curing,
the demolded specimen was cured underwater, and compressive strength was measured at
1, 7, and 28 days (Figure 4). The compressive strength was measured twice for each age of
the material for accuracy, and the mean strength under each condition was reported.
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2.3.4. Flexural Strength

The flexural strength of the repair material was determined in accordance with KS F
2476 [20]. Three prismatic specimens sized 40 mm × 40 mm × 160 mm were prepared for
each mixture. The specimens were cured under the same conditions as the compressive
strength specimens. The flexural strength was measured at 7 and 28 days, with a target
strength of 8 MPa at 28 days (Figure 5). It was measured twice for each age of the material
for accuracy, and the mean strength under each condition was reported.
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3. Experimental Results
3.1. Flow Test

Figure 6 shows the W/B ratio when the target flow value of 200 ± 10 mm was satisfied
(Figure 6a for C:S = 1:1, Figure 6b for 1:1.5). The flow patterns were similar with respect
to wollastonite mineral fiber and SB latex levels. The W/B ratio required to satisfy the
target flow value increased with increasing amounts of wollastonite mineral fiber, whereas
there was no change in flow value upon increasing the amount of latex. When wollastonite
mineral fiber and latex were added together, the W/B ratio required to satisfy the target
flow value decreased with the usage of latex increasing from 5% to 7% for mixtures with
wollastonite mineral fiber amounts of 3% and 5%.
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For similar workability, the W/B ratio increased with increasing amounts of wollas-
tonite and decreased with increasing amounts of latex. The surfactant and polymer particles
of the latex improved workability. However, the needle-shaped fine wollastonite fibers
increased interactions within the cement paste; thus, similar workability was achieved by
increasing the W/B ratio as the amounts of wollastonite fibers increased [24,25]. The W/B
ratio for the C:S ratio of 1:1.5 was always lower than that for the 1:1 case. This means that
the rough surface of silica sand particles was partially accounted for [26]. The unit weight
of cement for a C:S = 1:1.5 mix was lower than that for a 1:1 mix; thus, it was smaller than
the required unit quantity to secure the target flow value of a mixture at C:S = 1:1.5 than for
one at 1:1.

3.2. The Heat of Hydration Measurement

Figure 7 shows the time–temperature curves for all studied mix proportions (Figure 7a
for C:S = 1:1; Figure 7b for 1:1.5). According to measurements of the heat of hydration
for 24 h, the curves show that all mixes reached maximum temperature within 3 h, and
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the heat of hydration continued to decline at 5 h. Similar trends were observed at the two
C:S ratios. Increasing the amounts of wollastonite fibers only slightly decreased or had no
effect on the heat of hydration, compared with the control without wollastonite fibers and
latex (M0L0). The addition of more latex significantly decreased the heat of hydration. For
the mixtures containing 3 and 5 wt.% wollastonite fibers, increasing the amount of latex
from 0 to 5 or 7 wt.% decreased the heat of hydration. The heat of hydration was, thus,
marginally affected by the addition of wollastonite fibers only; it was strongly affected
by amounts of latex, regardless of whether latex was combined with wollastonite fibers.
These results confirm that latex delayed the hydration reaction. Previous studies have
noted that wollastonite mineral fiber decreases the heat of hydration [27]. Figure 8 shows a
comparison of the maximum temperature within the mortar for the various mixes. The
maximum temperature for the C:S of 1:1.5 mixtures was 15% lower than that for the 1:1
mixtures because the unit weight of cement was less than C:S of 1:1.
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3.2.1. Compressive Strength

Figure 9 shows the change in compressive strength with age. The C:S 1:1 and 1:1.5
mixes were similarly affected by the addition of wollastonite and latex (Figure 9a for 1:1;
Figure 9b for 1:1). All mixes satisfied the target compressive strength of 20 MPa at 1 day
and 40 MPa at 28 days. The compressive strength decreased with increasing amounts of
wollastonite fibers and latex because the unit weight of cement decreased with increasing
amounts of wollastonite fibers and latex. This resulted in weaker bonding between the
polymer and the aggregate, leading to lower compressive strength [16,28]. Suppression of
the hydration reaction by a latex film also decreases compressive strength [16,28]. Figure 10
shows a comparison of the compressive strength at 28 days for the various mix proportions.
Mixes at the 1:1 and 1:1.5 ratios satisfied the target strength at 28 days. However, the
compressive strengths of the mixes at 1:1.5 were approximately 10% lower than those of
the 1:1 mixtures due to the use of a different unit weight of cement.

