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Abstract: Neurological diseases remain a major concern due to the high world mortality rate and the
absence of appropriate therapies to cross the blood–brain barrier (BBB). Therefore, the major focus is
on the development of such strategies that not only enhance the efficacy of drugs but also increase
their permeability in the BBB. Currently, nano-scale materials seem to be an appropriate approach
to treating neurological diseases based on their drug-loading capacity, reduced toxicity, targeted
delivery, and enhanced therapeutic effect. Selenium (Se) is an essential micronutrient and has been of
remarkable interest owing to its essential role in the physiological activity of the nervous system, i.e.,
signal transmission, memory, coordination, and locomotor activity. A deficiency of Se leads to various
neurological diseases such as Parkinson’s disease, epilepsy, and Alzheimer’s disease. Therefore,
owing to the neuroprotective role of Se (selenium) nanoparticles (SeNPs) are of particular interest
to treat neurological diseases. To date, many studies investigate the role of altered microbiota with
neurological diseases; thus, the current review focused not only on the recent advancement in the
field of nanotechnology, considering SeNPs to cure neurological diseases, but also on investigating
the potential role of SeNPs in altered microbiota.

Keywords: selenium; nanoparticles; neurological diseases; gut microbiota

1. Introduction

Neurological diseases are regarded as the world’s leading cause of disability and
mortality, and they account for 12% of global deaths. The most common neurological
diseases include Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis [1].

The central nervous system comprises the brain and spinal cord, which play an im-
portant role in neurological diseases. According to the body’s function and regulation, the
CNS has three predominant barriers, i.e., the blood–brain barrier (BBB), the cerebrospinal
fluid–blood barrier (the avascular arachnoid epithelium), and the blood–cerebrospinal
fluid barrier (the choroid plexus epithelium). Owing to these naturally existing barriers,
particularly the BBB, the treatment of neurological diseases through drug delivery into the
CNS is challenging [2]. However, there are some FDA-approved drugs that are currently
used for neurological disease treatment (Table 1).

Currently, there is no effective therapy for many neurological diseases. Scientists and
technologists from multidisciplinary fields, i.e., from behavior to the molecular level, have
carried out research in multiple directions, but a truly interdisciplinary way of treatment
has not yet been explored. The ultimate consequence of this is that many pathological
disorders involving the central nervous system (CNS) remain untreated.

Nanoparticles (NPs) represent a promising approach in the treatment of neurodegener-
ative diseases, specifically Parkinson’s and Alzheimer’s disease (REF) [3,4]. Drug delivery
through nanosized particles not only crosses the blood–brain barrier but also makes for
target-specific delivery. Moreover, numerous benefits are associated with NPs to treat
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the CNS, i.e., high biological and chemical stability, ability to be administered by various
routes, large surface-to-volume ratio, and feasibility to incorporate both hydrophobic and
hydrophilic drugs [5,6].

Table 1. FDA approved drugs for neurological diseases.

FDA-Approved Drugs for Neurological Diseases

Drug Name Approval Disease Indications

Briumvi 28 December 2022 Multiple sclerosis (MS)
BRIUMVI is a CD20-directed cytolytic
antibody indicated for the treatment of

relapsing forms of multiple sclerosis (MS)

Relyvrio 29 September 2022 Amyotrophic lateral sclerosis
(ALS)

RELYVRIO is indicated for the treatment of
amyotrophic lateral sclerosis (ALS) in adults.

Aduhelm 7 June 2021 Alzheimer’s disease To treat Alzheimer’s disease

Suvorexant 29 January 2020 Mild-to-moderate
Alzheimer’s disease (AD)

Insomnia characterized by difficulties with
sleep onset and/or sleep maintenance

18F-Fluortaucipir 28 May 2020 Alzheimer’s disease (AD)
Evaluation of tau neurofibrillary tangle

(NFT) density and distribution with
positron-emission tomography

Ozanimod 25 March 2020 Multiple sclerosis (MS)
Relapsing multiple sclerosis (MS), including
clinically isolated syndrome (CIS) and active
secondary progressive MS (aSPMS) in adults

Inebulizumab 12 June 2020 neuromyelitis optica spectrum
disorder (NMOSD)

Antiaquaporin-4 positive (AQP4)+

neuromyelitis optica spectrum disorder
(NMOSD)

Satralizumab 16 August 2020 neuromyelitis optica spectrum
disorder (NMOSD)

Antiaquaporin-4 positive (AQP4)+

neuromyelitis optica spectrum disorder
(NMOSD)

Ofatumumab 20 August 2020 Multiple sclerosis (MS)

