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Abstract: The escalating demand for sustainable and high-performance energy storage systems
has led to the exploration of alternative battery technologies for lithium-ion batteries. Sodium-ion
batteries (SIBs) and potassium-ion batteries (PIBs) have emerged as promising candidates because of
their abundant Na/K resources, inexpensive costs, and similar chemistries to lithium-ion batteries.
However, inherent challenges, such as large ionic radii, sluggish kinetics, and serious volume
expansion, necessitate the development of robust and efficient anode materials for SIBs and PIBs.
Vanadium nitride has attracted increasing attention as a viable anode due to its high electronic
conductivity and potential capacity. In this study, we report on a flexible electrode for SIBs and PIBs
that creates binder-free anodes by synthesizing vanadium nitride nanoparticles grown directly on
carbon fiber cloths (VN/CFC). The unique architecture and binder-free nature of this anode ensure
a robust electrode–electrolyte interface and enhance its electron/ion transport kinetics. The results
demonstrate that the material exhibits an outstanding specific discharge capacity of 227 mAh g−1

after undergoing 1000 cycles at a current density of 2 A g−1 for SIBs. An electrochemical analysis
indicated that the excellent performance of the material is attributed to the bind-free structure of
carbon fiber cloth and the fast kinetics of surface pseudo-capacitive contribution. Furthermore, the
material continues to demonstrate an impressive performance, even for PIBs, with a specific discharge
capacity of 125 mAh g−1 after 1000 cycles at a current density of 1 A g−1. This study provides a new
perspective for designing and developing advanced binder-free anodes for the storage of sodium
and potassium ions, paving the way for high-performance energy storage applications.

Keywords: vanadium nitride; anode; carbon fiber cloth; sodium-ion batteries; potassium-ion batteries

1. Introduction

The rapid development of portable electronic devices and electric vehicles has in-
creased demands for high-performance energy storage systems [1]. Among various energy
storage technologies, lithium-ion batteries (LIBs) are the mainstream electrochemical energy
storage containers because of their high energy density and long cycle life [2–4]. However,
with the continuous expansion of market demands, the issues of limited lithium resources
and rising costs are becoming increasingly prominent. This has prompted researchers to
focus on possible alternative systems for lithium-ion batteries [5–7].

Sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) have emerged as
promising candidates because of their similar working principles to LIBs, abundant re-
sources, and inexpensive costs [8–12]. Yet, the practical applications of SIBs and PIBs
are hindered by the large ionic radii of potassium and sodium ions, which lead to slug-
gish kinetics and serious volume expansion during the charge–discharge process [13].
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The development of robust and efficient anode materials for SIBs and PIBs is, therefore,
of critical importance. Carbonaceous materials, alloy reaction materials, and transition
metal oxides/sulfides have been extensively researched in the literature due to their re-
spective advantages [7]. Among these, some electrode materials have excellent Faraday
quasi-capacitance and a wide electrochemical potential window, such as transition metal
oxides [14–16], transition metal nitrides [17–19], and transition metal sulfides [20,21], which
are promising anode materials for sodium-/potassium-ion batteries [22–29]. Vanadium
nitride (VN), a typical transition metal nitride, belongs to a cubic crystal system with
the space group Fm3m and a cell parameter of a = 4.13916 nm. It has attracted much
attention due to its high theoretical capacity, good electronic conductivity, and excellent
structural stability [30,31]. For example, Yuan [32] reported that VNQD@NC HSs, with
nanocrystalline sizes that are significantly decreased compared to VN, and their distinctive
hollow nanohybrids have excellent electrochemical properties. VN displayed a reversible
capacity of 306 mAh g−1 over 1400 cycles at a current density of 1 A g−1. As previously
reported, to further improve the performance of VN anodes, designing nanostructures,
combining vanadium nitride with carbon-based materials, and doping have been identified
as effective strategies [33,34].

