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Abstract: Thermoelastic buckling of micro/nano-beams subjected to non-uniform temperature
distribution is investigated in this paper. The mechanical governing equation is derived based on the
surface effect and mechanical non-local effect. The non-local heat conduction model is used to predict
temperature distribution in micro/nano-beams. Therefore, the obtained analytical solution can be
used to analyze the influence of both the mechanical and thermal small scale effects on buckling
of thermoelastic micro/nano-beams. In numerical simulations, a critical thickness is proposed to
determine the influence region of both mechanical and thermal small scale effects. The influence of
a small scale effect on buckling of micro/nano-beams must be considered if beam thickness is less
than the critical thickness. In the influence region of a small scale effect, a surface effect has strong
influence on the size-dependent buckling behavior, rather than mechanical and thermal non-local
effects. Moreover, combined small scale effects, i.e., a surface effect and both mechanical and thermal
non-local effects, lead to a larger critical load. Additionally, the influence of other key factors on
buckling of the micro/nano-beams is studied in detail. This paper provides theoretical explanation to
the buckling behaviors of micro/nano-beams under a non-uniform temperature distribution load.

Keywords: micro/nano-beams; buckling behavior; thermoelastic coupling; non-Fourier heat
conduction; non-uniform temperature distribution

1. Introduction

Micro/nano-beams have been widely used in micro-electro-mechanical systems (MEMS)
and nano-electro-mechanical systems (NEMS), such as sensors, actuators, resonators and
transistors [1]. In practical applications, micro/nano-beams usually sustain complex thermal
environments during a manufacturing and working process [2,3], and are sometimes even
simultaneously subjected to axial compressive force and variable temperature, such as basic
elements for writing or reading information that are based on the use of contact and heat
transfer between an atomic force microscope (AFM) probe and the disk [4], and non-uniform
temperature distribution exists in vibrating resonators [5]. Therefore, a buckling analysis of
thermoelastic micro/nano-beams has attracted great attentions for years.

Thermoelastic coupling can result in thermal stress when structures are subjected
to an external thermal load [6-8]. Unfortunately, classical thermoelastic theory fails to
predict a small scale effect, i.e., size-dependent thermoelastic behavior of micro/nano-
structures. In order to overcome the shortcoming, a new theoretical framework is proposed
to describe a mechanical small scale effect [9,10] and non-Fourier heat conduction [11]. For
example, Sahmani et al. [12] investigated buckling of a functionally graded nano-beam by
introducing the strain gradient into classical third-order shear deformation beam theory.
Ke et al. [13] studied buckling of micro-beams considering modified couple stress theory.
Free vibration of micro-beams was also discussed by them. Applying the surface elastic
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theory, thermal buckling of heated nanowire was examined by Wang et al. [14] in the context
of Euler-Bernoulli beam theory. From the literature review, it can be concluded that the
thermoelastic buckling issues are useful to engineering applications, and which are usually
studied based on the uniform temperature distribution, i.e., temperature distribution at
every point of a structure is the same. From the point of view of mathematics, uniform
temperature distribution assumption in micro/nano-beams can result in a vanished partial
derivative, which is a thermal-induced resultant with respect to coordinate variables.
Therefore, this simplified assumption on temperature distribution makes a thermoelastic
buckling analysis easy.

In fact, structural elements subjected to non-uniform heating widely exist in engineer-
ing application. For example, structures subjected to a heat source can result in non-uniform
temperature distribution [15], and both non-uniform temperature distribution and axial
force exist in vibrating thermoelastic structures due to the interaction of an internal micro-
structure [16]. In these cases, thermoelastic buckling of micro/nano-beams based on the
hypothesis of uniform temperature distribution is not accurate anymore. Therefore, in-
vestigation on micro/nano-beams with non-uniform temperature distribution is required.
Lee et al. [17] supposed that temperature was linearly distributed along the length direction
for a vibration analysis of a scanning thermal microscope probe. Ebrahimi and Salari [18]
studied thermal buckling and free vibration of size-dependent nano-beams assuming that
temperature distribution was linearly varied along the thickness. Yu et al. [19] analyzed
buckling of beams subjected to non-uniform temperature based on the non-local thermoe-
lastic theory. The non-uniform temperature distribution was conducted with the non-local
heat conduction model [20]. Zhang et al. [21] investigated buckling of Bernoulli-Euler
beams under non-uniform temperature based on a two-phase non-local integral model.
Xu et al. [22] discussed buckling of functionally graded nano-beams under non-uniform
temperature using stress-driven non-local elasticity. These literature reviews clearly showed
that mechanical behaviors of micro/nano-beams are significantly affected by thermoelastic
coupling. On the other hand, from the perspective of physics, at the micro/nano-scale,
the mean-free-path of thermal phonons is comparable or even much larger than the mate-
rial length scale. This phenomenon has great influence on heat conduction behavior [23].
At present, lots of modified Fourier heat conduction models, i.e., the non-Fourier heat
conduction models, have been proposed to predict micro/nano-scaled heat conduction
behaviors [20,24,25]. However, as mentioned before, extensive review has showed that
buckling analyses of thermoelastic micro/nano-beams based on the combined effects of the
non-Fourier heat conduction model and mechanical small scale effect are few. Therefore,
there is still a lack of fundamental understandings on micro/nano-beams subjected to
non-uniform temperature distribution.

