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Abstract: Dielectric elastomers (DEs) are a class of electro-active polymers (EAPs) that can deform
under electric stimuli and have great application potential in bionic robots, biomedical devices,
energy harvesters, and many other areas due to their outstanding deformation abilities. It has been
found that stretching rate, temperature, and electric field have significant effects on the stress-strain
relations of DEs, which may result in the failure of DEs in their applications. Thus, this paper aims to
develop a thermo-electro-viscoelastic model for DEs at finite deformation and simulate the highly
nonlinear stress-strain relations of DEs under various thermo-electro-mechanical loading conditions.
To do so, a thermodynamically consistent continuum theoretical framework is developed for thermo-
electro-mechanically coupling problems, and then specific constitutive equations are given to describe
the thermo-electro-viscoelastic behaviors of DEs. Furthermore, the present model is fitted with the
experimental data of VHB4905 to determine a temperature-dependent function of the equilibrium
modulus. A comparison of the nonlinear loading-unloading curves between the model prediction
and the experimental data of VHB4905 at various thermo-electro-mechanical loading conditions
verifies the present model and shows its ability to simulate the thermo-electro-viscoelastic behaviors
of DEs. Simultaneously, the results reveal the softening phenomena and the instant pre-stretch
induced by temperature and the electric field, respectively. This work is conducive to analyzing the
failure of DEs in functionalities and structures from theoretical aspects at various thermo-electro-
mechanical conditions.

Keywords: dielectric elastomers; thermo-electro-viscoelasticity; finite deformation; thermodynamic consistency

1. Introduction

Electro-active polymers (EAPs) that deform under electric stimuli are emerging as
promising materials for wide applications such as actuators and sensors [1]. Among
various types of EAPs, dielectric elastomers (DEs) have attracted more attention in recent
years due to their outstanding deformation abilities (about 50–380%), high energy density,
fast response speed, light weight, and mechanical compliance [2], and have found their
potential applications in bionic robots [3,4], biomedical devices [5,6], energy harvesters [7,8],
flexible electronic devices [9,10] and so on. However, DEs may fail in their functionalities
and structures when subjected to complicated or extreme environments. For example, a
common design of DE film [11,12] or DE tube [13] may wrinkle or buckle because of the
deformation induced by the interaction of charges with opposite signs on neighboring
surfaces when an electric field is applied along the thickness direction. Besides, temperature
fluctuations can influence the rate-dependent stress-strain relation and cause the electric
and mechanical instability of DEs by changing their material properties [14,15]. Therefore,
studying the thermo-electro-mechanically coupled process of DEs is of great significance in
the development of DE materials and devices.
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In the past few years, it has been long observed from experiments that the mechanical
responses of DEs are highly rate-dependent [16,17]. The viscous dissipation energy, repre-
sented by the area between the loading and unloading curves, varies with the stretching
rate. Later, a number of experimental tests, including single-step and multi-step relaxation
tests and cyclic loading-unloading tests, were performed by Hossain and co-workers [18–20]
to find that the viscoelastic behavior of the commonly used DE polymer VHB4910 was also
sensitive to temperature and electric field. In particular, an increasing temperature can sig-
nificantly soften the materials. Recently, Mehnert et al. [21] conducted more comprehensive
tests, showing that temperature has a more pronounced effect on the viscoelastic behavior
of DE polymer VHB4905 than an electric field.

At the same time, some phenomenological or physics-based models have also been
established to simulate the viscoelasticity of DEs [22–25]. However, to the best of our knowl-
edge, most of these models can only consider the thermo-mechanical or electro-mechanical
behaviors of DEs. For example, Mehnert et al. [26] proposed an electro-viscoelastic model
for DE polymer VHB4905 at room temperature without consideration of temperature fluc-
tuation, while Alkhoury et al. [27] established a thermo-mechanical model to describe the
significant viscoelasticity reduction of VHB4910 due to temperature increase, ignoring the
effect of an electric field. Very few constitutive models were developed to describe the
thermo-electro-viscoelastic behaviors of DEs. Although Mehnert et al. [28] proposed a theo-
retical model for dielectric elastomers with coupling thermo-electro-mechanical behaviors,
for which temperature-dependent scaling functions were introduced to modify the elastic
and viscous energy contributions in order to reflect the softening of materials induced
by increasing temperature, the scaling functions were inconsistent and lacked a physical
basis. Moreover, the used Yeoh-type and Neo-Hookean-type energy functions could not
capture the strain-stiffening effect well, and the instant pre-stretch was not simulated in the
theoretical model.

Therefore, in this paper, we aim to develop a thermo-electro-viscoelastic model for
DEs at finite deformation and verify this model by using available experimental data from
the literature. First, a thermodynamically consistent model for thermo-electro-mechanically
coupling problems at finite deformation is established by considering the Gauss law and
the electric contribution to the energy balance on the foundation of the classical thermo-
mechanically coupling theoretical framework. Second, the viscoelasticity of DEs is de-
scribed by a rheological model consisting of an elastic ground network and several parallel
viscous subnetworks, whose elastic deformations are assumed to be incompressible and
moduli to be temperature-dependent. The Gent model [29], which takes the strain-stiffening
effect into consideration, is employed to represent the equilibrium and non-equilibrium
elastic free energies, and Lagrange multipliers are used to impose the elastic deformation
incompressibility of both ground networks and subnetworks. Finally, for model verification,
we simulate the loading-unloading curves of VHB4905 at various thermo-mechanically
and thermo-electric-mechanically coupling conditions and compare theoretical results with
experimental data from Mehnert et al. [21] and Liao et al. [20].

The remainder of this paper is organized as follows: In Section 2, a continuum theoret-
ical framework for thermo-electro-mechanically coupling problems is given, and constitu-
tive equations, including the state and evolving equations, are derived. In Section 3, based
on the proposed theoretical framework, specific constitutive equations are given and the
thermo-electro-viscoelastic behaviors of VHB4905 are modeled. Finally, conclusions are
given in Section 4.

