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Abstract: In this paper, we studied the effects of a series of alloying atoms on the stability and
micromechanical properties of aluminum alloy using a machine learning accelerated first-principles
approach. In our preliminary work, high-throughput first-principles calculations were explored and
the solution energy and theoretical stress of atomically doped aluminum substrates were extracted
as basic data. By comparing five different algorithms, we found that the Catboost model had the
lowest RMSE (0.24) and lowest MAPE (6.34), and this was used as the final prediction model to
predict the solid solution strengthening of the aluminum matrix by the elements. Calculations
show that alloying atoms such as K, Na, Y and Tl are difficult to dissolve in the aluminum matrix,
whereas alloy atoms like Sc, Cu, B, Zr, Ni, Ti, Nb, V, Cr, Mn, Mo, and W exerted a strengthening
influence. Theoretical studies on solid solutions and the strengthening effect of various alloy atoms
in an aluminum matrix can offer theoretical guidance for the subsequent selection of suitable alloy
elements. The theoretical investigation of alloy atoms in an aluminum matrix unveils the fundamental
aspects of the solution strengthening effect, contributing significantly to the expedited development
of new aluminum alloys.

Keywords: aluminum substrate; single atoms; mechanical properties; explainable machine learning;
density function theory

1. Introduction

Aluminum and aluminum alloy materials have been studied by a wide range of
scholars because of their advantages, such as being lightweight and having good plasticity.
Furthermore, the electrical conductivity of aluminum is surpassed only by copper, silver,
and gold. As a result, aluminum is extensively utilized in various industries, including
aerospace, automotive, and food packaging. The material exhibits favorable processing
characteristics and can be machined and fabricated using numerous forming methods.
Being non-magnetic, it has been particularly valuable in the production of electronic and
electrical devices. Moreover, aluminum alloys are widely employed in heat sinks and
high-temperature equipment due to their superior thermal conductivity. Aluminum alloys
are extensively used in the aerospace and automotive sectors for the manufacturing of struc-
tural components and housings, among other applications. Consequently, aluminum alloys
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have garnered significant experimental [1,2] and computational attention [3], highlighting
their potential for a wide range of applications.

In the industry, aluminum is commonly referred to as “pure aluminum” when it has
a purity greater than 99.00 wt.%. However, its strength is rather low, being only about
50 MPa. The mechanical properties of aluminum alloys show a significant improvement
with the addition of Cu, Si, and Mn elements [4]. Research has shown that the inclusion of
Cu can modify the microstructure of Al-Mg-Si alloys during the solid solution process and
alter the alloy aging precipitation sequence. Nevertheless, excessive amounts of Cu can
lead to grain boundary polarization, reducing intergranular corrosion resistance [5]. Trace
additions of Sn and In can effectively suppress the natural aging of aluminum alloys, and
Cu, Ge, and Zn alloying into the β-phase can improve the stability of the alloy. Furthermore,
Xiao et al. [6] performed computational analyses on the precipitated phases during the
aging of aluminum alloys and found that Mg and Zn atoms could become polarized
at grain boundaries, altering both the bonding environment and binding energy at the
interface. Mn shows some degree of solid solution in the alloy [7], but mainly exists
in the form of the Al6Mn phase; the Al6Mn phase can act as a nucleation site for the
β-phase, facilitating uniform nucleation within the crystal and therefore enhancing the
alloy’s corrosion resistance. Likewise, the strengthening alloying element Zr is commonly
used to improve the microstructure of aluminum alloys [8,9]. Some researchers have also
investigated the simultaneous addition of Fe and Cu to enhance the mechanical properties
of Al-Si cast alloys [10]. In recent years, rare earth elements have gained more attention from
scholars due to their strategic advantages in the context of a new technological revolution.