In this study, we attempt to investigate buckling of size-dependent micro/nano-beams
considering non-uniform temperature distribution. The buckling model is established
based on the non-local elastic theory [26] and surface elastic theory [27]. The non-local heat
conduction model proposed by Tzou et al. [24] is used to predict temperature distribution
in buckling of curved micro/nano-beams. An analytical solution of the buckling issue is
obtained. Numerical simulations are presented graphically and discussed to clarify the
combined small scale effects on buckling of thermoelastic micro/nano-beams. This paper
provides a new basis for the understanding of buckling behavior.

2. Formulation of the Problem

As shown in Figure 1, we aim to derive the critical load of thermoelastic micro/nano-
beams with length, width and height as L, a and }, respectively. In the theoretical deduction,
temperature distribution in the micro/nano-beams is calculated with the non-local heat
conduction model, and the influence of the thermal effect on the micro/nano-beams is
regarded as an equivalent axial force.
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Figure 1. Configuration of size-dependent micro/nano-beams with non-uniform temperature distri-
bution. (a) Structural diagram of the beam (b) Schematic diagram of the force acting on a beam under
non-uniform temperature.

2.1. Mechanical Governing Equation

The non-local elastic theory [26] and the surface elastic theory [27] have been widely
accepted during micro/nano-structure analyses. The non-local elastic theory is in ac-
cordance with atomic theory of lattice dynamics and phonon dispersion. The surface
elastic theory [27] describes the distinct environment of atoms between the surface layer
and bulk material. A different physical mechanism is described with the two theories
above. Therefore, the non-local elastic theory [26] and the surface elastic theory [27] can
be simultaneously used to predict mechanical behavior of size-dependent micro/nano-
structures [28,29]. Based on the Euler-Bernoulli beam theory, the constitutive equation of
micro/nano-beams considering the mechanical non-local effect and surface effect can be
expressed as follows [28]:

,d’M Ld2w
M-S = (D) 5 M
where M is the bending moment, ¢ is the mechanical non-local parameter and w is the
transverse displacement. (EI)" is the effective flexural rigidity, which includes the surface
bending elasticity and flexural rigidity. The effective flexural rigidity of micro/nano-beams
with a rectangular section can be expressed as follows [28,30]:

(EI)* = EI + E], ©)

where EI = %Esah2 + %Esh3, and I = f—zah3 is the moment of inertia. Parameters E and E?
are the Young’s modulus and surface Young’s modulus, respectively.

Mechanical equilibrium equations of bending micro/nano-beams can be expressed as
follows [28]:

v=E-m ®
dM

where Pr is the axial force, V is the shear force and H is the constant determined with the
residual surface tension T and cross-section size. For thermoelastic issues, the temperature-
induced equivalent thermal load can be regarded as the component of the effective external
axial load. In other words, the axial force Pr is constituted by two parts: the external
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axial load P and temperature-induced equivalent thermal load P, i.e., Pr = P + Py. These
parameters above can be expressed as follows [19,30]:

H =214, 5)

EA L
Pg = m/o “t@dx, (6)

where A = ah is the cross-sectional area of micro/nano-beams. Parameters a;, 4 and 0 are
the thermal expansion coefficient, Poisson’s ratio and the temperature increment between
current temperature T and reference temperature Ty, i.e.,, 6 = T — Tp.