2. Theoretical Framework
2.1. Kinematics

Consider a DE body B0 bounded by the surface ∂B0, which is defined in a fixed
reference configuration and deforms into Bt with the surface ∂Bt. Then the deformation
gradient is given as follows:

F = ORx (1)
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where x = χ(X, t) is a function introduced to map an arbitrary material point X inside B0
into a spatial point x inside Bt andOR is the gradient operator with respect to the coordinates
X. To describe the viscoelasticity of DE at finite deformation, a one-dimensional analogy
rheological model [22,25,30–32] is employed, as shown in Figure 1. Here, DE is assumed to
comprise of a ground elastic network, with deformation gradient F, and n parallel viscous
subnetworks, with elastic deformation gradient Fe

i and viscous deformation gradient Fv
i ,

resulting in the following relation:

F = Fe
i ·Fv

i , i = 1, ..., n (2)
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Figure 1. A one-dimensional analogy of the viscoelastic model for thermo-electro-mechanically
coupling DEs at finite deformation. The networks of DEs are separated into a ground elastic network,
with deformation gradient F, and n parallel viscous subnetworks, with an elastic deformation gradient
Fe

i , and viscous deformation gradient Fv
i (1 ≤ i ≤ n).

The stress due to the deformation of the ground elastic network only depends on the
F and cannot be relaxed, while the stress due to the elastic deformation Fe

i can be relaxed
with time because the viscous deformation gradient Fv

i evolves with time.
Accordingly, the right Cauchy–Green deformation tensors, C = FT ·F and

Ce
i =

(
Fe

i
)T ·Fe

i with the superscript T denoting the transpose operation, are used to mea-
sure, respectively, the deformation of the ground network and the elastic deformation of
the subnetworks.

2.2. Balance Laws and Entropy Inequality

Let d and ρc denote the electrical displacement and the total charge density reckoned
in the current configuration. Then, the Gauss law can be written as follows:∫

∂Ω
d·nda−

∫
Ω

ρcdv = 0 (3)

where n is the outward unit normal vector of the area element da on the surface ∂Ω with
Ω denoting an arbitrary domain inside Bt, and dv is the volume element of Ω. The above
equation can be equivalently written in the reference configuration as follows:∫

∂Ω0

D·NdA−
∫

Ω0

ρc
RdV = 0 (4)

where D and ρc
R are, respectively, the electrical displacement and the total charge density

reckoned in the reference configuration, N is the outward unit normal vector of the area
element dA on the surface ∂Ω0 with Ω0 denoting an arbitrary domain inside B0, and dV
is the volume element of Ω0. The relations D = jd·

(
FT)−1 and ρc

R = jρc, with j as the
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determinate of F and the superscript ‘−1’ denoting the inverse of a tensor, can be obtained
since nda = j

(
FT)−1·NdA and dv = jdV.

Using the divergence theorem, we can respectively write Equations (3) and (4) locally
as follows:

O·d = ρc, OR·D = ρc
R (5)

where O is the gradient operators with respect to the coordinates x, with O = OR·
(
FT)−1.

Furthermore, the electric field e, reckoned in the current configuration, and its counterpart
E, reckoned in the reference configuration, are respectively defined by the following:

e = −OΦ, E = −ORΦ (6)

where Φ is the electric potential reckoned in both the current and reference configurations,
and E = FT ·e.

Neglecting the inertial effects, the balance laws of force and moment are given in the
current configuration as follows:

σ·O+ b = 0, σ = σT (7)

where σ is the Cauchy stress tensor and b is the body force per unit volume in Ω, which
can be given in the reference configuration as follows:

P·OR + bR = 0, P·FT = F·PT (8)

where P is the first P-K stress tensor and bR is the body force per unit volume in Ω0, with
the relations P = jσ·

(
FT)−1 and bR = jb.

Let ε and q denote, respectively, the internal energy density and the heat source per
unit volume in Ω, and jq is the heat flux per unit area on ∂Ω. Then, the energy balance law
in the current configuration is written as follows:

d
dt

∫
Ω

εdv =
∫

∂Ω

(
σ·n· .

χ− jq·n−Φ
.
d·n
)

da +
∫

Ω

(
b· .

χ + q + Φ
.
ρ

c
)

dv (9)

whose corresponding form in the reference configuration is as follows:

d
dt

∫
Ω0

εRdV =
∫

∂Ω0

(
P·N· .

χ− jq
R·N−Φ

.
D·N

)
dA +

∫
Ω0

(
bR·

.
χ + qR + Φ

.
ρ

c
R

)
dV (10)

where d
dt or, equivalently, a superposed dot represents the material time derivative εR

and qR denotes, respectively, the internal energy density and the heat source per unit
volume in Ω0, and jq

R is the heat flux per unit area on ∂Ω0. The relations εR = jε, qR = jq,

and jq
R = jjq·

(
FT)−1 exist for the above two equations. The first and fourth terms on the

right-hand side represent the mechanical work from the surface traction force and the body
force, respectively; the second and fifth terms represent the thermal energy, respectively,
from the heat flow across the surface and the heat source inside the body; and the third and
sixth terms represent the electric work from the charge change on the surface and inside
the body, respectively. From Equations (5)–(8) and using the divergence theorem, the local
forms of Equations (9) and (10) can be respectively derived as follows:

.
ε = σ : O

.
χ−O·jq + q + e·

.
d (11)

.
εR = P :