Numerous experimental advancements have been made in the investigation of al-
loying elements as dopants for aluminum. However, aluminum alloys lack a systematic
theoretical framework to explain the mechanism behind the action of these elements. Re-
cently, density functional theory has emerged as a widely adopted tool in material design
due to its ability to expedite the design process, improve calculation accuracy, and enhance
result reliability. Although first-principles calculations are highly accurate, they are compu-
tationally intensive, thereby inhibiting progress in new material development. Therefore,
this paper employs machine learning techniques [11,12] to accelerate first-principles cal-
culations [13,14] and conduct a comprehensive investigation into the micromechanical
behavior of aluminum substrates doped with alloyed atoms. Five distinct machine learning
algorithms were utilized to establish mathematical models based on a dataset generated
from density functional theory calculations. The models were subsequently compared in
terms of decision factors and root mean square errors, allowing for the selection of the
most suitable model. Finally, the machine learning models were employed to predict the
solution energy and micromechanical behavior of the aluminum matrix doped with other
atoms. The amalgamation of first-principles calculations with machine learning algorithms
yielded highly accurate forecasts of the solution energy and its impact on the micromechan-
ical behavior of individual atoms in the aluminum matrix. This paper is organized into
three sections: Section 2—Computational details, Section 3—Results and Discussion, and
Section 4—Conclusions.

2. Computational Details
2.1. Crystal Structure and Calculation Method

As an FCC structure, the Al(111) surface is known for having the highest density and
lowest surface energy, making it a commonly used surface for constructing computational
models in the literature [15,16]. In this paper, the aluminum system doped with alloy
consists of 72 atoms, with 71 aluminum atoms and 1 alloy atom, as shown in Figure S5.
The stretched model includes a 20 Å vacuum layer. To determine the interfacial fracture
strength and weakest path, we adopted a method of interface fracturing, with 11 sampling
points spaced at a strict interval of 0.5 Å each. Computational simulation techniques
based on first-principles have been extensively applied to investigate metal–alloy inter-
faces [17–19]. In our calculations, we utilized the Cambridge Sequential Total Energy



Materials 2023, 16, 6757 3 of 12

Package (CASTEP) [20] simulation package to perform first-principles electronic structure
calculations employing density functional theory (DFT) with the generalized gradient
approximation (GGA) [21–23]. Specifically, we employed the Perdew–Burke–Ernzerhof
(PBE) function [24,25], which is a functionally parametrized GGA function. A plane-wave
basis set with a 470 eV cutoff energy was used [3]. The integrable Brillouin zone (BZ) was
sampled using a 5× 5× 5 Monkhorst Pack center k-point grid, which was determined to be
sufficiently convergent. To ensure the accuracy and reliability of our results, these calcula-
tions were carried out with a lower iterative convergence threshold of 5.0 × 10−7 eV/atom.
In addition, we fully relaxed all atomic coordinates, imposing a limit of 0.02 GPa (safety
threshold to prevent the material from reaching its yield strength) on internal stresses and
allowing for a maximum displacement of 5.0 × 10−4 Å (the maximum displacement is
typically set to maintain the stability and accuracy of the system).

2.2. Machine Learning Databases and Models

The fundamental equation in DFT is the Kohn–Sham equation, which involves solving
a set of self-consistent equations for the electron density and Kohn–Sham potential. To
enhance the accuracy and efficiency of DFT calculations, machine learning algorithms are
employed. These algorithms, such as Back Propagation Neural Network (BPNN) [26],
K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Decision Trees (DT), and
Catboost, are trained on a dataset of known properties and corresponding electronic
structure calculations. By establishing a relationship between input (material descriptors)
and output (desired property), these models can accurately and rapidly predict properties,
reducing the computational cost associated with DFT calculations. The combination of
DFT and machine learning enables the exploration of large materials databases, high-
throughput screening, and prediction of the properties of novel materials. By leveraging
the computational efficiency of machine learning algorithms and the accuracy of DFT
calculations, researchers can accelerate materials discovery and design processes. The flow
of machine learning steps is shown in Figure 1.

Figure 1. Machine learning steps: feature engineering, machine learning model screening, and
result prediction.