Eliminating shear force V from Equations (3) and (4), and then substituting the result
into the second derivative of Equation (1) with respect to coordinate x, the governing
equation of micro/nano-beams can be obtained:

* o*w %w

(ED)" = &(Pe+Po— H) | 55 + (Pe + Py — H) 55 = 0. @)

The equation presented above takes into account the influences of the surface effect,
thermal effect and mechanical non-local effect. The solution of Equation (8) is

w = Ay + Axx + Az sin(ypx) + Ay cos(x), 8)
where ¢ = \/ E1+EIPF ;P%Ffpe - Parameters A;(i = 1,2,3,4) can be determined if both

the mechanical boundary conditions and temperature distribution are given.

2.2. Temperature Field Governing Equation

For steady temperature distribution, the non-local heat conduction model can be

written as follows [24]:
dq
q+7d +kdx 0, )

in which g is the heat flux, and « is the heat conductivity. Parameter v with the unit of
meters (m) is the thermal non-local parameter. If we set y = 0 in Equation (10), the classical
Fourier heat conduction model will be obtained.
Substituting the energy equation % = Q into Equation (10), the non-local heat con-
duction model becomes
dQ

Q+

where Q is the function of heat generatlon.
According to Ref. [19], the thermal boundary conditions and heat generation Q can be
expressed as follows:

+ k— 0. (10)

x=0:0=0x=L:q=0, (11)
Q = Qosin(77x). (12)
5

where Qg = #{Z{M

Using Equations (11)—(13), temperature distribution in the micro/nano-beams can
be obtained:
f(x) = Qo (2L (sm( ) + Ec:os( i ) 777:) (13)
K\ 7T 2L 2L 2L 2L

3. Buckling Analysis

The buckling issue has a similar governing equation to the classical Euler-Bernoulli
beam model. Therefore, there is no need to use an extra mechanical boundary condition.
This ideology has been widely used to study the mechanical non-local effect of micro/nano-
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beams [31,32]. The boundary conditions of micro/nano-beams (c.f. Figure 2) can be
expressed as follows:

Figure 2. Mechanical boundary conditions of thermoelastic micro/nano-beams: (a) CC, (b) CS, (c) SS
and (d) CE.

Clamped—free micro/nano-beams (CF), i.e.,

Jw

g:O,atx:Q

w=0,

M=0,V=0,atx=1L.

Clamped-clamped micro/nano-beams (CC), i.e.,

w:O,a—w:O,atx:O,
dx

w:O,a—w:O,atx:L.
dx

Simply supported micro/nano-beams (SS), i.e.,
w=0, M=0, atx =0,

w=0 M=0, atx = L.

Simply supported—clamped micro/nano-beams (CS), i.e.,

w=0, M=0, atx =0,

)
w=0,2% —0,atx=L.

ox

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

Substituting Equation (9) into these boundary conditions, i.e., Equations (14)-(21),
the critical load of micro/nano-beams with non-uniform temperature distribution can be
obtained by solving the obtained equations, i.e.,

cr—60 —

1+ (7t/9)*(&/L)

(EI+ENn2/(yL)* b

(22)
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where 7 is the coefficient of equivalent length with constants 0.5, 0.7, 1 and 2 for boundary
conditions CC, CS, SS and CF, respectively. Note that the external axial load P is written
as P.,_p as it equals the critical load. Equation (22) indicates that the thermal effect and
mechanical non-local effect reduce the critical load. However, the surface effect increases
the critical load. In the absence of the thermal effect, Equation (22) can be reduced to

EI+EI)n?/(yL)
Pyog = ELEDTIGLE 23)
L+ (/)" (6/L)
If both the thermal effect and small scale effect are neglected, Equation (22) becomes
2
Py = LEIZ (24)
(L)

This simplification above is the same as the critical load of classical stability theory [33],
which can be applied to prove the accuracy of the theoretical deduction.

4. Numerical Results and Discussion

Buckling of thermoelastic micro/nano-beams made of silicon is discussed in this
section. The physical constants are [34] E = 169 GPa, p = 2330 kg/m?, cg = 713]/ (kgK),
ap =259 x 1070 K1, 4 = 0.22, k = 156 W/ (mK) and Ty = 293 K. If there is no additional
specifications, the following parameters are used: a = 2h, L/h = 30, Es = El, { = 2nm,
I=2nm,y = 2nmand T = 1 N/m. Note that ] is the intrinsic material length, and it
will be replaced with the surface layer thickness in the calculation [35]. Additionally, in the
following description, Fourier heat conduction is abbreviated as the “Fourier model”, and
the non-local heat conduction model is abbreviated as the “non-local model”, for simplicity.