.
F−OR·j

q
R + qR + E·

.
D (12)
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Let η denote the entropy per unit volume in Ω and ϑ is the absolute temperature. The
entropy inequality is written globally in the current configuration as follows:

d
dt

∫
Ω

ηdv ≥
∫

∂Ω

−jq·n
ϑ

da +
∫

Ω

q
ϑ

dv (13)

which can also be written in the reference configuration as follows:

d
dt

∫
Ω0

ηRdV ≥
∫

∂Ω0

−jq
R·N
ϑ

dA +
∫

Ω0

qR
ϑ

dV (14)

where ηR is the entropy per unit volume in Ω0 with the relation ηR = jη. Using the
divergence theorem, the local forms of the above entropy inequalities are as follows:

.
η ≥ −O· j

q

ϑ
+

q
ϑ

(15)

.
ηR ≥ −OR·

jq
R
ϑ

+
qR
ϑ

(16)

Introducing the Helmholtz free energy density ϕ = ε− ϑη and considering the energy
balance (11), the inequality (15) becomes the following:

σ : O
.
χ + e·

.
d− η

.
ϑ− .

ϕ− 1
ϑ

jq·Oϑ ≥ 0 (17)

Similarly, introducing the Helmholtz free energy density ϕR = εR − ϑηR with ϕR = jϕ
and considering the energy balance (12), the inequality (16) becomes the following:

P :
.
F + E·

.
D− ηR

.
ϑ− .

ϕR −
1
ϑ

jq
R·ORϑ ≥ 0 (18)

which imposes the thermodynamic constraint on DEs. For convenience, we only employ
the formulations given in the reference configuration in the following sections.

2.3. Constitutive Equations

In view of thermo-electro-viscoelastic effects of DEs, the Helmholtz free energy density
ϕR can be assumed as a function of variables (C, Ce

i , D, ϑ), i.e.,

ϕR = ϕR(C, Ce
i , D, ϑ) (19)

so that its material time derivative can be written as follows:

.
ϕR =

∂ϕR
∂C

:
.
C + ∑n

i=1
∂ϕR
∂Ce

i
:

.
C

e
i +

∂ϕR
∂D

:
.

D +
∂ϕR
∂ϑ

.
ϑ (20)

The first and second terms on the right-hand side of the above equation can be
rewritten as follows:

∂ϕR
∂C

:
.
C = 2F·∂ϕR

∂C
:

.
F

∂ϕR
∂Ce

i
:

.
C

e
i =

∂ϕR
∂Ce

i
:

∂Ce
i

∂F
:

.
F +

∂ϕR
∂Ce

i
:

∂Ce
i

∂Fv
i

:
.
F

v
i = 2Fe

i ·
∂ϕR
∂Ce

i
·
(

FvT
i

)−1
:

.
F− 2Ce

i ·
∂ϕR
∂Ce

i
: Dv

i (21)

with
Dv

i =
1
2

(
Lv

i + LvT
i

)
, Lv

i =
.
F

v
i ·(Fv

i )
−1 (22)
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Then, the substitution of Equations (20) and (21) into Equation (18) yields the following:(
P− 2F· ∂ϕR

∂C − 2∑n
i=1 Fe

i ·
∂ϕR
∂Ce

i
·
(
FvT

i
)−1
)

:
.
F−

(
E− ∂ϕR

∂D

)
·

.
D−

(
ηR + ∂ϕR

∂ϑ

) .
ϑ−

1
ϑ jq

R·ORϑ + ∑n
i=1 2Ce

i ·
∂ϕR
∂Ce

i
: Dv

i ≥ 0
(23)

In the case that P, E, and ηR are independent of
.
F,

.
D, and

.
ϑ, the first three terms of the

above inequality should vanish so that we have the following constitutive relations:

P = 2F·∂ϕR
∂C

+ 2∑n
i=1 Fe

i ·
∂ϕR
∂Ce

i
·
(

FvT
i

)−1
(24)

E =
∂ϕR
∂D

(25)

ηR = −∂ϕR
∂ϑ

(26)

Thus, the inequality (23) reduces to the following:

− 1
ϑ

jq
R·ORϑ + ∑n

i=1 Mneq
i : Dv

i ≥ 0 (27)

where Mneq
i is the non-equilibrium Mandel stress tensor [33], defined as follows:

Mneq
i = 2Ce

i ·
∂ϕR
∂Ce

i
(28)

More specifically, to satisfy the thermodynamic constraint given by inequality (27),
the following constitutive equations are deduced:

jq
R = −Y·ORϑ (29)

Dv
i = Qi : Mneq

i (30)

where Y is a second-order tensor and Qi a fourth-order tensor, both of which are positive-
definite. Here, Equation (29) is the Fourier heat conduction law and Equation (30) is the
rheological viscous flow rule [22,33].

2.4. Heat Conduction

Now, the first Gibbs relation can be obtained by substituting Equations (21), (24)–(26)
and (28) into Equation (20), as follows:

.
ϕR = P :

.
F + ∑n

i=1 Mneq
i : Dv

i + E·
.

D− ηR
.
ϑ (31)

which can also be simultaneously transformed into the second Gibbs relation by using the
relation ϕR = εR − ϑηR, i.e.,

.
εR = P :

.
F + ∑n

i=1 Mneq
i : Dv

i + E·
.

D + ϑ
.
ηR (32)

Using the energy balance Equation (12), Equation (32) yields the following:

ϑ
.
ηR = −OR·j

q
R + qR + ∑n

i=1 Mneq
i : Dv

i (33)

which indicates that the total entropy change includes the heat exchange of DE with its
environment and its internal dissipation of heat due to viscous effects. From another
perspective, it can also be found that the total entropy change includes the reversible
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entropy exchange (i.e., the right-hand side of the inequality (16)) and the irreversible entropy
production (i.e., the left-hand side of the inequality (27)). Then, taking the derivative of
Equation (26) with respect to time and substituting the result into Equation (33) gives
the following:

c
.
ϑ = −OR·j

q
R + qR + ∑n

i=1 Mneq
i : Dv

i + ϑ
∂P
∂ϑ

:
.
F−∑n

i=1 ϑ
∂Mneq

i
∂ϑ

:
.