3. Results and Discussion
3.1. Database Establishment and Selection of Feature Values

The establishment and selection of feature values within a database are crucial steps
in machine learning. The accuracy of machine learning models heavily depends on the
quality and relevance of data contained within the database. Therefore, a reliable database is
indispensable when developing robust machine learning models. When performing feature
selection, it is vital to consider the selection of relevant input variables as they directly affect
the predicted output variable, including irrelevant feature values that can lead to overfitting
and inaccurate predictions. The crystal structure model, as shown in Figure S1, was computed
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using first-principles calculations, and the results of this calculation can be found in Table S1.
In terms of experimentation, scholars have reported on the comparison of the solution and
strengthening effects of alloy elements on the aluminum matrix [4]. According to their
research findings, the order of the strengthening effect of alloy elements on aluminum alloy
is as follows: Mn > Cu > Si > Zn. These results are in line with our calculations of fracture
energy [3], confirming the correctness of the selected unit cell and reliability of the chosen
calculation method. In order to gain a better understanding of the data, we conducted a
correlation analysis on the DFT calculated data and various descriptors. We calculated the
Pearson correlation coefficients between the different features and target values. The formula
for the Pearson correlation coefficient is presented below [27–29]:

ρX,Y =
∑(Xi − X̄)(Yi − Ȳ)√

∑(Xi − X̄)
2 ∑(Yi − Ȳ)2

(1)

The Pearson correlation coefficient, denoted as ρXY, is calculated based on Xi and Yi,
which refer to the eigenvalues and target values, respectively. The values X and Y represent
the average of X and Y, respectively. The coefficient ranges in magnitude from −1 to 1,
where a value of 0 indicates that the two variables are not correlated. The closer the value
is to 1 or −1, the stronger the correlation between the data.

As shown in Figure 2, our correlation analysis revealed a strong correlation between
certain descriptors, such as atomic number and relative atomic mass, or atomic number
and period, and the correlation coefficients exceeded 0.91. Correlation analysis was used
for initial feature screening, which allows for the identification of redundant features to
avoid overfitting and improving the generalization of the model. In order to mitigate the
risk of overfitting by reducing dimensionality, we can appropriately exclude these highly
correlated descriptors for simplification purposes. To determine the optimal combination
of descriptors and the number of input features for machine learning models predicting
solution energy (Edoped) and theoretical stress (G), we employed the recursive feature
elimination method on the original dataset. This method builds the model iteratively and
eliminates features that contribute less to the model’s performance. Using mean square
error as the evaluation criterion, we observed that the prediction accuracy for both Edoped
and G initially increased and then gradually stabilized as the number of features increased,
as shown in Figure 3. The performance, in terms of mean square error, became stable
when the number of features reached six. Considering the constraints indicated by the
correlation analysis, we ultimately identified the following input features for Edoped (eV):
ionic radius, third ionization energy, covalent radius, electron affinity, second ionization
energy, first ionization energy, and electron configuration (d). For G (GPa), we identified
the following input features: atomic volume, ionic radius, group, second ionization energy,
atomic number, first ionization energy, and atomic radius.

Additionally, the recursive feature elimination method provides a quantitative assess-
ment of the interaction strength among features as shown in Table 1. As seen in Figure 4,
the radar plot illustrating feature importance during recursive feature elimination process
reveals the following: when predicting Edoped, the ionic radius exhibits the most significant
influence, with relatively minor disparities in importance among other volume-related
features. On the other hand, when predicting G, atomic volume accounts for over 70%
importance in relation to the target, and there are substantial differences in importance
among the various volume descriptors. It can be seen from Figure 4 that Edoped is relatively
high when the radius of the dopant atom differs significantly from the radius of the atom
in the crystal. In this case, the position of the dopant atoms in the crystal lattice may result
in larger deformations or distortions, which increases the energy. Alloying with small or
similar-sized dopant atoms increases the crystal modulus, whereas alloying with large
dopant atoms decreases the modulus due to deformations and distortions in the crystal
structure, thus affecting the micromechanical behavior of the system. Nonetheless, it must
be noted that the recursive feature elimination method solely offers a quantitative measure
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of importance and does not delve into the specific impact of each descriptor on the target
value. This highlights the necessity for further explanations beyond machine learning’s
“black box”. Also, the Pearson correlation coefficients (absolute values) of the Edoped and
G are presented for reference. Notably, the rankings of importance provided by the cor-
relation coefficients and the recursive feature elimination method do not align perfectly;
this discrepancy suggests that these partial descriptions do not adhere to a straightforward
linear relationship among the target values. Such findings further demonstrate the imper-
ative need to incorporate machine learning techniques capable of effectively addressing
multi-coupling issues.