Therefore, in this study, we report on a novel method to grow VN nanoparticles
directly on carbon fiber cloths (VN/CFC) to create a binder-free anode for both SIBs and
PIBs. Carbon fiber cloth is a commonly used flexible substrate with a high conductivity.
The prepared composite material can be directly used as an electrode and then assembled
into a battery, avoiding the use of adhesives and conductive agents. The binder-free nature
of the VN/CFC anode not only ensures a robust electrode–electrolyte interface but also
enhances the electron/ion transport kinetics. The VN/CFC anode exhibited impressive
electrochemical performances for SIBs and PIBs, showing an outstanding specific discharge
capacity of 227 mAh g−1 after undergoing 1000 cycles at a current density of 2 A g−1 for
SIBs and a specific discharge capacity of 125 mAh g−1 after 1000 cycles at 1 A g−1 for PIBs.
An electrochemical analysis indicated that its excellent performance is attributed to the
bind-free structure of carbon fiber cloths and the fast kinetics of the pseudo-capacitive con-
tribution of the surface. The results demonstrate the anode’s potential in high-performance
energy storage applications. This study provides a new perspective for designing and
developing advanced binder-free anodes for storing sodium and potassium ions.

2. Experimental Section
2.1. Synthesis of VN/Carbon Fiber Cloth and VN Powder

Firstly, the commercial carbon fiber cloth was oxidized to obtain the treated carbon
fiber cloth for subsequent experiments. The detailed steps are as follows: cut 0.5 g of the
commercial carbon fiber cloth and place it in the mixed solution of sulfuric acid (H2SO4,
95 wt.%, 20 mL) and nitric acid (HNO3, 65 wt.%, 10 mL). Keep stirring and slowly add 3 g
of potassium permanganate (KMnO4) into the solution. The whole process was carried out
in an ice-water bath so that the temperature of the mixed solution was lower than 10 ◦C,
and the next step was carried out after 3 h. Then, 100 mL of deionized water was added to
the solution, and the whole process was controlled at a temperature lower than 25 ◦C. After
stirring for 6 h, hydrogen peroxide (H2O2, 30 wt.%, 10 mL) was added to the solution. The
oxidation process lasted for 30 min. The treated carbon fiber cloth was taken out, washed
repeatedly with deionized water and ethanol, and then dried in an oven at 60 ◦C for 12 h.

Then, the precursor grown on carbon fiber cloth was prepared. While stirring, 0.265 g
of vanadyl acetylacetonate was added to 25 mL of isopropanol. Ultrasonic treatment was
performed for 15 min, and then the stirring and ultrasonic treatment process was repeated
again. The mixed solution was poured into a stainless-steel autoclave of 100 mL capacity,
and a piece of the treated carbon fiber cloth was immersed in the reactor and maintained
at 160 ◦C for 24 h. After naturally cooling down, the sample was repeatedly washed with
deionized water and ethanol and then dried to obtain the carbon fiber cloth precursor.
Finally, the carbon fiber cloth precursor was calcined in a NH3 atmosphere at 550 ◦C for
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2 h to obtain the VN nanoparticles grown on the carbon fiber cloth (VN/CFC). During
the preparation process, the powder obtained after hydrothermal treatment was mainly
vanadium oxide, and VN was obtained after calcination in the NH3 atmosphere. The
transformation that occurs during the preparation process is as follows:

C10H14O5 V→ VxOy·nH2O→ VN

For comparison, VN powder was also prepared without adding CFC. The solution
without the addition of treated carbon fiber cloth was centrifuged after the hydrothermal
process and dried overnight to obtain the powder precursor. The comparative sample was
obtained under the same nitriding condition.

2.2. Characterization Techniques

Scanning electron microscopy (JSM-7610FPlus, JEOL, Tokyo, Japan) was used to
observe the morphologies of the prepared samples. Furthermore, the microstructure
information was investigated via high-resolution transmission electron microscopy (HR-
TEM, FEI Tecnai G2 F20 instrument, Stanford, CA, USA). The crystal structure of the
prepared VN/CFC and VN samples was investigated via XRD, measured using TTR III
X-ray diffraction with Cu Kα radiation (λ = 1.54178 Å, Rigaku, Tokyo, Japan) in the range of
5◦~80◦. Raman spectra (Renishaw InVia Qontor, London, UK) were used to determine the
structural information of samples. The chemical composition of VN/CFC was determined
using X-ray photoelectron spectroscopy (XPS) analysis via a Thermo Fisher Scientific
ESCALAB Xi+ instrument (Carlsbad, CA, USA).

2.3. Electrochemical Measurements

Flexible VN/CFC can be directly assembled as binder-free SIB and PIB anodes by
cutting them into small pieces of 0.8 cm × 0.8 cm. In contrast, the VN sample was mixed
with the binder polyvinylidene fluoride (PVDF) and the conductive agent (Super P) at a
ratio of 8:1:1 in the preparation of the electrode, and the appropriate amount of NMP was
added to obtain a slurry after mixing evenly. Then, the slurry was uniformly poured on
a copper foil, dried in a vacuum oven at 80 ◦C for 10 h, and finally cut into small round
pieces with a diameter of 12 mm.