D
v
i + ϑ

∂E
∂ϑ
·

.
D (34)

where c is the specific heat capacity, defined as c = − ∂2 ϕR
∂ϑ2 . This heat conduction equa-

tion explicitly indicates that temperature varies with heat exchange, viscous flow, the
temperature-stress coupling effect, and the temperature-electricity coupling effect.

Up to now, we have obtained all the governing equations for the thermo-electro-
viscoelastic process of DEs, including kinematic Equations (1), (2) and (22), balance
Equations (5), (8) and (34), constitutive Equations (24)–(26) and (28)–(30), which can be
solved under given boundary and initial conditions. In the next section, we will derive
specific constitutive equations by giving specific Helmholtz free energy for DE and simu-
late viscoelastic phenomena of the DE polymer VHB4905 under various thermo-electro-
mechanical loading conditions.

3. Special Cases

VHB4905 is one class of commercially available DEs, whose highly nonlinear stress-
strain relations have been extensively investigated at various conditions [20,26,34]. In
this section, specific constitutive equations for the coupling thermo-electro-viscoelastic
behaviors of VHB4905 are first given and then used to simulate the loading-unloading
curves under two different coupling conditions.

3.1. Specific Constitutive Equations

The Helmholtz free energy density is assumed to be additively decomposed,
as follows:

ϕR = ϕ
eq
R + ϕ

neq
R + ϕE

R + ϕT
R (35)

where ϕ
eq
R and ϕ

neq
R are, respectively, the equilibrium and non-equilibrium Helmholtz free

energy density resulting from the stretching of the ground network and subnetworks, ϕE
R

is the Helmholtz free energy density due to the interaction of quasi-static electric charges in
VHB4905, and ϕT

R is the Helmholtz free energy density due to temperature fluctuation.
Here, we adopt the Gent model [29] for ϕ

eq
R and ϕ

neq
R in consideration of the strain-

stiffening effect that DEs may stiffen sharply when the network chain approaches its
extension limit [35], as follows:

ϕ
eq
R = −GeqL

2
ln
(

L− trC + 3
L

)
(36)

ϕ
neq
R = −∑n

i=1

Gneq
i Li

2
ln
(

Li − trCe
i + 3

Li

)
(37)

where the symbol ‘tr’ denotes the trace of a tensor, Geq and Gneq
i denote, respectively, the

equilibrium modulus of the elastic ground network and the nonequilibrium modulus of the
ith viscous subnetwork, and L and Li represent the extension limits of the elastic ground
network and ith viscous subnetwork, respectively.

For the sake of simplicity, an isotropic formulation of electrostatics in the current
configuration is employed [36]:

ϕE
R
j

=
1

2ε0εr
d·d (38)
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whose corresponding form in the reference configuration can be obtained by using the
relation D = jd·

(
FT)−1, as follows:

ϕE
R =

1
2jε0εr

(
FT ·F

)
: (D⊗D) (39)

where the symbol ⊗ denotes the dyadic product defining A⊗ B as AmBk for any vectors A
(with Am as its component) and B (with Bk as its component); and ε0 and εr are, respectively,
the vacuum permittivity and the relative permittivity.

For the thermal part of the Helmholtz free energy density, we adopt the following [37]:

ϕT
R = c0

(
ϑ− ϑ0 − ϑln

ϑ

ϑ0

)
− cv

(ϑ− ϑ0)
2

2ϑ0
(40)

which leads to a linear dependency of the specific heat capacity on temperature:

c = c0 + cv
ϑ

ϑ0
(41)

where ϑ0 is a reference temperature, and c0 and cv are two coefficients of this linear dependency.
Substituting Equations (35)–(38) into (24), (25) and (28), we have

P = Geq L
L−trC+3 F + ∑n

i=1
Gneq

i Li
Li−trCe

i +3 Fe
i · (F

vT
i

)−1
+
(
FT)−1

·
[

1
jε0εr

(C·D)⊗D− 1
2

(
1

jε0εr
C·D·D

)
I
] (42)

E =
1

jε0εr
C·D (43)

Mneq
i =

Gneq
i Li

Li − trCe
i + 3

Ce
i (44)

with I as the second-order unit tensor.
Next, both the elastic deformations of the ground network and parallel subnetworks

are considered to be incompressible [25], for which Lagrange multipliers Π and Πi are
introduced to impose these constraint conditions and modify the free energy density
as follows:

∼
ϕR = ϕR −Π(j− 1)−∑n

i=1 Πi(je
i − 1) (45)

where je
i is the determinant of the elastic deformation gradient Fe

i . Replacing ϕR with
∼
ϕR in

Equations (24) and (28), we can rewrite P and Mneq
i as follows:

P = Geq L
L−trC+3 F + ∑n

i=1
Gneq

i Li
Li−trCe

i +3 Fe
i · (F

vT
i

)−1
+
(
FT)−1·

[
E⊗D− 1

2 (E·D)I
]
−

jΠ
(
FT)−1 −∑n

i=1 je
i Πi
(
FT)−1

(46)

Mneq
i =

Gneq
i Li

Li − trCe
i + 3

Ce
i − je

i ΠiI (47)

where we have used the remaining unchanged relation (43). Furthermore, the Cauchy stress
tensor σ can also be obtained by using the relations σ = 1

j P·FT , d = ε0εre, D = j(F)−1·d,

E = FT ·e, and j = je
i = 1 in Equation (46), as follows:

σ = Geq L
L−trC+3 F·FT + ∑n

i=1
Gneq

i Li
Li−trCe

i +3 Fe
i ·FeT

i + ε0εr

[
e⊗ e− 1

2 (e·e)I
]

−(Π + ∑n
i=1 Πi)I

(48)
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Employing j = je
i = 1 and the multiplicative decomposition of F in Equation (2),

the viscous incompressibility, trDv
i = 0 or jv

i = 1 with jv
i as the determinant of Fv

i , can
be deduced, from which the fourth-order tensor Qi in Equation (30) can be taken as
follows [25]:

Qi =
1

2vi

(
I4 −

1
3

I⊗ I
)

(49)

where I4 is the fourth-order unit tensor and vi the viscosity of the ith subnetwork. Then,
the relaxation time for the ith subnetwork can be defined as τi =

vi
Gneq

i
[31].