Figure 2. Heat map of the Pearson correlation coefficient matrix between output and input descriptors
for the finalized descriptors. The shades of red and blue indicate the strength of positive and negative
correlations, respectively.

Figure 3. Variation of mean square error with the number of eigenvalues in feature elimination.



Materials 2023, 16, 6757 6 of 12

Figure 4. Importance radar chart for (a) solution energy and (c) theoretical tensile stress, and Pearson
correlation coefficients for (b) solution energy and (d) theoretical tensile stress.

We initiated a feature screening process to identify potential predictors that could
greatly impact the target variables. This was achieved through the calculation of correlation
coefficients for each feature against the target variables. Consequently, we observed a weak
correlation in the Edoped feature and consequently excluded it from subsequent analysis.
In addition, we discovered several strongly correlated features in the dataset. To address
concerns regarding multicollinearity, we selected only one feature from each of these
groups. Subsequently, we employed a feature elimination method to determine the most
relevant input features for predicting Edoped and G. The number of features included was
determined based on the evaluation through the root mean square error. Moreover, we
utilized importance radar and correlation coefficient plots to visually depict the significance
of the relevant features.

Table 1. The value of the change in mean square error of Edoped and G with the change in eigenvalues
in the feature elimination method.

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Edoped (eV2) 0.28 0.19 0.18 0.16 0.16 0.15 0.15 0.15 0.14 0.16 0.16 0.17 0.15 0.15 0.15 0.16
G (GPa2) 9.61 8.30 6.80 5.78 6.20 5.31 5.30 5.82 5.76 5.75 5.62 6.19 5.74 5.86 5.91 5.73

Based on the correlation analysis presented above, we employed two sets of data as
training inputs for the machine learning model: solution energy with its corresponding
descriptor, and theoretical stress with its accompanying descriptor. The descriptor served
as the input data for the machine learning dataset, and either solution energy or theoretical
stress was treated as the target data. The final selection of feature values to be used as
machine learning dataset for Edoped and G used in machine learning were extracted from
Tables S2 and S3. In order to ensure consistent scaling of all variables, we normalized both
the input and output variables within a range of 0 to 1, using the following mathematical
equation [30]:

X′i =
Xi − Xmin

Xmax − Xmin
(2)

where Xi represents the data individual, Xmax is the maximum value in that class of data,
and Xmin is the minimum value.
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3.2. Machine Learning Model Building and Optimization

To accurately assess the performance of various machine learning models when
applied to new data and optimize data utilization, cross-validation methods are employed.
Cross-validation is a statistical technique that evaluates a model’s ability to generalize by
dividing the dataset into distinct partitions. In this section, a commonly used five-fold
cross-validation approach was employed. In this approach, the original data is initially
randomly divided into eight subsets. Subsequently, the model is trained and validated
eight times. During each iteration, the model is trained on seven subsets, constituting
the training set, and then tested on the remaining subset, the validation set. This process
is repeated eight times, and the results are averaged to obtain more precise estimates of
the model’s performance. We implemented the aforementioned algorithms in Python,
utilizing scientific computing packages such as pandas and numpy. In order to assess the
effectiveness of various models, we introduced mean square error (MSE), mean absolute
percentage error (MAPE), and coefficient of determination (R2) as evaluation metrics. The
calculations for these metrics are outlined as follows [31]:

MSE =
1
N

N

∑
i=1

(yi − ŷ)2 (3)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷ)2 (4)

MAPE =
1
N

N

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100% (5)

R2 = 1− ∑N
i=1(yi − ŷ)2

∑N
i=1(yi − ȳ)2 (6)

where ŷi is the ML algorithm predicted value, yi is the DFT calculated value, yi is the mean
of the DFT calculated value, and N is the number of samples.