4.1. Influence of Mechanical Small Scale Effect on Critical Load

Figure 3a—d are given to study the influence of the mechanical small scale effect on
the critical load of buckling micro/nano-beams with various boundary conditions, i.e., CC
with # = 0.5, CS with # = 0.7, SS with # = 1 and CF with 5 = 2. In the analysis process,
parameter Py denotes the critical load predicted with the classical buckling model, and
the parameter P, is the critical load considering the mechanical small scale effect. The
influence of the thermal effect on the critical load is neglected in Figure 3a—d. It can be
seen that the critical load increases at the nano-scale as the mechanical small scale effect is
considered. Take Figure 3d for example, compared to the critical load Py predicted with
the classical stability theory, both the residual stress T and the surface elastic modulus
E; will lead to a larger critical load, P, as the beam thickness is less than approximately
200 nm. The size-dependent critical load can also be observed in Figure 3a—c. Note that
although the mechanical non-local effect decreases the critical load, the critical load still
increases with the continuously decreased beam thickness. This is to say, the surface effect
makes nano-beams “hard”. However, the mechanical non-local effect makes nano-beams
“soft”. The influence of the mechanical small scale effect on the critical load of thermoelastic
micro/nano-beams is clear.

4.2. Influence of Thermal Small Scale Effect on Critical Load

Figure 4 is used to describe the influence of the thermal non-local effect on the equiv-
alent thermal force of thermoelastic micro/nano-beams with un-uniform temperature
distribution. The parameter Pyon—10cal denotes the equivalent thermal force predicted with
the non-local heat conduction model, and the parameter Ppyyier denotes the equivalent
thermal force predicted with the classical Fourier heat conduction model. Obviously, the
thermal non-local effect reduces equivalent thermal force. Therefore, the thermal non-
local effect increases the critical load of beams. This phenomenon can be explained with
Equation (17), and which becomes more and more significant as the beam thickness is
continuously diminished at the nano-scale. More important, as the beam thickness is larger
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than approximately 100 nm, the influence of the thermal non-local effect can be neglected
and the classical Fourier heat conduction model is still useful. A similar phenomenon can
also be seen in Figure 3a—d. In other words, both mechanical and thermal small scale effects
can be neglected and the classical buckling model is still useful as the beam thickness is
larger than approximately 100 nm. Otherwise, both of them must be considered in the

thermoelastic buckling analysis. As a result, h = 100 nm is the critical thickness, which is
determined with the small scale effect.

20 20
— 5 =0E=0£=0 — 1 =0,E,=0,&=0
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Figure 3. Influence of mechanical small scale effect on critical load of buckling micro/nano-beams

without considering thermal effect: (a) CC with 7 = 0.5, (b) CS with 7 = 0.7, (¢) SS with 7 = 1 and
(d) CF withn = 2.

2.0
Non-local model
1.5 — - - Fourier model
Q‘I-I-
3 1 S kT PR -
Q‘E ,
054 /
0.0 T T
10° 108 107 106

h (nm)

Figure 4. Influence of thermal non-local effect on equivalent thermal force of thermoelastic
micro/nano-beams.
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4.3. Influence of Combined Mechanical and Thermal Small Scale Effects on Critical Load

Figure 5a—d show the influence of the combined mechanical and thermal small scale
effects on the critical load of buckling micro/nano-beams. The parameter P.,_g denotes the
critical load considering the thermal effect. In the influence region of critical thickness, it
can be observed that the critical load increases when both a mechanical and thermal small
scale effect are considered, and this size-dependent behavior depends on the mechanical
boundary conditions. For example, as shown in Figure 5a—d, for a given beam thickness,
the critical load increases with an increased equivalent length. Moreover, as mentioned
before, the surface effect increases the critical load, mechanical non-local effect reduces
the critical load and thermal non-local effect leads to a larger critical load. Due to the
surface effect having a stronger influence than mechanical and thermal non-local effects
on the critical load, the critical load finally increases at the nano-scale. This conclusion
is different from the numerical result of Yu et al. [19], in which only the mechanical and
thermal non-local effects are considered.