We assembled the CR2016 coin cells used for testing in an argon glove box (O2 and
H2O contents ≤ 0.1 ppm). The metallic Na and K foils were employed as the counter
electrodes. The electrolyte of SIB is composed of 1 M NaPF6 dissolved in a 1:1 (volume)
mixture of dimethyl carbonate (DMC)/ethylene carbonate (EC), adding 5 vol% fluorinated
ethylene carbonates (FEC). Furthermore, a 0.8 M KPF6 dissolved in ethylene carbonate (EC)
and diethyl carbonate (DEC) (taken at a 1:1 volume ratio) was employed as an electrolyte
for PIBs. The GF/D glass fiber filter was used as a separator.

In the voltage range of 0.01~3 V, a CT2001A battery tester (manufactured by the
LAND Electronic Co. Wuhan, China) was used to test the galvanostatic charge–discharge
performances of the battery. Cyclic voltammetry (CV) at different sweep rates and electro-
chemical impedance spectroscopy (EIS) in the frequency range from 100 kHz to 0.01 kHz
were employed in the CHI-600C workstation (CHI-600C, Shanghai, China).

It involved establishing a correlation between the current dependence and the sweep
rate (v), influenced by the charge–storage process. Equation (1) was used for this purpose,
with a representing a constant and b representing the power-law exponent. log (i)–log (v) of
the redox peaks (Equation (2)) was plotted to obtain the value of b, providing qualitative
information about the kinetics of the charge storage mechanism [35].

I = avb (1)

or
logI = blogv + loga (2)
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when b is equal to 0.5, this indicates that the redox peak current is directly proportional to
the square root of the sweep rate, suggesting a diffusion-controlled faradaic charge–storage
process. On the other hand, as the b value approaches 1.0, it reveals a linear relationship
between the peak current and the scan rate v, indicating a surface-controlled capacitor-like
electrochemical response [36].

Equations (3) and (4) are as follows:

i (V) = k1v + k2v1/2 (3)

i/v1/2 = k1v1/2 + k2 (4)

The current response at a fixed potential consisted of two distinct contributions:
surface-capacitive and diffusion-controlled contributions. These two processes are de-
scribed using constants k1 and k2, respectively.

3. Results and Discussion

The successful synthesis of VN/CFC composites is schematically illustrated in Figure 1.
Here, vanadyl acetylacetonate serves as a source of vanadium. The treated carbon fiber
cloth was used as a flexible substrate to obtain the carbon fiber cloth precursor. After the
subsequent calcine process at 550 ◦C in NH3, the precursor was finally converted into the
flexible 3D electrode material, VN/CFC.
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Figure 1. The preparation route of VN/CFC composite material.

From the SEM images, we can observe that there are a lot of impurities on the surface
of a commercial carbon cloth (Figure S1a,b). After being treated with strong acid, the
surface is significantly cleaner (Figure S1c,d). In addition, the surface of the treated carbon
fiber has clearer folds, which may be due to the action of strong acids. The surface of the
carbon fiber was oxidized, which deepened the depression of the surface. Simultaneously, a
set of highly reactive groups, including hydroxyl and carboxylic groups, were incorporated
into the material to render it hydrophilic. This modification facilitated the preparation
conditions for the subsequent solvothermal loading of vanadium nitride.

Vanadium oxide was uniformly grown on the surface of CFC with a nanoflower mor-
phology after hydrothermal heating for 24 h (Figure 2a,b). The morphology of nanoflower
disappeared after calcination, but the active material VN is well deposited over the CFC
substrate without any notable signs of agglomeration and cracking (Figure 2c,d). This mor-
phology facilitates an increase in the contact area of the electrolyte and a reduction in the
volume expansion effect, which is of great significance for improving the electrochemical
performance of SIBs and PIBs. The morphology (Figure S2a,b) of the VN powder precursor
is consistent with that of the adherents on the surface of the carbon cloth precursor and
consists of many small crystals agglomerated together. After nitriding, the petal-like mor-
phology disappeared, but the state of particle aggregation did not change (Figure S2c,d).
Elements V and N are also clearly visible in the mapping (Figure S2e), proving the existence
of these two elements. The HRTEM image (Figure 2f) shows that the d-spacing value
of the lattice fringe (0.240 and 0.205 nm) correspond to the (111) and (200) planes of VN,
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respectively. In addition, the HRTEM images (Figure 2f) show that the exfoliated samples
are composed of multiple vanadium nitride crystal particles clustered together. Combined
with the SEM image (Figure 2c,d), it can be judged that vanadium nitride particles grow
on and completely cover the surface of the carbon fiber like bark. Figure 2g shows the
selected area electron diffraction (SAED) patterns, which reveal several rings ascribed to
the (111), (200), and (220) diffraction planes of VN. The energy-dispersive spectroscopy
(EDS) elemental mapping images definitely indicate the co-existence of C, N, O, and V
elements in the VN/CFC (Figure 2h).
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Figure 2. SEM micrographs of (a,b) carbon fiber cloth precursor, (c,d) VN/CFC, (e) TEM image, (f)
HRTEM image, (g) SAED patterns, and (h) the corresponding element mappings obtained for the
VN/CFC.