Relapsing forms of multiple sclerosis (MS),
including clinically isolated syndrome (CIS)

and active secondary progressive MS
(aSPMS) in adults

Selenium (Se), being an important trace element in the body, showed remarkable
health benefits, i.e., improving the immune system [7], securing the nervous system’s phys-
iological activity [8], and combating oxidative damage caused by free radical species [9].
As an integral component of selenoproteins, Se has an essential role in the fundamental
functioning of the CNS [10]. Therefore, a deficiency of Se contributes to the pathogenesis
of various neuropathological and neurodegenerative diseases. Se supplementation has
numerous beneficial impacts on neurological diseases. However, Se has a narrow range
between toxic and beneficial doses. The Expert Group on Vitamins and Minerals (EVM) rec-
ommended that the daily dose of Se should be 60 µg for women and 70 µg for men [11,12],
a dose above 400 µg is considered toxic and leads to a disorder known as selenosis. Owing
to their incredible health benefits, Se (selenium) nanoparticles (SeNPs) gained worldwide
attention due to their wide application in the field of therapeutics. SeNPs have lower
toxicity, higher efficiency to resist free radical species, and acceptable bioavailability in
comparison to inorganic selenium. Moreover, based on the experimental data, the toxicity
of SeNPs is classified as lower than that of other organic and inorganic compounds such as
selenate, selenite, and selenomethionine. SeNPs are involved in numerous physiological
and metabolic processes, such as the regulation of the immune system and the antioxidant
defense system [13–15]. Additionally, SeNPs have a strong capability to penetrate biolog-
ical cells and tissues, suggesting their potential efficiency to inhibit oxidative stress and
inflammation [16,17]. Owing to these unique advantages, recently, SeNPs have snatched a
lot of attention from scientists for their use in the treatment of neurological diseases.
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In light of the above-mentioned discussion, the current review summarizes the poten-
tial benefits of SeNPs to treat neurological diseases. Since recent studies have investigated
the role of the altered microbiota in neurological diseases, this review also provides in-
sight into how SeNPs can regulate the altered microbiota, a crucial step in opening new
perspectives on the use of SeNPs as potential pharmacotherapy.

2. Materials and Methods

This review is based on Google Scholar and PubMed searches using the following
keywords: neurological diseases, selenium nanoparticles, and microbiota. The final search
was performed in December 2022, and recent papers with high relevance were selected for
the review.

3. Results and Discussions
3.1. Selenium Compounds and Their Physiological Effects

Selenium is an essential trace element that plays an important role in various phys-
iological functions, including reactive oxygen species (ROS) control and modulation in
the immune system [18]. According to the European Food Safety Authority, the recom-
mended daily allowance (RDA) of Se is 70 µg day−1 for men, 60 µg/day for women [19],
65 µg day−1 for pregnant women, and 75 µg day−1 for lactating women [20,21].

The main form of Se is the Se analog of the amino acid methionine known as selenome-
thionine (SeMet), which is absorbed and makes an entry to the methionine pool in the body
after digestion [22,23]. Selenium in the form of inorganic selenate and selenite are mostly
used as supplementation. Se often plays a major role in the generation of selenoproteins
that is essential for the body due to their multiplex roles, i.e., protein folding, control over
thyroid hormone metabolism, redox signaling, etc. [20].

Se is also known to have antibacterial, antiviral, antifungal, and antitumor properties.
In addition, various studies confirmed Se’s role in thyroid, cardiovascular, and neurological
diseases [19,20,24]. Se adequate amount supports the immune system by enhancing the
activity of natural killer (NK) cells and the proliferation of T cells against pathogens and
cancer cells, also enhancing the efficacy of vaccines [25,26]. It also contributed to the
reduction of risk associated with various inflammation-related diseases like rheumatoid
arthritis [27]. Se maintains ROS production and enhances DNA stability while decreasing
the renal and hepatic side effects of chemotherapeutic drugs [18].

3.1.1. Selenium Bioavailability, Metabolism, and Physiological Functions

The bioavailability of Se depends upon the food consumed [28], being more prevalent
in animal products than in vegetables. The content of Se is more influenced by the source
of the animal and also its species, i.e., fish have elevated levels of Se. SeMet is abundant in
both animals and plants, whereas selenocysteine is mostly present in animals. The principal
form of selenium in the body is SeMet, as it enters the Se pool directly [23,29].

Under physiological conditions, all forms of Se have an absorption rate of 70–90%,
except selenite, which has a lower absorption rate of 60%. In addition, food processing
also influences bioavailability, as proteins are more easily digestible at higher temperatures
and Se release and bioavailability become more efficient. Due to synergistic, additive, and
antagonistic interactions, total carbohydrate, fat, protein, and fiber contents also influenced
Se bioavailability [30,31].

Se metabolism occurs mainly in the liver as it is responsible for selonoprotein synthesis
and excretion via various selenometabolites. Mostly Se is excreted through urine, while
some is significantly excreted through feces [30].

3.1.2. Se Potential Therapeutic Impact

Various studies confirmed the immunomodulatory and anti-inflammatory role of Se
and its supplementation has been demonstrated to cure various anti-inflammatory diseases,
i.e., chronic lymphedema, Crohn’s disease, asthma, and chronic lymphedema [24,32]. Se is
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also known to be effective against cancer as it decreases ROS production and prevents gene
dysfunction and DNA damage generated by oxidative stress in the body. It is also used as
a chemotherapeutic and radiotherapy adjuvant, as its pro-oxidant effects are more effective
on malignant cells than on healthy cells. [24,33].