12 12
10 4 Dash lines: non-local model 10 4 Dash lines: non-local model
Solid lines: Fourier model Solid lines: Fourier model
_ 84 8
a o
T 6 \‘3 6 ~with small scale effect
A with small scale effect &  Wwithout small scale effect
-
44 ~ g without small scale effect 447 N
P N e
P ~ .
21 o 2 e
T Voot —
107 0% 107 10 107 10* 107 10¢
h (nm) h (nm)
(@) (b)
12 12
104 Dash lines: non-local model 10+ Dash lines: non-local model
Solid lines: Fourier model Solid lines: Fourier model
8 81
Q.= n_=
“? 6 - with small scale effect “? 6 - with small scale effect
n_: ol
4 i . L
without small scale effect ,without small scale effect
24 /
24 . /
0 0
107 10 107 10° 107 10°% 107 10
h (nm) 7 (nm)
(c) (d)

Figure 5. Influence of combined mechanical and thermal small scale effects on critical load of
thermoelastic micro/nano-beams: (a) CC with # = 0.5, (b) CS with # = 0.7, (¢) SSwith 7 = 1
and (d) CF withy = 2.

4.4. Influence of Other Key Factors on Critical Load

Figure 6 represents the influence of Poisson’s ratio on the critical load of thermoelastic
micro/nano-beams. Both a mechanical and thermal small scale effect are considered in the
analysis. Figure 6 indicates that at the macroscale, a larger critical load will be obtained if
the Poisson effect is neglected. Although, the influence of the Poisson effect on the critical
load begins to grow weaker with the decreased beam thickness at the nano-scale, and
which can even be neglected if beam thickness is less than 10 nm. However, it should not be
neglected in the region of 10 to 100 nm. It is thus clear that the Poisson effect was neglected
in the buckling analysis of thermoelastic nano-beams [11,19], which may not be exact.
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104 §\ Dash 1ines‘.‘|wilh poisson effect
Solid lines:‘without poisson effect

Pm‘-{)fp()

107 10 107 10
h (nm)

Figure 6. Influence of Poisson’s ratio on critical load of thermoelastic micro/nano-beams considering
mechanical and thermal small scale effect: CC with 7 = 0.5, CS with # = 0.7, SS with 7 = 1 and CF
withy = 2.

Figure 7a—d show the influence of the thickness-to-length ratio on the critical load of
thermoelastic micro/nano-beams. Obviously, for a given beam thickness, the influence
of the small scale effect on the critical load becomes more significant as the thickness-to-
length ratio increases. In addition, it can be seen from Figure 7a—d that the critical load
increases with an increased equivalent length if beam thickness is given. This phenomenon
can also be found in Figure 5a—d, and which can be used to verify the accuracy of the
numerical simulation.

50 50T
\ — Lih=30 ] — Lih=30
40 4 '.\ w==s Lih=40 404t e eee Lih =40
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Figure 7. Influence of thickness-to-length ratio on critical load of thermoelastic micro/nano-beams
considering mechanical and thermal small scale effect: (a) CC with # = 0.5, (b) CS with # = 0.7, (¢) SS

10°

with # = 1 and (d) CF with y = 2.
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5. Conclusions Remarks

In this paper, thermoelastic buckling of micro/nano-beams with non-uniform tempera-
ture distribution is discussed based on the non-local elastic theory and surface elastic theory.
Non-uniform temperature distribution in the micro/nano-beames is first calculated based
on the non-local heat conduction model. The temperature-induced equivalent thermal
load is regarded as the component of the external axial load. The analytical solution of
the critical load is obtained. The influence of the surface effect and both mechanical and
thermal non-local effects on thermoelastic buckling behaviors of micro/nano-beams is
discussed in detail. The numerical simulation indicates that

1. A critical thickness is proposed: as the beam thickness is less than the critical thickness,
the influence of both mechanical and thermal small scale effects on the buckling load
must be considered. As beam thickness is larger than the critical thickness, the
influence of both mechanical and thermal small scale effects on the buckling load can
be neglected, and the classical buckling model can be applied for theoretical prediction
of the buckling load. In short, the critical thickness can be used to distinguish the
influence region of the small scale effect in practical engineering applications.

2. The critical load depends on the boundary conditions, the length-to-thickness ratio
and Poisson’s ratio. These findings are useful to the design of micro/nano-beams.

3. Inthe influence region of the small scale effect, the combined small scale effects can
give rise to a larger critical load. Specifically, the surface effect leads to a “hard beam”,
mechanical non-local effect leads to a “soft beam” and thermal non-local effect leads
to a larger critical load. The surface effect has great influence on the critical load
compared to both mechanical and thermal small scale effects.

To summarize, these findings above indicate that the critical load of micro/nano-beams
depends not only on the structural size but also the thermoelastic coupling. Hopefully,
these conclusions are useful to a buckling analysis, especially for thermoelastic micro/nano-
beams subjected to non-uniform temperature distribution. In the future, an experimental
analysis will be carried out to validate the proposed model.
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