The diffraction peaks of the VN powder and VN/CFC can be well indexed to JCPDS
card No. 89-7381. However, unlike the VN powder, the VN/CFC pattern shows a broad
peak at about 25.7◦, which is attributed to the CFC. XRD peaks observed for both samples
at 38.3◦, 44.2◦, 64.4◦, and 77.2◦ are ascribed to the (111), (200), (220), and (311) planes of
VN, respectively. No other peaks are visible (Figure 3a). The Raman spectra of VN/CFC
are shown in Figure 3b. We can clearly observe the D-band at 1344.9 cm−1 and G-band at
1601.5 cm−1. The intensity ratio between the D-band and G-band is 1.054, confirming the
amorphous characteristics of the as-prepared VN/CFC. The elemental compositions and
valence states of VN/CFC were revealed using XPS, showing the existence of C, N, O, and
V elements (Figure 3c).
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Figure 3. (a) XRD patterns of VN powder and VN/CFC, (b) Raman spectra of VN/CFC, (c) survey and
high-resolution (d) C 1s (e) N 1s and (f) V 2p spectra recorded for the VN/CFC composite material.

The high-resolution C 1s spectrum revealed peaks at 284.8 and 285.5, which were as-
signed to C-C and C-N, respectively (see Figure 3d) [13]. The high-resolution N 1s spectrum
of the VN/CFC contained three peaks at 397.0, 398.7, and 401.2 eV, which were associated
with the V-N bond, V-O-N bond, and graphite N bond, respectively (see Figure 3e) [37]. The
peaks at 530.5 and 531.8 agreed with the V-O and C-O bond configurations, respectively
(see Figure S3). The high-resolution V 2p spectrum showed peak pairs at 514.7/522.1 and
517.0/524.8 eV, dominating with V-N and V-O bonds, respectively (see Figure 3f) [38].
These results indicate the successful synthesis of the VN/CFC.

The electrochemical performance of VN/CFC and VN was then systematically mea-
sured by assembling sodium-ion batteries. The cyclic voltammetry (CV) curves of the
VN/CFC and VN-based sodium-ion batteries at 0.1 mV s−1 V (vs. Na/Na+) are shown
in Figures 4a and S4 with a voltage range from 0.01 V to 3 V. In the first cathodic scan
(Figure 4a), the broad peak at around 1.03 V, which disappears in the subsequent cycle, is
related to the generation of a solid electrolyte interface (SEI) film. In the anodic process,
the peak at 0.549 V became sharp until the third and fourth cycles. For VN cells, similar to
VN/CFC, there is a significant reduction peak at 1.05 V in the first cycle, which indicates
the generation of an SEI film (Figure S4) [34]. In addition, there are two reduction peaks
near 0.55 V and 0.39 V, which were not seen in the VN/CFC samples because the peaks of
the carbon cloth were too strong. The nearly overlapping CV curves during the second and
third cycles indicate the high reversibility of the VN electrode, but the response current
is not significant. The reaction mechanism during the charge–discharge process can be
summarized as follows:

VN + xNa+ + xe− ↔ NaxVN.
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The electrochemical cycling performance of the VN/CFC at a current density of
100 mA g−1 is shown in Figure 4b. The discharge–charge capacities of the VN/CFC-based
battery were 583.7 mAh g−1 and 362.9 mAh g−1 during the initial cycle, which showed a
large capacity decline with a coulombic efficiency (CE) of 62.17%. The capacity decline in
the first cycle corresponds to the CV curve in Figure 4a, most likely due to the generation of
SEI films [39]. After 100 cycles, the VN/CFC electrode exhibits a relatively high discharge
capacity of 368.4 mAh g−1, compared with 97.2 mAh g−1 for VN, which may be due
to the agglomeration of the material and the poor conductivity of the inactive binder.
The VN electrode displays a discharge capacity of 260 mAh g−1 and a charge capacity
of 108.0 mAh g−1 with a CE of 41.44% in the first cycle (Figure 4b). The galvanostatic
discharge–charge curves of the VN/CFC SIBs electrodes at 0.1 A g−1 at the 1st, 2nd,
5th, 10th, 50th, and 100th cycles are shown in Figure 4c. As seen in the corresponding
charge–discharge curve in Figure S5, after a large capacity loss in the first circle, the
charge–discharge curve of the subsequent cycle has a higher degree of coincidence, but its
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capacity performance is worse than that of the VN/CFC sample. Figure S6 shows the cycle
performance of CFC for SIBs and PIBs at 0.1 A g−1 current density. We can see that CFC, as
a typical carbon material, also has a certain capacity for storing sodium/potassium when
used alone as an anode. Notably, the VN/CFC electrode completely avoids the addition of
a conductive agent and binder, reducing the capacity loss and further resulting in excellent
electrochemical performances.

The rate capabilities of VN/CFC show outstanding average discharge-specific capaci-
ties of 433.3, 330.9, 299.6, 279.7, 236.9, and 174.9 mAh g−1 at various current densities of
0.1 0.2, 0.5, 1, 2, and 5 A g−1, respectively (Figure 4d). When the current density reverses
from 5 to 0.1 A g−1, the discharge capacity of VN/CFC regained 350.2 mAh g−1. The
excellent performance of VN/CFC-based SIBs proves the superiority of this structure. In
addition, it was found that VN/CFC exhibits a relatively high capacity of 227 mAh g−1 after
1000 cycles at 2.0 A g−1, proving that the material can still have an excellent performance
under a high current density for long-term cycling (Figure 4e).

The CV curves of VN/CFC-based SIBs were tested at different scanning rates (0.2,
0.5, 1, and 2 mV s−1) in the voltage range of 0.01~3 V to study their electrochemical
kinetic properties (Figure 5). It can be seen from Figure 5a that there are similar shapes
in all CV curves. In addition, Figure 5b shows that the b values of peak 1 and peak 2
are 0.90 and 0.87, respectively (calculated according to Formula (1) or (2), where a and
b are variable parameters, i is the peak current, and v is the sweep rate), indicating that
the electrochemical reaction is more controlled via pseudo capacitance [40]. The ratio of
the capacitive contribution can be expressed by Formula (3) or (4) [41]. According to the
calculations, the contribution rates of capacitance control are 68.5%, 91.5%, 92.1%, and
96.4% when the scanning rates are 0.2, 0.5, 1, and 2 mV s−1, respectively (Figure 5d). As the
scanning rate increases, the contribution of capacitance control increases, which further
demonstrates that the capacitive contribution plays a main role in the VN/CFC material.
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The morphology of the VN/CFC electrode after 10 cycles at the current density of
0.5 A g−1 was observed, as shown in Figure S7, revealing that the structure of VN/CFC is as
same as the images before cycling, further indicating that the VN/CFC is reversible during
harsh sodiation/desodiation processes. This shows that VN/CFC anode materials have
outstanding structural stability and play an important role in improving the performance
of SIBs. The EIS spectra of VN and VN/CFC before cycling are compared in Figure S8.
The value of charge transfer resistances (Rct) for VN/CFC is about 920.3 Ω, which is lower
than 4280 Ω of VN. It can be seen from this result that the performance of VN/CFC anode
materials in sodium-ion batteries is better than that of VN because the overall conductivity
of the composite material is improved after the introduction of conductive carbon materials.

The VN/CFC and VN powder electrodes of the storage properties for the potassium-
ion were investigated using CR2016 coin-type K-half-cells. As seen in the CV curves
(scanning rate of 0.1 mV s−1 with a potential window from 0.01 to 3 V (vs. K/K+) of the
VN/CFC electrode) in Figure 6a, a cathodic peak appeared near 0.72 V only in the first
cycle, which could be explained by the formation of an SEI film [42]. In the oxidation
process, there is a clear oxidation peak at 0.88 V.
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(0.1 A g−1), (d) rate, and (e) long life cycling performance (1 A g−1) of the VN/CFC anode in
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The VN/CFC-based PIB electrodes demonstrate a superior cycle capability at 0.1 A g−1

current density, as shown in Figure 6b. They achieved a discharge capacity of 434.2 mAh g−1

in the first cycle with an initial CE value of 65.44%. The low CE value is in good agreement
with the previous analysis. The VN/CFC could deliver a stable capacity of 204.9 mAh g−1

after 150 cycles. The discharge–charge profiles of the VN/CFC electrode in the initial three
cycles at a current density of 0.1 A g−1 are presented in Figure 6c. Although the formation
of an SEI film caused a large capacity loss in the first cycle, the charge–discharge curves
coincided with each other in the subsequent cycles, and the capacity remained stable.