Deficiency of Se correlates with various bacterial, parasitic, and viral infections, which
show the influence of Se on the function of the immune system [25,34] as HIV, H1N1,
influenza, West Nile virus infection, etc. [29]. Se supplementation has also been proven
to be favorable for the treatment of numerous bacterial infections such as Mycobacterium
tuberculosis, Helicobacter pylori, Escherichia coli, etc. Instead of provoking an immune re-
sponse against the poliovirus and influenza A vaccinations, Se supplementation has also
corresponded to antiparasitic properties against Heligmosomoides bakeri and Trypanosoma
cruzi [25,34].

The potential role of Se in cardiovascular diseases has been revealed by numerous
studies due to its protection against excessive platelet aggregation and oxidative damage,
which ultimately stop the pathologies of cardiovascular diseases, i.e., heart hypertrophy,
atherosclerosis, congestive failure, and hypertension [24,29,35]. Due to the regulatory
effect of selenoproteins on the insulin signaling cascade, Se is also associated with the
prevention of type 2 diabetes. Reduction in insulin resistance is shown to be due to
selenoproteins, as they diminish pancreatic insulin production and indirectly thioredoxin
reductases (TR) lower insulin resistance. However, some studies depict a higher association
of Se supplementations with a greater risk of type 2 diabetes, so the role of Se in diabetes is
not yet clear [36,37].

Selenium is present in glandular and gray matter regions of the brain and contributes to
various dopaminergic and neurotransmission pathways; hence, it is also used as a potential
biomarker in various neurological diseases, i.e., Alzheimer’s, epilepsy, and Parkinson’s
diseases [24,38]. The antioxidant neuroprotective function of Se creates a strong impact
on the hyperphosphorylation of the tau protein, cytoskeleton assembly regulation, Aβ

deposition attenuation, and the tendency to bind with neurotoxic metals, which constitutes
its ability to have a potential role in the development of Alzheimer’s disease. Various
selenoproteins were also studied to protect dopaminergic neurons, strengthening the
neuroprotective role of Se against Parkinson’s disease [39,40]. Considering the low level of
Se in the brain, the applications of Se will only be beneficial for patients who have severe
Se deficiency, lower selenoprotein production, or mutations in genes associated with the
delivery of Se [39]. The main Se potential in neurological diseases is described in Figure 1.

3.2. Preparation and Characterization Methods of Se Nanoparticles (SeNPs)
SeNP Production Methods

Se can be synthesized from three common methods of obtaining nanoparticles: physi-
cal, chemical, and biological methods (Figure 2). Since chemical methods involved the use
of high temperatures, dangerous chemicals, and an acidic pH for the catalytic reduction of
ionic selenium, this represented a less safe method for the synthesis of Se nanoparticles
(SeNPs) [41,42]. Physical methods such as electrodeposition techniques, phyto-thermal-
associated synthesis, and microwave synthesis are less common than chemical methods.
The third and most effective method used nowadays is the biological method, which uses
algae, yeast, fungi, and plants as biological catalysts for the production of nanoparticles.
The biological method is advantageous over the other two methods due to its lower cost,
fast growth rate of microorganisms and plants, lower toxicity, common procedures for
culturing, the nonexistence of severe extreme conditions, and eco-friendly production of
nanoparticles (Table 2) [43–46].
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Figure 1. Different selenoproteins regulate different organs in the body. Se is mainly absorbed in 
the form of selenoproteins. GPX1 and GPX2 maintain the body’s health by regulating the production 
of reactive oxygen species (ROS). SELENOP normally acts as a plasma transporter in numerous 
organs, while DIO1 affects thyroid hormone activity. SELENOI, on the other hand, is involved in 
managing the nervous system, and a deficiency of SELENOI results in the emergence of neuro-
degenerative diseases. 
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while DIO1 affects thyroid hormone activity. SELENOI, on the other hand, is involved in managing
the nervous system, and a deficiency of SELENOI results in the emergence of neurodegenerative
diseases.
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Table 2. Comparative evaluation of SeNPs production methods.

Method of Production Materials Characteristics Advantages Disadvantages

Chemical Method

• Inorganic Se (i.e.,
selenate or
selenite) reduction
by a reducing
agent.

• Use of a capping
agent for
stabilization of
nanoparticles.

• Characteristics of
NPs depend upon
stabilizing agents.

• Simple method
without the need
for technological
instruments and
biological
incubation.

• Use of harmful
chemicals that
make it a less
environment-
friendly
method.

Physical Method

• Usage of
physically based
methods, i.e., laser
ablation, heating,
etc., to induce
changes in
inorganic Se in the
presence of the
stabilizing agent.

• Characteristics of
NPs depend upon
stabilizing agents.

• Small-sized
nanoparticles
production.

• Environment-
friendly
process.

• Rapid reaction.
• Less energy spent.

• Specific
instrument
necessities.

Biological Method

• Use of biological
agent as a
stabilizing and
reducing agent for
inorganic
selenium.

• The characteristics
of NPs depend
upon biological
organisms, i.e.,
plants, fungi, and
yeast.