The cross-validation results of different algorithms indicate that the tree algorithm
significantly outperforms the other algorithms, whereas the BPNN algorithm performs
the worst, as shown in Table 2. These results could be attributed to the fact that the neural
network requires a large number of training parameters and is not suitable for this small
sample data problem. Within the category of tree-based algorithms, Catboost demonstrates
a significant advantage over the traditional DT algorithm. It achieves a RMSE (root mean
square error) of 0.24 and 0.22, as well as coefficients of determination of 0.99 and 0.93 for
the Edoped and G predictions, respectively. Regression analysis confirms that the machine
learning predicted values are significantly correlated with the DFT calculated values, and
the data points are evenly distributed around the identity line (Y = X), suggesting that our
model fits the data well, as shown in Figure 5. The prediction errors for Edoped and G are
3.64% and 3.63%, respectively, which meet the target accuracy requirements. Therefore, we
select the Catboost algorithm as the model for subsequent machine learning tasks.

After conducting a comprehensive cross-validation evaluation, we determined that the
Catboost model exhibited significantly superior performance. Consequently, we decided
to employ Catboost as our final prediction model. In order to explore the most effective
algorithms for small sample data problems, we experimented with a variety of techniques,
including tree algorithms and neural network algorithms. Specifically, we evaluated the
performance of Catboost, Decision Trees, Back Propagation Neural Network, K-Nearest
Neighbor, and Support Vector Machine. Tree algorithms utilize a tree structure to make data-
based decisions and predictions. When addressing small sample problems, tree algorithms
offer several advantages, including simplicity, ease of implementation, and robustness. As
a result, they are commonly regarded as an appealing choice in such scenarios.
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Figure 5. Catboost regression plots for (a) Edoped and (c) G; (b,d) show the comparison of RMSE and
MAPE for differents models.

Table 2. Mean square error, root mean square error, and MAPE corresponding to different machine
learning models for Edoped and G.

Edoped G
Catboost DT BPNN KNN SVM Catboost DT BPNN KNN SVM

MSE 0.06 2.32 14.53 8.87 11.00 0.05 0.18 0.48 0.36 0.81
RMSE 0.24 1.52 3.81 2.98 3.31 0.22 0.43 0.69 0.59 0.90
MAPE (%) 6.34 64.2 358.6 277.93 308.39 3.63 6.11 72.38 49.61 236.03

3.3. Interpretable Machine Learning and Result Prediction

The importance of interpretable machine learning is discussed in this section, and
Shapley additive explanations (SHAP) [32] are employed to analyze the Catboost model.
The goal is to achieve a comprehensive understanding of the impact of each feature on
prediction outcomes. A structured and systematic approach that employs machine learning
techniques is introduced in this study to predict performance parameters for various
elements. By conducting feature engineering, model selection, and interpretability, a highly
accurate prediction model is constructed, providing deep insights into its functioning.
Valuable contributions to materials science are provided by this research and enhances
our understanding of interactions among different elements. To gain a comprehensive
understanding of the functionality of our predictive model, it is crucial to employ SHAP
as a tool to explain complex machine learning models. Using this approach, the influence
of each feature on the model’s prediction outcome is comprehended, thus improving
transparency and reliability. The facilitation of new scientific discoveries is particularly
valuable in complex, multi-coupled systems due to such transparency. Therefore, the SHAP
approach is utilized to elucidate the Catboost model. As illustrated by the feature map
shown in Figure 6, each row represents a feature, and each point represents a sample. The
magnitude of the feature value is indicated by the color intensity, ranging from red to
blue, with larger values represented by redder colors and smaller values denoted by bluer
colors. The feature importance graph provides a ranking of feature importance based on
the average absolute SHAP value for each feature.
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Figure 6. (a) SHAP overall feature map and (b) SHAP feature importance map for Edoped; (c) SHAP
overall feature map and (d) SHAP feature importance map for G.