The rate performance of the VN/CFC electrode in the potassium-ion battery was fur-
ther evaluated at different current densities from 0.1 to 5 (Figure 6d). The average discharge
specific capacities values could reach 298.9, 204.3, 173.6, 141.5, 100.0, and 72.3 mAh g−1

at the current densities of 0.1, 0.2, 0.5, 1, 2, and 5 A g−1, respectively. An excellent dis-
charge capacity of 214.3 mA h g−1 could be recovered when the current density returned to
0.1 A g−1. An excellent cycling stability of 125.0 mAh g−1 was achieved after 1000 cycles of
the VN/CFC electrode at a high current density of 1 A g−1.

As a type of new vanadium-based anode material, these results for electrochemical
performance highlight that the VN/CFC is not inferior to other reported vanadium-based
sodium/potassium anode materials, which are shown in Table 1. Therefore, there is an
excellent application prospect for VN/CFC materials in the field of energy storage.

Table 1. Electrochemical performance comparison of the VN/CFC with other V-based anode materials
for SIBs/PIBs.

Sample Fields Current Density
(A g−1) Cycle Number

Capacity
Retention
(mAh g−1)

VN@CF [30] SIBs 0.1 500 204
VNQD@NC HSs

[32] SIBs 1 1400 306

VN/CNFs [37] SIBs 2 4000 237
VN@rGO [43] SIBs 1 10,000 155

VN-QDs/CM [19] PIBs 0.1 100 228
V2O3@PNCNFs

[44] PIBs 0.05 500 230

VS4/SnS@C [45] PIBs 1 6000 168.4
FeVO4/C

composite [46] PIBs 0.3 2000 250

VN [47] SIBs 0.2 100 156.1

VN/CFC
SIBs

0.1 100 368.4
2 1000 227.0

PIBs
0.1 150 204.9
1 1000 125.0

4. Conclusions

In this study, we report on an efficient hydrothermal strategy to obtain a flexible self-
supporting 3D electrode material VN/CFC. Compared with VN powders, the VN/CFC
has a splendid electrochemical performance with SIB/LIB anodes. Using this material,
additional conductive agents and binders, which could reduce the introduction of non-
conductive components, can be avoided, thus reducing the capacity loss of active materials
in the cycle process. In addition, this material benefits from the excellent electrical conduc-
tivity of the carbon fiber cloth, with evenly loaded VN and excellent pseudo capacitance
characteristics of VN material. This unique support structure can alleviate the volume
change in the cycle process and effectively prevent the aggregation of VN particles in the
cycle process. In brief, a VN/CFC anode with an excellent Na/K storage performance has
great potential in the application of flexible SIB/PIB anodes.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ma16175820/s1, Figure S1: Vanadium Nitride Nanoparticles Grown
on Carbon Fiber Cloth as an Advanced Binder-Free Anode for the Storage of Sodium and Potassium Ions.

https://www.mdpi.com/article/10.3390/ma16175820/s1
https://www.mdpi.com/article/10.3390/ma16175820/s1
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Figure S2: SEM micrographs of (a,b) VN precursor, (c,d) VN, (e) HAADF images and corresponding
elemental mapping distribution of VN. Figure S3: High-resolution O 1s spectra recorded for the VN/CFC
composite material. Figure S4: CV curve of VN at a scan rate of 0.1 mV s−1 between 0.01 and 3 V.
Figure S5: Galvanostatic charge-discharge curves of VN-based anodes at 0.1 A g−1 rate. Figure S6: Cycle
performance of CFC for SIBs and PIBs at 0.1 A g−1 current density. Figure S7: The ex-situ SEM images
of VN/CFC electrode after 10 cycles at a current density of 0.5 A g−1. Figure S8: Nyquist plots of VN
powder and VN/CFC as the anode materials for SIBs before cycling.
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