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Abstract: Acquiring homogeneous and reproducible wafer-scale transition metal dichalcogenide
(TMDC) films is crucial for modern electronics. Metal–organic chemical vapor deposition (MOCVD)
offers a promising approach for scalable production and large-area integration. However, during
MOCVD synthesis, extraneous carbon incorporation due to organosulfur precursor pyrolysis is a
persistent concern, and the role of unintentional carbon incorporation remains elusive. Here, we
report the large-scale synthesis of molybdenum disulfide (MoS2) thin films, accompanied by the
formation of amorphous carbon layers. Using Raman, photoluminescence (PL) spectroscopy, and
transmission electron microscopy (TEM), we confirm how polycrystalline MoS2 combines with
extraneous amorphous carbon layers. Furthermore, by fabricating field-effect transistors (FETs) using
the carbon-incorporated MoS2 films, we find that traditional n-type MoS2 can transform into p-type
semiconductors owing to the incorporation of carbon, a rare occurrence among TMDC materials. This
unexpected behavior expands our understanding of TMDC properties and opens up new avenues
for exploring novel device applications.

Keywords: MOCVD; transition metal dichalcogenide; amorphous carbon; field-effect transistors

1. Introduction

Transition metal dichalcogenides (TMDCs) have attracted significant attention as
promising materials for next-generation electronic and optoelectronic devices [1–11]. These
applications heavily rely on the merits of TMDCs, including high carrier mobility [12,13],
mechanical bandgap modulation [14–16], and spin valley coupling [17,18]. To meet the
needs of modern electronics and optoelectronics, the scalable and atomically thin growth
of TMDCs is a prominent challenge for the deposition of two-dimensional materials. To
overcome the challenge, various synthesis methods have been explored, including chemi-
cal vapor deposition (CVD) [19–22], molecular beam epitaxy [23,24], and metal–organic
chemical vapor deposition (MOCVD) [25–30]. In particular, MOCVD has shown potential
in synthesizing wafer-scale TMDC films on insulating substrates, providing better control
over film thickness and eliminating the need for transfer. During the MOCVD growth
for large-scale TMDCs, particularly in situations where organic chalcogen precursors are
desired as a less hazardous substitute for more toxic chalcogen hydrides, carbon will be
inevitably introduced as an unintentional film impurity owing to pyrolysis side products
from organic ligands [31]. However, the role of unintentional carbon incorporation is
still a topic of ongoing debate. Some research teams reported that carbon can be incorpo-
rated through CH functionalization [32,33] or substitutional carbon doping [34], which
are generally at the chalcogen sides of TMDC basal planes, or carbide transformation of
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TMDC edges [35]. Zhang et al. noted that “defective graphene” can be formed along
with the formation of the TMDC layer, which hinders the lateral growth and the quality
of TMDC films (e.g., continuity, stoichiometry, grain size, and phase purity) [31,36]. In
this work, we investigate the growth of wafer-scale MoS2 films on sapphire substrates
with metal–organic precursors of molybdenum hexacarbonyl (Mo(CO)6) and di-tert-butyl
sulfide (DTBS, (CH3)3C)2S). Through analyses of Raman and PL spectra, we confirm the
existence of co-deposited “amorphous carbon” during the growth of MoS2. In addition,
atomic force microscopy (AFM) and transmission electron microscopy (TEM) reveal how
polycrystalline MoS2 combines with extraneous amorphous carbon layers. Furthermore,
by the fabrication of FETs, we find that even small amounts of unintentional carbon incor-
porated in the coalesced ultrathin MoS2 films, n-type MoS2, are transformed into p-type
semiconductors, which is uncommon among TMDC materials. These findings show a
new approach for the growth and integration of atomically thin TMDC films with process-
induced carbon impurity doping, offering valuable insights into the promising prospects
of utilizing this composite material for advanced electronic applications.