• Environment-
friendly
process.

• No need of extra
stabilizing agent
as biological
organisms itself
acts as both
reducing and
stabilizing agent.

• Need for
optimization of
several steps and
processes in order
to obtain NPs.

The biosynthesis of SeNPs has been conducted using various plant extracts, i.e.,
Cinnamomum zeylanicum bark, fresh citrus and lemon fruits [47], Aloe vera leaf extracts,
Dillenia indica [48], Vitis vinifera [49], Prunus amygdalus leaf [50], Allium sativum [51], etc.
The main benefit of using plant extracts is that plant’s secondary metabolites themselves
act as natural reductant and stabilizer agents in an eco-friendly approach.

Due to the biological activities of selenium, SeNPs are widely used for various
biomedicinal applications, for example, in the treatment of neurological diseases and
diabetes as an antiviral, antibacterial, anti-apoptotic, and anti-inflammatory drug, and for
the effective delivery of selective drugs into the tissues.

It is important to determine the physical characteristics of nanoparticles because the
shape and size of nanoparticles affect their activity on cells and tissues. For example,
Se nanowires have higher photoconductivity, while spherical-shaped SeNPs have been
proven to have higher biological activities [21]. The antioxidant properties of nanoparticles
also depend on their size: SeNPs have been shown to scavenge free radicals in a size-
dependent manner (5–200 nm) [52]. The functionalization of NPs with other substances
also depends upon the shape and size of NPs, i.e., the effectiveness of chitosan as an
antioxidant and antitumor agent firmly depends upon SeNPS characteristics [16,53]. The
synthesis method influences the shape and size of NPs and, consequently, their medicinal
properties. There are different forms of SeNPSs, such as rod-like, hexagonally flowered,
nanowires, nanotubes, nanoneedles, and nanorods. The spherically shaped SeNPs are more
commonly used for pharmacological and biological purposes [54].
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3.3. Role of SeNP in Neurodegenerative Diseases

Se, being a principal trace element in humans and animals, plays a remarkable role in
regulating the standard physiological functions of the brain. It also has a neuroprotective
role, and some selenoproteins also participate in the protection against neurodegenerative
diseases. Studies proved that the metabolism of Se in the brain is different from that in
other body organs, as Se remains preserved in the brain in the case of Se deficiency [55–57].
Currently, SeNPs’ role in brain diseases has been studied because neurons are more prone to
be damaged by oxidative stress due to several reasons, such as a low level of antioxidant en-
zymes, a high consumption of oxygen, and occupancy of the high level of polyunsaturated
fats [58–60].

3.3.1. Alzheimer’s Disease and SeNPs

One of the main factors in the pathogenesis of neurodegenerative diseases is oxidative
stress. Numerous natural antioxidants are used as treatments, but the hurdle is their limited
accuracy [56,57]. Therefore, the focus is now on the synthesis of nanoparticles that have
greater antioxidant potential. Various studies showed that nanoparticles more often act as
an oxidizing agent and may cause damage to neurons, decreasing the cognitive functions of
Alzheimer patients’ brains [61–65]. Despite that, several studies pointed out that SeNPs in
Alzheimer’s disease prevent the aggregation of amyloid-β (Aβ) protein and also can cross
the BBB [66,67]. It has been demonstrated that SeNPs coated with epigallocatechin-3-gallate
and peptide B6 had a similar effect [68]. Xianbo Zhoub et al. determined that cysteine
enantiomer modified SeNPs (abbreviated as D/LSeNPs) demonstrated a strong impact
on the aggregation of Aβ in the presence of metal ions, i.e., Cu2+ and Zn2+. These SeNPs
modified by the chelating agent can prevent Aβ fibril formation by blocking metal ion
binding sites and by binding with Aβ. Modified SeNPs are more effective in protecting
the cell because of their effective absorption by PC12 cells, protection from oxidative stress,
and potential to maintain cellular redox potential [69].

A considerable therapeutic promise in Alzheimer’s disease is the inhibition of amyloid
β (Aβ) aggregation. Although, the non-selective disposition of drugs and BBB put a major
hurdle in achieving this. A study conducted by Licong Yang et al. demonstrated that the
conjugation of the targeted peptide with SeNPs acts as dual-functional NPs that not only
cross the BBB but also inhibit the aggregation of Aβ [70].

Similarly, in another study conducted by Dongdong Sun et al., it was found that SeNPs
coated with the chelating agent were effective in preventing Aβ aggregation, memory
impairment, and ameliorating cognition [71].

Nevertheless, the current focus is on the synthesis of nanoparticles based on natural
resources for the cure of AD [72], as resveratrol (Res)-polyphenol, which is mainly found
in plants, has an antioxidant and especially a neuroprotective effect [73,74]. Thus, the
synthesis of SeNPs with Res coating enhanced the antiaggregatory and antioxidant potency
of reversatol, which was demonstrated on PC12 cells of the adrenal medulla of rats [75].
The potency of ResSeNPs to bind with Aβ42 and block the Cu2+ binding that leads to cell
death by damaging the cell membrane has been demonstrated [75].