3.2. Thermo-Viscoelastic Coupling

In the thermo-viscoelastic experiments of Mehnert et al. [21], VHB4905 samples with
the dimensions 130 mm× 10 mm× 0.5 mm are first heated at different temperatures in the
thermal chamber for about 10 min, which has proven to be sufficient for the samples to
induce the temperature of the chamber, and then mounted onto the machine Inspekt 5 kN
for multi-step relaxation tests and cyclic loading-unloading tests.

During heating, we assume that the deformation of the samples can be neglected
due to the relatively small thermal expansion coefficient and the free boundary conditions.
Substituting Equations (41) and (29) into Equation (34) and neglecting all the heat sources,
the heat conduction equation reduces to the following:(

c0 + cv
ϑ

ϑ0

)
.
ϑ = OR·(Y·ORϑ) (50)

where we consider the isotropic Fourier heat conduction so that Y =
(

κ0 + κv
ϑ
ϑ0

)
I with

κ0 and κv are two coefficients of the linear temperature-dependent conductivity [38]. The
Neumann boundary condition is used to describe the convective heat transfer between the
sample and the air in the thermal chamber, given as follows:

jR·n = h(ϑs − ϑt) (51)

where h is the convective heat transfer coefficient, ϑs and ϑt are, respectively, the tempera-
ture of the sample surface and the temperature of air in the thermal chamber. Here, the
room temperature (296 K) is taken as the reference temperature (i.e., ϑ0 = 296 K) and the
temperature of air in the thermal chamber is set as ϑt = 353 K. The initial condition for the
temperature of the sample is assumed to be as follows:

ϑ|t=0 = 296 K (52)

The material parameters, c0, cv, κ0, and κv, used in the calculation are given in Table 1,
based on Dippel et al. [38] for natural rubber, which resembles VHB4905 in molecular
structure. Furthermore, considering that the convective heat transfer coefficient for forced
gas convection is about 20 ∼ 300 W/

(
m2·K

)
, h = 20 W/

(
m2·K

)
is chosen, as given in

Table 1, for the convective heat transfer between the sample and the air in the thermal
chamber so that we can roughly estimate the maximum time for reaching the steady state
of heat conduction.

Table 1. Material parameters.

Parameters Values

c0
((

J/
(
m3·K

)))
8.86× 105

cv
(
J/
(
m3·K

))
9.18× 105

κ0(W/(m·K)) 0.42
κv(W/(m·K)) −0.17
h
(
W/

(
m2·K

))
20
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The heat conduction inside VHB4905 samples can be simplified as a one-dimensional
problem since the dimension in the thickness direction is much smaller than the other
two lateral dimensions, which results in negligible convective heat transfer on the lateral
surfaces. By solving Equation (50) with the boundary condition (51) and the initial con-
dition (52) through the commercial software COMSOL Multiphysic 5.3, the temperature
distribution along the thickness direction during heating is obtained and shown in Figure 2.
It can be seen that the temperature along thickness direction is nearly uniform and increases
with time until it reaches 353 K (the temperature in the thermal chamber). This is because
the great heat conductivity of VHB4905 leads to rapid heat transfer across a small distance
between neighboring surfaces (0.5 mm), and forced gas convection between the sample
and the air in the thermal chamber results in a steady temperature distribution after about
100 s. The numerical results reveal that 10 min is sufficient for VHB4905 samples to induce
the temperature of the thermal chamber.
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Next, the corresponding deformation gradient in the mechanical tests can be written
as follows:

F =

λ1 0 0
0 λ2 0
0 0 λ3

, Fe
i =

λe
i1 0 0
0 λe

i2 0
0 0 λe

i3

, Fv
i =

λv
i1 0 0
0 λv

i2 0
0 0 λv

i3



Dv
i =


.
λ

v
i1/λv

i1 0 0

0
.
λ

v
i2/λv

i2 0

0 0
.
λ

v
i3/λv

i3


(53)

Here λ1, λ2, and λ3 are the principle stretches of the deformation gradient F; λe
i1, λe

i2,
and λe

i3 are the principle stretches of the elastic deformation gradient Fe
i ; and λv

i1, λv
i2, and

λv
i3 are the principle stretches of the viscous deformation gradient Fv

i . In consideration of the
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equal lateral stretches during the uniaxial tensile test and the incompressible deformation
of VHB4905 samples (j = je

i = jvi = 1), we have the following:

λ1 = λ, λ2 = λ3 = (λ)−
1
2

λ1 = λe
i1λv

i1 = λ, λe
i2λv

i2 = λe
i3λv

i3 = (λ)−
1
2

λe
i1 = λe

i , λe
i2 = λe

i3 = (λe
i )
− 1

2 , λv
i1 = λv

i , λv
i2 = λv

i3 = (λv
i )
− 1

2 (54)

with λ, λe
i , and λv

i , respectively, as the principle stretches of the deformation gradients F,
Fe

i , and Fv
i along the tensile direction.