2. Materials and Methods

Sample preparation. MoS2 thin films were synthesized using a custom-made hot-
wall reactor through the MOCVD technique. Sapphire substrates were positioned facing
downwards on a quartz sample holder bar that was within a vertical quartz tube reactor
chamber. The growth temperature was carefully controlled using a thermocouple and
temperature controller. The reactor was then gradually heated at a rate of approximately
40 ◦C/min, while a 100 sccm flow of high-purity Ar (Air Liquide, Shanghai, China, Al-
phagaz 1, 99.999%) was maintained to create an inert environment. Once the desired
growth temperature was reached, Ar was ceased, and the growth of MoS2 was initiated by
vapor draw of molybdenum hexacarbonyl Mo(CO)6 (Sigma-Aldrich 577766, Beijing, China,
>99.9% trace metal basis) and (CH3)3C)2S from separate containers, without the need for an
additional carrier gas. Mo(CO)6 powder was placed on glass beads to increase surface area,
and DES precursors were maintained at 30 and 12 ◦C, respectively. The flow rates of these
precursors were precisely controlled using needle metering valves (SS-SS4-VH, Swagelok,
Nanjing, China) and were determined based on their equilibrium vapor pressures. The
nominal Mo(CO)6 flow rate was set at 0.02 sccm, and DES flow rates varied between 0.3 and
13.2 sccm. Furthermore, controlled amounts of high-purity H2 gas (Air Liquide, Alphagaz 1,
99.999%) with flows between 0 and 30 sccm were introduced into the system via a separate
line, regulated by a mass flow controller. The entire process was conducted at working
pressures ranging from 10−2 to 10−1 Torr. The growth temperature is 750 ◦C. Growth was
stopped by cutting the Mo(CO)6, DES, and H2 flows off. The reactor was then cooled down
to room temperature under 100 sccm Ar flow before the sample was removed. After each
growth run, the reactor was annealed at 800 ◦C in Ar/H2 flow to eliminate the remaining
reaction byproducts. Between runs, the reactor was maintained under a vacuum at a base
pressure of around 1 × 10−3 Torr. During the loading and unloading of samples, an Ar
flow of 150 sccm was employed to minimize exposure to ambient conditions.

Optical characterizations. An optical microscope (Nikon, Shanghai, China, Eclipse
LV100ND) was utilized to take optical microscope images. A white balance was calibrated
before taking the images. Raman and PL spectra were acquired using a WITEC optical
microscopy (alpha 300R, Beijing, China) with a laser wavelength of 532 nm. The films were
characterized under ambient conditions at 50× or 100× magnification with a spot size of
approximately 1 µm. A low laser power of 0.1 mW was used to minimize heating effects
and prevent optical doping and multiexciton dynamics in PL measurements. A 600 or
1200 grooves/mm grating was employed. Raman and PL measurements were conducted
using integration times of 10 s and five accumulations. For each sample, five spots were
measured along the sample diagonal in order to obtain the average data.

Structure characterizations. TEM (FEI Tecnai-G2 F20 operating at 200 kV, Beijing,
China) was utilized to probe the atomic structure of the films. AFM was measured by NT-
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MDT NTEGRA Prima AFM, Shanghai, China. The chemical composition and stoichiometry
of the films were investigated by XPS in an ultrahigh vacuum of 5 × 10−10 mbar using
monochromatic Al Kα radiation with an energy of 1486.6 eV.

Film transfer. First, the as-grown films grown on sapphire substrates were coated
with poly(methyl methacrylate) (PMMA, A4) by a spin coater, followed by a two-step
process: 800 rpm for 15 s and 2000 rmp for 45 s. Then, the sample was baked at 180 ◦C for
2 min. Next, the samples were immersed in a diluted HF solution, and the PMMA/TMDCs
assemblies were peeled off the substrate and floated on the HF solution. Then, the films
were cleaned in deionized water for 20 min five times to guarantee the thorough elimination
of the residual HF and transferred onto the desired substrate, such as the SiO2/Si substrate
or patterned Au electrode. The sample was then put into a vacuum tank and dried at room
temperature. Finally, the assembly was moved into the acetone and then isopropyl alcohol
to dissolve the PMMA film.