3.3.2. SeNPs and Parkinson’s Disease

The second most progressive neurodegenerative disease is Parkinson’s disease, which
has the main characteristics of muscle rigidity, dyskinesia with tremors, postural instability,
and bradykinesia [76–79]. Although the pathophysiology of Parkinson’s disease is not yet
clear, oxidative stress is regarded as one of the prime pathological markers of PD as it results
in neuronal damage and ultimately death [80,81]. Yue Dong et al. evaluated the antioxidant
and therapeutic potential of glycine-SeNPs. For the study of Parkinson’s disease MPTP
(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) is considered a potential neurotoxin. Two
animal group models were designed with and without MPTP to check the neuroprotective
effect of glycine-SeNPs. Results depicted that glycine-SeNPs decreased the MDA level and
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increased GSH-PX activity and SOD activity, thus influencing a neuroprotective effect in
comparison to MPTP-induced PD rats [82].

3.4. Selenium Nanoparticles and Gut–Brain Axis

About 2500 years ago, Hippocrates stated that the gut was responsible for the begin-
ning of all diseases. With time, this statement gains a lot of support from the ongoing
research on animal models and humans. The gut is regarded as the home of a diverse and
complex ecosystem of trillions of microorganisms that include yeasts, bacteria, viruses,
protozoa, and archaea [83]. The human gut microbiota is considered a unique entity that is
shaped by lifestyle and diet, and as a result, the physiology of the host is shaped by microor-
ganisms [84,85]. Host and gut microbiome symbiotic relationships start when embryonic
development is shaped by maternal microbiota and initiate gut microbiota colonization
during birth and development [86–88]. The microbiota influenced the maturation of the
neural, immune, and endocrine systems and played a remarkable role in cognitive and
postnatal brain development [89–91].

Methods in the Study of the Microbiota

High-throughput DNA sequencing technologies have made possible the detailed
study of the microbiome. The two techniques that have largely been used to study the
microbiome are based on whole metagenome sequencing and 16S ribosomal RNA gene
sequencing (Figure 3). The initial steps for both methodologies involved the isolation of
microbial cells from host cells, DNA extraction, and amplification using a random primer
(for metagenomics) or gene-specific primers (16s rRNA).

The gene that encodes 16s rRNA is a unique identifier of closely related and individual
species because it contains both highly conserved and hypervariable regions. The 16sRNA
gene identified the bacterial species in the sample either by comparing it with the reference
genome or by clustered de novo. This approach uses quantitative measures to describe
species’ evenness, diversity, and relative abundance of specific groups of closely related
species. In the metagenomic approach, unbiased sequencing of DNA is conducted for all
the microbial species present in the sample [92,93].

3.5. Gut Microbiota and Neurodegenerative Diseases

Microorganisms living in the gastrointestinal tract (GI) have gained prime interest
in studies of their role in neurological diseases. The GI tract is extremely vascularized,
having an enriched lymphatic system tract, and is animated by a multiplex enteric nervous
system, which is renowned as “the second brain”. Thus, there are numerous access points
through which luminal microbes can gain access and influence the host immune response
either directly or indirectly. The diverse population of microorganisms, i.e., Firmicutes
and Bacteroidetes, largely participate in the colonization of the GI tract [93,94]. The gut
commensal microbes enhanced the digestion and absorption of nutrients and yielded
enhanced enzymatic activity by expressing unique genes [95]. Gut microbes use compounds
derived from these nutrients as a source of metabolic intermediates and energy [96]. Thus,
it becomes clear that the gut microbiome has a considerable role in human physiology, and
dysbiosis results in a wide range of neurological and other diseases, including diabetes
and obesity.
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3.5.1. Parkinson’s Diseases (PD)

The pathology of the gut is a well-known marker of Parkinson’s disease. About
60–80% of patients suffered from constipation up to 20 years before the clinical onset of
PD, and it is regarded as one of the earliest symptoms [97–99]. It is noteworthy that at
the earliest stage of the disease, deposition of α-synuclein is observed even before motor
pathology onset [100–102]. Considering these findings, it is suspected that in the gut, the
pathology of PD occurs before expanding into the brain. Chandra et al. [103] conducted a
study to gain insight into the role of the gut microbiome in PD. A germ-free gnotobiotic
animal model is used for the study. It was observed that ASO mice growing in germ-free
conditions overexpress α-synuclein as compared to colonized ASO mice. The germ-free
ASO mice were then inoculated with microbial metabolites derived from carbohydrates
and short-chain fatty acids, which, as a result, promoted the pathology of PD. Additionally,
antibody treatment enhanced the PD burden. Appealingly recolonization of ASO mice
with the microbiota of healthy donors results in improved cognitive behavior in PD mice in
comparison to ASO mice recolonized with the microbiota of PD patients. Gut microbiome
dysbiosis is also revealed in human PD. Compared to control, microbial species, i.e.,
Ralstonia, Coprococcu, Blautia, and Roseburia, are increased in PD patients, while microbial
communities belonging to the Prevotellaceae and Faecalibacterium families are decreased in
the observed stool samples. It is also observed that Enterobacteriaceae family abundance is
also significantly associated with gait dysfunction and postural instability [104,105].