Let P1, P2, and P3 denote the components of P along three principal directions, re-
spectively. Substituting Equations (53) and (54) into Equation (46) and then discarding the
electric terms, we have the following:

P1 =
GeqLλ

L− 2λ−1 − λ2 + 3
+ ∑n

i=1

Gneq
i Liλ

(
λv

i
)−2

Li − 2λ−1λv
i − λ2

(
λv

i
)−2

+ 3
− Π + ∑n

i=1 Πi

λ

P2 = P3 =
GeqLλ−

1
2

L− 2λ−1 − λ2 + 3
+ ∑n

i=1

Gneq
i Liλ

− 1
2 λv

i

Li − 2λ−1λv
i − λ2

(
λv

i
)−2

+ 3
−
(

Π + ∑n
i=1 Πi

)
λ

1
2 (55)

According to the boundary condition, P2 = P3 = 0 for the uniaxial loading-unloading
tests, we can further obtain the following:

Π + ∑n
i=1 Πi =

GeqLλ−1

L− 2λ−1 − λ2 + 3
+ ∑n

i=1

Gneq
i Liλ

−1λv
i

Li − 2λ−1λv
i − λ2

(
λv

i
)−2

+ 3
(56)

and

P1 =
GeqL

(
λ− λ−2)

L− 2λ−1 − λ2 + 3
+ ∑n

i=1

Gneq
i Li

[
λ
(
λv

i
)−2 − λ−2λv

i

]
Li − 2λ−1λv

i − λ2
(
λv

i
)−2

+ 3
(57)

Here, the incompressibilities of the ground network and the parallel subnetworks
have an effect on the stress, and Lagrange multipliers are eliminated according to the
boundary conditions.

Let Mneq
i1 , Mneq

i2 , and Mneq
i3 denote the components of Mneq

i along three principal direc-
tions, respectively. Similarly, substituting Equations (53) and (54) into Equation (47), we
have the following:

Mneq
i1 =

Gneq
i Liλ

2(λv
i )
−2

Li−2λ−1λv
i −λ2(λv

i )
−2

+3
−Πi

Mneq
i2 = Mneq

i3 =
Gneq

i Liλ
−1λv

i

Li−2λ−1λv
i −λ2(λv

i )
−2

+3
−Πi

(58)

Then, substitution of Equations (58), (53) and (49) into Equation (30) yields the following:

.
λ

v
i

λv
i
=

Li

3τi

[
Li − 2λ−1λv

i − λ2
(
λv

i
)−2

+ 3
] [λ2(λv

i )
−2 − λ−1λv

i

]
(59)

which describes the viscous flow in VHB4905 subjected to uniaxial tension. It is worth
noting that the elastic incompressibility of the subnetworks has no influence on the viscous
flow since only the deviatoric stress, excluding the hydrostatic pressure Πi, promotes the
viscous flow.
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Under the initial conditions, P1|t=0 = 0, λ|t=0 = λv
i

∣∣
t=0 = 1, the coupled Equations

(57) and (59) can be simultaneously solved to predict the mechanical behaviors under the
given material parameters. To determine the material parameters, the least square method
is used to fit Equations (57) and (59) with the experimental data of Mehnert et al. [21],
who performed multi-step relaxation tests for identifying the elastic responses at different
stretches and cyclic loading-unloading tests for acquiring the viscous information at dif-
ferent stretching rates. In each step of a multi-step relaxation test with eight consecutive
steps, the sample is stretched quickly with an increased 25% deformation and then held
at this deformation state for thirty minutes (the viscous stress is considered to be relaxed
almost completely after this period), for which Equations (57) and (59) can be reduced to
the equilibrium equation:

P1 =
GeqL

(
λ− λ−2)

L− 2λ−1 − λ2 + 3
(60)

Here, we take L = 155, according to Kollosche et al. [39], and fit Equation (60) with
the multi-step relaxation tests [21] to obtain Geq = 15.12 kPa, 13.05 kPa, and 11.84 kPa for
the temperatures 296 K, 313 K, and 333 K, respectively. Figure 3 gives a comparison of
the equilibrium stress-stretch relations, respectively, from model fitting and experimental
data. The experimental data are in good agreement with the fitting curves, indicating that
Equation (60) is capable of predicting the equilibrium response of VHB4905. Three discrete
points (296, 15.12), (313, 13.05), and (333, 11.84) are further used to fit, as shown in Figure 4,
the following exponential function:

Geq(ϑ) = aexp

(
b
(
ϑ− ϑg

)
ϑ− ϑg − c

)
(61)

with a = 0.13 kPa, b = 4.16, and c = 8.06 K. Here, ϑg (233 K) is the glass transition
temperature of VHB4905. This dependence of the equilibrium modulus on temperature is
of the Williams–Landel–Ferry (WLF) type [40], and indicates that increasing temperature
would soften VHB4905. This function can be used to calculate Geq = 25.56 kPa for 273 K.
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Figure 5 gives a comparison of the experimental data with the model fitting and
the model prediction at different stretching rates and a fixed temperature of 273 K. We
have found that n = 3 results in well-converged results as well as physically realistic
parameter values. With Geq = 25.56 kPa and L = Li = 155 (i = 1, 2, 3) determined,
the non-equilibrium modulus Gneq

i (38.44 kPa, 94.23 kPa, 94.96 kPa) and the relaxation
time τi (413.32 s, 5.43 s, 1.65 s) are obtained by fitting Equations (57) and (59) with the
experimental data at stretching rates

∣∣∣ .
λ
∣∣∣ = 0.03/s and

∣∣∣ .
λ
∣∣∣ = 0.05/s in Figure 5. Then, the

model prediction of
∣∣∣ .
λ
∣∣∣ = 0.1/s by using all determined parameters agrees well with the

experimental data, and each loading-unloading cycle shows typical viscoelastic behavior,
which validates the employed viscoelastic model.
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Figure 6 also presents a comparison of the experimental data with the model fitting
and the model prediction at different stretching rates and temperatures. Here, we assume
that the relaxation times and the extension limits are temperature-independent, so that
only the dependence of the non-equilibrium moduli on temperature is obtained via the
model fitting. The experimental data at the stretching rates