3.2.2. Flexural Strength

Figure 11 compares the flexural strength of the various mixes. All mixes satisfied the
target flexural strength of 8 MPa at 28 days. Mixes at the C:S ratios of 1:1 and 1:1.5 were
similarly affected by wollastonite fibers and latex. Flexural strength increased with the
increasing addition of wollastonite fibers and latex. When amounts of wollastonite fibers
were fixed at 3 and 5 wt.% and the amount of latex was increased from 0 to 5 or 7 wt.%, the
flexural strength increased with increasing latex addition from 0 to 5 wt.%. However, it
was not significantly higher than for the mix with 7 wt.% latex. For the C:S ratio of 1:1.5,
the flexural strength of the M3L5 and M3L7 mix was higher than that of the M5L5 and
M5L7 mix. Figure 12 compares the flexural strength at 28 days for the various mixes. All
mixes at the 1:1 and 1:1.5 ratios satisfied the target flexural strength at 28 days.
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3.2.3. Determination of Mixing Ratio

As a result, Table 6 suggests the optimal mix proportion as a repair material satisfying
the target properties for the spray method: 200 ± 10 mm for flow, 20 MPa at 1 day and
45 MPa at 28 days for compressive strength, and 8 MPa at 28 days for flexural strength.

Table 6. Determination of mix ratio.

Type of Mix W/B
(%)

Unit Weight (kg/m3)

Wollastonite Mineral Fibers SB LatexWater
Binder (B, C:S = 1:1.5)

Cement Silica Sand (#6)

M3L5 12.2 222 728 1092 B × 3 wt.% B × 5 wt.%

4. Conclusions

This study evaluated the properties of high-early-strength cement-based repair ma-
terials containing wollastonite mineral fiber and SB latex when the binder ratio differed
through flow, along with the heat of hydration; compressive and flexural strength tests
were also conducted. This study suggested a mixed proportion of the repair materials.
Some conclusions are drawn below.

As the flow test result, the W/B ratio required to satisfy the target flow value increased
with the increasing amount of wollastonite fibers, but decreased with the increasing amount
of SB latex at C:S ratios of 1:1 and 1:1.5. When only wollastonite mineral fibers were added,
a higher W/B ratio was needed to satisfy the target flow value, while the amounts of SB
latex could be reduced such that the target flow value was attained.

The heat of hydration measurements for C:S ratio mixes of 1:1 and 1:1.5 confirmed that
the heat of hydration did not significantly decrease compared with the M0L0 (the control)
when increasing the addition of wollastonite fibers. However, mixes that added SB latex
only or wollastonite fibers and SB latex together showed a lower temperature of the heat of
hydration, and the temperature curves rose gently. Notably, this pattern was clear for the
C:S = 1:1.5 mixes.

All studied mixtures met the target compressive strength of at least 45 MPa at C:S
ratios of 1:1 and 1:1.5. The compressive strength decreased with increasing amounts of
wollastonite fibers and SB latex. The compressive strength of C:S = 1:1 mixes was higher
than that of C:S = 1:1.5 mixes.

For flexural strength, all mixtures met the target of at least 8 MPa for C:S 1:1 and 1:1.5
mixes. Notably, the flexural strength increased with increasing amounts of wollastonite
mineral fibers and SB latex. In the case of the C:S = 1:1.5 mix, the flexural strength of the
M3L5 and M3L7 mixes was higher than that of the M5L5 and M5L7 mixes. The flexural
strength of the C:S = 1:1.5 mixes was 5% higher than that of the C:S 1:1 mix.

The determined mix proportion satisfied the target properties of high-early-strength
cement-based repair materials using 3 wt.% wollastonite fiber and 5 wt.% SB latex for a C:S
ratio of 1:1.5.
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