3.5.2. Alzheimer’s Disease (AD)

The relationship between gut microbiota and AD pathogenesis is well understood in
the animal model. Minter et al. [106] first reported the relationship of AD with microbiota.
It was observed that the murine model of AD was influenced by antibiotic-induced pertur-
bations in the gut microbiota diversity, and as a result, amyloidosis and neuroinflammation
occurred. In another study, the sequencing of 16s rRNA was performed by analyzing the
fecal samples of APP transgenic mice with the control, which revealed a significant gut
microbiome difference between them. In germ-free transgenic APP mice, cerebral Aβ was
also reduced. However, the recolonization of germ-free transgenic APP mice with the
microbiota of transgenic APP mice results enhanced the level of cerebral Aβ, and this effect
was less when the microbiota of wild-type mice was used [107].

3.5.3. Multiple Sclerosis (MS)

The gnotobiotic mouse also has been effective in studying MS pathology’s relationship
with microbiota [108]. Transgenic EAE mice grown in sterile environments experienced
no diseases or markedly attenuated disease; however, colonization with MS patients’
microbiota restored the phenotype of EAE [109,110]. Further studies supported this linkage
of microbiota with MS pathology, i.e., Berer k. et al. [111] observed in their study that oral
administration of Bifidobacterium animalis and Bacteroides fragilis reduced the development
of MS disease. The role of human gut microbiota in MS directly comes from the comparison
of the microbiota of healthy controls and MS patients. One large study reported that
microbial populations, i.e., Akkermansia, Butyricimonas, and Methanobrevibacter, are different
between both MS patients and healthy controls [112]. Vicente Navarro et al. researched
the linkage of gut microbiota with MS patients having active relapsing-remitting multiple
sclerosis (RRMS). The results showed a difference in microbial species at Clostridium,
Hungatella, Lachnospiraceae, Shuttleworthia, Bilophila, Poephyromonas, and Ruminococcaceae
between healthy control and RRMS patients [113]. In another study, Sherein G.Elgendy
et al. found that alterations in microbiota are directly linked with the exacerbation of MS.
Disruption in intestinal microbiota results in the enrichment or depletion of certain bacteria
that leads to MS predisposition. Desulfovibrio, Firmicutes, Actinobacteria, and lactic acid
bacteria were higher in MS patients in comparison to healthy controls, while Clostridium
cluster IV is comparatively lower in MS patients [114]. A new perspective on how microbiota
influenced MS patients was explained by Atsushi Kadowaki et al. A study found that gut
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microbiota-dependent CCR9 CD4 T cells were altered in secondary progressive multiple
sclerosis (SMPS), which leads to the development of SMPS [115].

3.6. Selenium Nanoparticles, Microbiota, and Neurodegenerative Diseases

The synergetic communication between the central nervous system and gut, mediated
by gut microbiota, plays a significant role in the development of neurological diseases such
as Alzheimer’s disease [116] (Table 3). Vogt et al. [117] conducted an extensive sequencing of
stool samples, showing the difference between microbiome diversity in healthy controls and
AD patients. At the phylum level, actinobacteria have a lower prevalence, while Firmicutes
are present in abundance. Similarly, at the genus level, Gemella, Blautia, Alistipes, and
Phascolarctobacterium are at a higher level in comparison to Clostridium and Bifidobacterium,
which are less abundant. The difference in the microbiome between AD and healthy
controls strongly suggested that altered gut microbiota are directly linked with alternations
in AD neuropathology. Another study conducted by Mancuso et al. found excessive
Shigella abundance in comparison to Eubacterium rectale in amyloid-positive patients [118].
Probiotics have a significant effect on modulating the gut–brain axis.