∣∣∣ .
λ
∣∣∣ = 0.025/s and

∣∣∣ .
λ
∣∣∣ = 0.05/s

are used to determine the non-equilibrium moduli, and
∣∣∣ .
λ
∣∣∣ = 0.1/s is used to validate the

model fitting. It can be seen that the results from the model fitting and the model prediction
are close to the experimental data, and the viscoelastic effect at the higher temperature is
more significant, indicating that the strategy is reasonable. We assume that the dependence
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of the non-equilibrium moduli on temperature is also a WLF type like Equation (61) and fit
this type with the obtained four discrete points, yielding the following fitting functions:

Gneq
1 (ϑ) = 5.54× 10−2exp

(
4.74(ϑ−233)
ϑ−233−11.04

)
Gneq

2 (ϑ) = 6.79× 10−3exp
(

6.87(ϑ−233)
ϑ−233−11.17

)
Gneq

3 (ϑ) = 7.89× 10−3exp
(

7.21(ϑ−233)
ϑ−233−9.34

) (62)
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experimental data of the stretching rate
∣∣∣ .
λ
∣∣∣ = 0.025/s and

∣∣∣ .
λ
∣∣∣ = 0.05/s are used for the model fitting,

and
∣∣∣ .
λ
∣∣∣ = 0.1/s is used for the model validation. The experimental data are taken from Mehnert

et al. [21].

The fitting curves of the non-equilibrium modulus versus temperature and the corre-
sponding fitted points are depicted in Figure 7, where the fitting curves match roughly with
these points. With these assumptions and relations, all parameters at 353 K (see Table 2) are
obtained and substituted into Equations (57) and (59) for predicting the loading-unloading
curves at different stretching rates.
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Figure 7. The fitting curves of the non-equilibrium moduli versus temperature.

Table 2. Material parameters at different temperatures.

273 K 296 K 313 K 333 K 353 K

Geq(kPa) 23.44 15.12 13.05 11.82 11.07
Gneq

1 (kPa) 38.44 16.83 13.72 11.55 10.20
Gneq

2 (kPa) 94.23 27.39 23.90 13.11 13.29
Gneq

3 (kPa) 94.96 41.04 20.57 25.41 19.49
τ1(s) 413.32 413.32 413.32 413.32 413.32
τ2(s) 5.43 5.43 5.43 5.43 5.43
τ3(s) 1.65 1.65 1.65 1.65 1.65

L, L1, L2, L3 155 155 155 155 155

Figure 8 shows a comparison of the loading-unloading curves from the model predic-
tion and the experimental data at

∣∣∣ .
λ
∣∣∣ = 0.025, 0.05, 0.1

s , and 353 K. It can be seen that the
predicted loading-unloading curves from the present model match reasonably well with
the experimental results, and the peak stress of each curve increases with the stretching
rate. The comparison indicates that the present model and its fitting parameters are able to
describe the viscoelastic effect of VHB4905 at different stretching rates and temperatures.
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𝐺௘௤𝐿𝜆ଷ

𝐿 − 𝜆ଵ
ଶ − 𝜆ଶ

ଶ − 𝜆ଷ
ଶ + 3

+ ෍
𝐺௜

௡௘௤
𝐿௜𝜆ଷ(𝜆௜ଷ

௩ )ିଶ

𝐿௜ − 𝜆ଵ
ଶ(𝜆௜ଵ

௩ )ିଶ − 𝜆ଶ
ଶ(𝜆௜ଶ

௩ )ିଶ − 𝜆ଷ
ଶ(𝜆௜ଷ

௩ )ିଶ + 3

௡

௜ୀଵ
−

Π + ∑ Π௜
௡
௜ୀଵ

𝜆ଷ

+ 𝜖଴𝜖௥

𝐸ଶ

2𝜆ଷ
ଶ (63)

From the boundary condition 𝑃ଷ = 0, we can obtain the following: 

Π + ∑ Π௜
௡
௜ୀଵ =

ீ೐೜௅ఒయ
మ
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మିఒమ
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Further considering the incompressibility constraints 𝜆ଵ𝜆ଶ𝜆ଷ = 𝜆௜ଵ
௩ 𝜆௜ଶ

௩ 𝜆௜ଷ
௩ = 1, and the 

boundary conditions 𝑃ଶ = 0, we obtain the following: 
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Next, substituting Equation (53) into Equation (47), we have the following: 
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Figure 8. A comparison of the loading-unloading curves from the model prediction and the ex-

perimental data at
∣∣∣ .
λ
∣∣∣ = 0.025, 0.05, 0.1

s , and 353 K. The experimental data are taken from Liao
et al. [20].

3.3. Thermo-Electro-Viscoelastic Coupling

In the thermo-electro-viscoelastic experiments of VHB4905 by Mehnert et al. [21],
material samples with the dimensions 70 mm× 100 mm× 0.5 mm, coated with carbon
conductive grease, acting as compliant electrodes, on its two largest surfaces, are first
heated for fifteen minutes to reach a target temperature in the closed thermal chamber.
Then, an electric field is applied on the two largest surfaces of the heated samples. Finally,
the loading-unloading tests on the samples with different electric fields are conducted.