It can be see from Figure 6a,b that the overall SHAP eigenplot of Edoped reveals that
almost all eigenvalues exhibit a linear relationship with Edoped to some extent. Specifically,
an increase in the covalent radius, ionic radius, and second ionization energy corresponds
to an increase in Edoped, whereas an increase in first ionization energy, electron configuration
(d), and electron affinity leads to a decrease in Edoped. It can be seen from Figure 6 that
third ionization energy exerts the greatest effect on Edoped, whereas the importance of other
features does not significantly vary. Moreover, the SHAP values of nearly all the feature
quantities exceed 0.25, indicating their substantial impact on Edoped. From Figure 6c,d, we
can see that the overall SHAP feature plot of G demonstrates that an increase in atomic
volume and ionic radius leads to an increase in G, whereas an increase in first ionization
energy results in a decrease in G. A more complex non-linear relationship is observed
between atomic radius and group and G, with blue data points distributed at both ends
and red data points concentrated in the middle. This distribution indicates that extremely
large or small eigenvalues reduce the valuation of G, and the negative impact of excessively
large eigenvalues is more pronounced. The SHAP feature importance plot of G reveals
that different features exert significantly different effects on the degree of existence of G.
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Notably, the SHAP values of atomic volume and ionic radius are significantly larger than
those of various other descriptors. Among these descriptors, atomic volume emerges as
the most crucial predictor for G, whereas atomic radius is the least significant.

The solution energy and theoretical stress of the remaining other atoms in the alu-
minum matrix for the full periodic table data were predicted using the Catboost model,
and a heat map was plotted, as shown in Figure 7. A structured and systematic approach
is provided in this paper for predicting the performance parameters of different elements
using machine learning. As shown in Figure 7a, the elements with relatively low Edoped
were Sc, W, Ta, etc. Figure 7b shows that the elements with significant enhancement of the
aluminum matrix in terms of theoretical stresses were Sc, Ni, W, Mn, etc. By performing
feature engineering, model selection, and interpretable work, not only did we develop a
highly accurate prediction model, but we also gained an in-depth understanding of how
to achieve these results. Using a machine learning accelerated first-principles approach
provides a theoretical basis for further design of novel aluminum alloys.

Figure 7. Predicted diagram of the periodic table of elements showing (a) solution energy and
(b) theoretical tensile stress.

4. Conclusions

In this paper, we conducted a comprehensive study on the effects of alloying atoms
on the stability and micromechanical properties of aluminum alloys using a machine
learning accelerated first-principles approach. The preliminary work involved exploring
high-throughput first-principles calculations and extracting fundamental data, such as
solution energy and theoretical stress, for atomically doped aluminum substrates. The
machine learning dataset was constructed using data from previous high-throughput
computational work, incorporating features such as atomic radius, ionic radius, and first
ionization energy. Feature elimination was implemented to enhance model accuracy and
efficiency. We compared the performance of five different algorithms, ultimately selecting
the Catboost model based on its lowest RMSE of 0.24 and lowest MAPE of 6.34. Through
this comparison of different machine learning algorithms, the Catboost model emerged
as the superior choice and was utilized as the final prediction model. Additionally, the
SHAP was employed for interpretative analysis, enabling a deeper understanding of how
each feature contributes to the prediction results. Furthermore, our approach facilitated the
prediction of alloying stability and micromechanical behavior for various elements in the
full periodic table on an aluminum matrix. The results showed that alloying atoms such
as K, Na, Y, and Tl were difficult to solid-solve into the aluminum matrix. However, alloy
atoms such as Sc, Cu, B, Zr, Ni, Ti, Nb, V, Cr, Mn, Mo, and W were found to contribute
to the strengthening of aluminum alloys. Theoretical investigations into solid solutions
and the strengthening effects of various alloying atoms in an aluminum matrix provide
valuable insights for selecting suitable alloy elements. In conclusion, our work presents
an interpretable machine learning accelerated first-principles research methodology that
provides a theoretical basis for the development of new aluminum alloys.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ma16206757/s1. Figure S1: Schematic diagram of the crystal structure
calculated by first principles, where the green spheres are dopant atoms and the purple spheres are
aluminum atoms. Figure S2: Comparison of formation energies of alloy atom doped aluminum matrix for
machine learning prediction results with first principle calculations. Figure S3: Comparison of theoretical
tensile stress for machine learning prediction results with first principle calculations. Figure S4: Test
for convergence of total energy with (a) cutoff energy and (b) k-points grid mesh. Figure S5: Crystal
structure of (a) perfect aluminum and (b) X-doped aluminum. Table S1: Solution energy (Edoped) as
well as theoretical stresses (G) and lattice constants (a,b,c) for the alloy atom doped aluminum matrix
system. Table S2: Final selection of feature values to be used as machine learning dataset for Ed. Table S3:
Final selection of feature values to be used as machine learning dataset for G.
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