Additionally, microbiota dysbiosis also leads to the secretion of inflammatory-related
molecules, such as lipopolysaccharide and amyloids, and causes damage to the intestinal
mucosal barrier, ultimately stimulating neuroinflammation and microglia activation, which
are possibly involved in the progression of neurodegeneration [119]. Enhanced permeabil-
ity of the intestine causes enhanced metabolite accumulation and translocation, resulting in
microbial community imbalance [120]. One of the important pattern recognition receptors
that are involved in brain inflammation through the activation and release of microglia
and other inflammatory factors is Toll-like receptor 4 (TLR4). TLR4 is majorly activated
by lipopolysaccharide (LPS), resulting in the activation of inflammation-related signaling
pathways. [121]. Hou et al. [122] demonstrated that high plasma LPS levels and intestinal
permeability directly correspond with inflammatory cytokine expression in mouse brains.
Therefore, high levels of LPS may cause microglia activation because of intestinal barrier
dysfunction. Hence, the microbiota–gut–brain axis concept was based on the communi-
cation between the brain and the gut microbiota achieved by the enteric nervous system,
the vagus nerve, the immune system, and microbial metabolites, i.e., tryptophan, proteins,
and short-chain fatty acids (SCFAs) (Figure 4). Current studies investigated whether the
administration of probiotics enhanced the pathophysiology of autoimmune neurological
diseases, i.e., AD. Akbari et al. [123] illustrated in their study that the administration of
probiotics containing Lactobacillus casei, Lactobacillus fermentum, Lactobacillus acidophilus, and
Bifidobacterium bifidum had a positive effect on AD patients.
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Similarly, a meta-analysis suggested that probiotics influenced the cognitive behavior
of AD patients by decreasing oxidative stress and neuroinflammation levels [124]. Thus,
the results strongly convinced us of the potential efficacy of probiotics in AD patients by
improving cognitive dysfunction [125]. Selenium, a micronutrient, plays an important
role in redox regulation because of its integration into selenoproteins. Koc E.R. et al. [126]
documented a direct relationship between Se deficiency and cognitive impairment in AD
patients. In another study conducted by Tamtaji et al. [127], it was demonstrated that
the administration of Se in combination with multiple probiotics enhanced the metabolic
profile and mini-mental state examination (MMSE) score of AD patients. Additionally, the
supplementation of sodium selenite at high or super nutritional levels results in high Se
uptake by the central nervous system, which significantly improves MMSE scores [128].
However, several concerns are associated with sodium selenates, which limit their imple-
mentation in the food and medicine industries, i.e., low biological activity, high toxicity, not
easy absorption and utilization by the human body, and a narrow range of safe supplemen-
tation [129]. Currently, SeNPs have gained a lot of attention due to their high bioactivity,
low toxicity, and high bioavailability. Moreover, based on experimentation data, Se species
toxicity is ranked as selenate > selenite > selenomethionine > SeNPs.

A recent study conducted by Lei Qiao et al. [130] showed that administration of
SeNPs enriched with Lactobacillus casei ATCC 393 averted cognitive dysfunction in AD
mice through the modulation of the microbiota-gut-brain axis. ATCC 393 SeNPs minimize
aggregation of amyloid beta (Aβ) protein and modulate brain-derived neurotrophic factor
(BDNF) or Akt/cAMP-response element binding protein (CREB) pathways that prevent
neuronal death. Additionally, SeNPs caused TAU protein hyperphosphorylation, improved
cognitive dysfunction, restored gut microbiota balance, regulated immune response, and
enhanced production of SCFAs, which ultimately inhibit microglia activation and protect
the neuronal cells from neurotoxicity, i.e., neuroinflammation, and oxidative stress. Thus,
L. casei ATCC 393-SeNPs may act as a safe and promising nutritional supplement to avert
neurological diseases.

Licong Yang et al. [131] studied the effect of surface-modified SeNPs in Alzheimer’s
disease mice. SeNPs were coated with dihydromyricetin (DMY), as it was unstable un-
der physiological conditions, so it was further coated with chitosan (CS). To cross the
blood–brain barrier, CS/DMY SeNPs were further coated with the BBB-targeted peptide
Tg; thus, the resultant Tg-CS/DMY@SeNPs that easily cross the BBB inhibit the aggre-
gation of Aβ protein and reduce the secretion of inflammatory cytokines through the
NF-κB pathway. Moreover, it repairs the gut barrier and regulates the gut microbiota
species, i.e., Dubosiella, Bifidobacterium, and Desulfovibri. Moreover, Tg-CS/DMY@SeNPs
enhanced the relative abundance of Gordonibacter, which downregulates the NLRP3 inflam-
masome protein expression and decreases the serum inflammatory factor concentration.
Through this, it is suggested that Tg-CS/DMY@SeNPs reduce neuroinflammation in the
gut microbiota-NLRP3 inflammasome brain axis.

Moreover, Tg-CS/DMY@SeNPs enhanced the relative abundance of Gordonibacter,
which downregulates the NLRP3 inflammasome protein expression and decreases the
serum inflammatory factor concentration. Through this, it is suggested that Tg-CS/
DMY@SeNPs reduce neuroinflammation in the gut microbiota-NLRP3 inflammasome
brain axis.

Resveratrol (Res) has a neuroprotective effect, but it has lower bioavailability. Changjiang
Li et al. [132] illustrated for the first time that oral administration of resveratrol selenium
peptide nanocomposites regulated gut microbiota and reduced Aβ aggregation by dimin-
ishing Alzheimer’s disease-like pathogenesis. The mechanism of action involved binding
with Aβ and decreasing aggregation, lowering ROS, and increasing antioxidant enzyme
activity, activating the Akt signaling pathway that results in the downregulation of neuroin-
flammation, averting inflammatory-related gut bacteria and oxidative stress, and helping
to overcome gut microbiota dysbiosis (Figure 5).
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Table 3. Effect of SeNPs on neurological diseases and microbiota.