Let E denote the electric field along thickness direction reckoned in the reference
configuration. Substitution of Equation (53) into Equation (46) yields the following:
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P1 =
GeqLλ1

L− λ2
1 − λ2

2 − λ2
3 + 3
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i Liλ1

(
λv

i1
)−2
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1
(
λv
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2
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3
(
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)−2
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i=1 Πi

λ1
− ε0εr

E2

2λ1λ2
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(63)

From the boundary condition P3 = 0, we can obtain the following:

Π + ∑n
i=1 Πi =
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3
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(64)

Further considering the incompressibility constraints λ1λ2λ3 = λv
i1λv

i2λv
i3 = 1, and the

boundary conditions P2 = 0, we obtain the following:
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Next, substituting Equation (53) into Equation (47), we have the following:
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Substituting Equations (49), (53) and (66) into Equation (30) and using the incompress-
ibility constraints λ1λ2λ3 = λv

i1λv
i2λv

i3 = 1, we can obtain the viscous flow rule:
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Here, it is worth noting that the hydrostatic pressure Πi is eliminated by the mathe-
matical operation since only the deviatoric stress is considered to promote the viscous flow
in Equation (49).

Furthermore, an electric field prior to the mechanical test leads to an extension of the
sample in the transverse direction, so we have λ3 = λpre and λ1 = λ2 = 1√

λpre
with λpre

being the free stretch in the thickness direction after the application of an electric field.
The electric field in the sample is considered to reach a steady and uniform state quickly
once the electric potential difference between the two largest surfaces is applied. Thus,
the electric field can be calculated as E = ∆φ

l , where ∆φ and l are respectively the electric
potential difference and the thickness of the VHB4905 sample. Because the relaxation
times of the 1st, 2nd, and 3rd subnetworks are, respectively, 413.32 s, 5.43 s, and 1.65 s, we
assume that the 1st subnetwork is completely elastic and the 2nd and 3rd subnetworks are
completely viscous prior to the mechanical test. Therefore, using P1 = 0 in the case of free
expansion, Equation (65) can be reduced to the following:(

Geq + Gneq
1

)
L
(

1/λpre − λ2
pre

)
L− 2/λpre − λ2

pre + 3
= 0 (68)

which can be solved to obtain λpre. When the sample starts to be stretched, the initial
conditions are given by the following:

λ1 = λ2 = λv
21 = λv

22 = λv
31 = λv

32 =
1√
λpre

, λv
11 = λv

12 = 1 (69)

A finite difference approach is employed to obtain the numerical results of the evolving
stress P1 with the stretch λ1 by solving the coupled Equations (65) and (67) under the initial
conditions (69).

Figure 9 gives a comparison of the evolving stress P1 with the stretch λ1 at
∣∣∣ .
λ1

∣∣∣ = 0.2/s
from the model prediction and the experimental data at different temperatures and electric
fields. The equilibrium and non-equilibrium moduli for ϑ = 296 K are listed in Table 2
and for ϑ = 333 K are calculated via the relations (61) and (62) as Geq = 12.36 kPa,
Gneq

1 = 12.24 kPa, Gneq
2 = 17.38 kPa, and Gneq

3 = 20.43 kPa. Here, we assume that
the material parameters would not change with the electric field in consideration of the
relatively small effect of the electric field on the viscous response in the experiments. It can
be seen from Figure 9a that the loading-unloading curve with an applied electric potential
difference of 6 kV (or an electric field 12× 106 V/m) does not start exactly at the stretch
of 1 but slightly above 1 (the pre-stretch of λ1 is 1.0383), which captures well the electric
field-induced deformation prior to the mechanical deformation in the experiment. The
curve without the electric potential is slightly below the experimental data because we
have neglected the slight influence of the compliant electrodes on the viscoelastic response
investigated by Mehnert and Steinmann [34]. Similarly, in Figure 9b, the pre-stretch of λ1
for 323 K is 1.0540, and the distinction of the loading-unloading curves with and without an
applied electric potential difference is relatively significant. Furthermore, it can be observed
from Figure 9a,b that temperature fluctuation has a significantly more pronounced effect
on the viscoelastic response than electric field, and the influence of electric field at high
temperatures becomes clearly visible. The predicted loading-unloading curves match
well with the experimental data, indicating that the present model is able to describe the
thermo-electro-viscoelastic response of VHB4905 and has great potential in engineering
applications of DEs.
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Figure 9. A comparison of the loading-unloading curves from the model prediction and the experi-

mental data at (a) 296 K and (b) 353 K. The loading-unloading rate is
∣∣∣ .
λ1

∣∣∣ = 0.2/s, and the applied
electric potential difference is 0 kV or 6 kV. The experimental data are taken from Mehnert et al. [21].

4. Conclusions

In this paper, a thermodynamically consistent model at finite deformation for the
thermo-electro-viscoelastic coupling behaviors of DEs is proposed and verified by the
comparison of the nonlinear loading-unloading curves from the model prediction and
the experimental data of VHB4905. The major novelty of the present work lies in the
following aspects: First, we have proposed a thermo-electro-viscoelastic model for DEs at
finite deformation, which can describe the nonlinear response of DEs at various stretching
rates, temperatures, and electric fields. Especially, the elastic deformation incompressibility
of both the ground network and a few parallel subnetworks is considered by introducing
Lagrange multipliers, for which the distinct effects of the incompressibility on the force
equilibrium and the viscous flow are clearly presented. The incompressibility conditions
directly change the magnitude of the stress but have no influence on the viscous flow
because only the deviatoric stress, excluding the hydrostatic pressure, promotes the viscous
flow. Second, the WLF-like dependence of the moduli on temperature is found by fitting the
model with the experimental data, contributing to the calculation of the moduli at different
temperatures for theoretical modeling. Third, we also simulate the instant pre-stretch due
to the interaction of quasi-static charges after the application of an electric field, which has
not been modeled in the previous work.

The numerical results reveal that increasing temperature can soften DEs significantly,
and the influence of the electric field on the mechanical response of DEs with respect
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to temperature is slight. Thus, this work provides a guide on modeling the thermo-
electro-mechanical coupling behaviors of DEs and can help analyze the failure of DEs in
functionalities and structures. Simultaneously, this theoretical model can be applied to
different materials, such as piezoelectric composites, which will be our future study subject.
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