Nanomaterials Average
Size

Experimental
Model Dose Exposure

Time
Administration

Way Gut Microbiota Alteration Effects to Host References

TGN-
Res@SeNPs 14 nm AD model

mice
50 mg/kg

b.w. 16 weeks Oral gavage

1. Decrease of Desulfovibrio,
Candidatus_Saccharimonas,
Ruminococcaceae_UCG-014,

Lachnoclostridium,
Enterorhabdus, and

Faecalibaculum;
2. Increase of

Lachnospiraceae_NK4A136_
group, Alistipes,

Odoribacter, Helicobacter
and Rikenella

Alleviation of
Alzheimer’s
disease-like

pathogenesis

[132]

Biogenic
SeNPs

170.5 to
182.5 nm SD rats

0.5, 1.0 or
2.0

mg/kg
- Administered

by gavage

1. Protected the integrity of
the spinal cord

2. Decreased the expression
of several inflammatory

factors
3. Enhanced the production
of M2-type macrophages by
regulating their polarization,

indicating a suppressed
inflammatory response

Improve the
disturbed

microenviron-
ment and

promote nerve
regeneration

[133]

DMY@SeNPs 46.30 nm APP/PS1 mice
50 mg/kg

body
weight

16 weeks Oral gravage

Regulate the population of
inflammatory-related gut

microbiota such as
Bifidobacterium, Dubosiella,

and Desulfovibrio

Ameliorate
neuroinflam-

mation
through the

gut
microbiota-

NLRP3
inflammasome-

brain
axis

[131]

Materials 2023, 16, x FOR PEER REVIEW 13 of 20 
 

 

Licong Yang et al. [131] studied the effect of surface-modified SeNPs in Alzheimer’s 
disease mice. SeNPs were coated with dihydromyricetin (DMY), as it was unstable under 
physiological conditions, so it was further coated with chitosan (CS). To cross the blood–
brain barrier, CS/DMY SeNPs were further coated with the BBB-targeted peptide Tg; thus, 
the resultant Tg-CS/DMY@SeNPs that easily cross the BBB inhibit the aggregation of Aβ 
protein and reduce the secretion of inflammatory cytokines through the NF-κB pathway. 
Moreover, it repairs the gut barrier and regulates the gut microbiota species, i.e., Dubosi-
ella, Bifidobacterium, and Desulfovibri. Moreover, Tg-CS/DMY@SeNPs enhanced the rela-
tive abundance of Gordonibacter, which downregulates the NLRP3 inflammasome protein 
expression and decreases the serum inflammatory factor concentration. Through this, it is 
suggested that Tg-CS/DMY@SeNPs reduce neuroinflammation in the gut microbiota-
NLRP3 inflammasome brain axis. 

Moreover, Tg-CS/DMY@SeNPs enhanced the relative abundance of Gordonibacter, 
which downregulates the NLRP3 inflammasome protein expression and decreases the se-
rum inflammatory factor concentration. Through this, it is suggested that Tg-
CS/DMY@SeNPs reduce neuroinflammation in the gut microbiota-NLRP3 inflammasome 
brain axis. 

Resveratrol (Res) has a neuroprotective effect, but it has lower bioavailability. 
Changjiang Li et al. [132] illustrated for the first time that oral administration of resveratrol 
selenium peptide nanocomposites regulated gut microbiota and reduced Aβ aggregation 
by diminishing Alzheimer’s disease-like pathogenesis. The mechanism of action involved 
binding with Aβ and decreasing aggregation, lowering ROS, and increasing antioxidant 
enzyme activity, activating the Akt signaling pathway that results in the downregulation 
of neuroinflammation, averting inflammatory-related gut bacteria and oxidative stress, 
and helping to overcome gut microbiota dysbiosis (Figure 5). 

Thus, the abovementioned studies illustrated that functionalized SeNPs are potential 
drug candidates for treating neurological diseases, particularly Alzheimer’s disease. 

 
Figure 5. SeNPs’ mechanism of action to diminish Alzheimer’s disease-like pathogenesis. Figure 5. SeNPs’ mechanism of action to diminish Alzheimer’s disease-like pathogenesis.

Thus, the abovementioned studies illustrated that functionalized SeNPs are potential
drug candidates for treating neurological diseases, particularly Alzheimer’s disease.
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4. Conclusions

In conclusion, the main aim of this review was to organize the latest data on the
pharmacotherapeutic potential of SeNPs to treat neurodegenerative diseases. In addition,
the well-studied role of microbiota in neurological diseases was also presented. To the best
of our knowledge, this is the first-ever study that mentioned the role of SeNPs in treating
both neurodegenerative diseases and altered microbiota at the same time. Though this study
has illustrated that SeNPs could be a potential hallmark in neurological disease treatment.
Moreover, the data presented in this study will help the researchers to quickly navigate the
current research on SeNPs and their therapeutic potential in treating neurological diseases
that are linked with altered microbiota. This review will also open new doors of research
for scientists to find the potential of SeNPs to treat microbiota-related diseases and to
overcome some major challenges associated with nanomaterial synthesis, i.e., the difficulty
of assessing safety and effectiveness, the lack of specialized equipment for efficient and
high-quality nanomaterial synthesis. Nevertheless, the treatment of neurological diseases,
which is regarded as an uphill battle, could be easily overcome if multimodal agents are
actively practiced with the help of nanotechnology.
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