3. Results and Discussion

Figure 1 displays a continuous and atomically thin film for wafer-scale MoS2 and
exhibits intrinsic optical properties. As shown in Figure 1a, one can see a wafer-scale MoS2
film grown on a semi-polished 2-inch sapphire substrate. To enable measurements and
applications of large-area uniform MoS2 and accurately determine the thickness of the
MoS2 film, we use an etching-free, easy-processing, and large-area polymethyl methacrylate
(PMMA)-assisted high-quality transfer strategy, which involves transferring the as-grown
MoS2 film onto a SiO2/Si substrate, leveraging the hydrophilic behavior of the sapphire
substrate and the accompanying capillary force [37]. In Figure 1b, we can observe the
segments of MoS2 films after their wet transfer onto the SiO2/Si substrates. When exam-
ined under an enlarged optical microscope, the highly uniform color contrast showcases a
homogenous thickness and in-plane continuity of the MoS2 film. The Raman spectroscopy
shows a clear separation in the spectral domain, with peaks observed in the range of
360 cm−1 ≤ ω ≤ 420 cm−1 and 1300 cm−1 ≤ ω ≤ 3000 cm−1, as indicated in Figure 1c.
Two characteristic peaks, E1

2g (~385 cm−1) and A1g (~405 cm−1), confirm the presence of
MoS2. These two phonon modes can be attributed to the in-plane displacement of both
molybdenum and sulfur atoms (E1

2g) and the out-of-plane displacement of the sulfur atoms
(A1g), respectively [38]. The specific frequency difference of 20 cm−1 between E1

2g and
A1g peaks, commonly used as a layer thickness indicator, confirms the ultrathin nature of
the obtained film compared to bulk MoS2 [39]. Additionally, the spectra in the range of
1300 cm−1 ≤ ω ≤ 3000 cm−1 suggest that the amorphous carbon co-deposits simultane-
ously with the MoS2 thin film, which originates from the pyrolysis of organic ligands of
metal–organic precursors. The features of the G peak (~1595 cm−1) arising from the normal
first-order Raman scattering process in graphene and the G’ band (~2680 cm−1) resulting
from a second-order process indicate a graphene-like structure [40–43]. The high intensity
of the disorder-induced D-band (~1345 cm−1) indicates that the carbon incorporated in the
film is highly defective. The additional weak disorder-induced shoulder peak (D’ band) at
~1620 cm−1 and the D + D’ peak (~2940 cm−1) are also observed by Raman spectroscopy.
Based on the D and G peak positions and an integrated ID/IG intensity ratio (≈1.71), we
assign this Raman feature to sp2 carbon, such as pyrolytic graphite [43,44], indicating that
the MOCVD-grown sample is a MoS2/amorphous carbon composite film. In comparison,
the characteristic peaks associated with amorphous carbon disappear in the exfoliated and
CVD-grown MoS2. Figure 1d displays the PL spectroscopy, where two characteristic peaks
of MoS2 (~660 nm and ~640 nm) are observed, which can be attributed to the A and B
direct bandgap optical transitions [45]. However, in addition to these intrinsic characteristic
peaks of MoS2, two other distinctive and non-negligible peaks at ~620 nm and ~630 nm are
observed in comparison with the exfoliated MoS2 and CVD-grown MoS2, which may be
induced by the Raman shift of the G’ and D + D’ bands in the amorphous carbon.
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Figure 1. Optical characterizations of wafer-scale MOCVD-grown MoS2 films. (a) The photograph of
MoS2 film grown on a sapphire substrate. (b) White-light microscope image of the as-grown large-area
MoS2 film transferred onto the SiO2/Si substrate. (c) Raman spectra of transferred MOCVD-grown
MoS2 films, exfoliated MoS2, and CVD-grown MoS2. (d) Photoluminescence spectra of the transferred
MOCVD-grown MoS2 films, exfoliated MoS2, and CVD-grown MoS2.

In order to examine the atomic structure and morphology of the MoS2/amorphous
carbon composite film, high-resolution TEM imaging and AFM provide a distinctive atomic-
level perspective of the MoS2 and carbon combination (shown in Figure 2). As depicted
in Figure 2a, the atomic structure of the MoS2/carbon composite film is characterized by
aberration-corrected high-resolution TEM. The image reveals a well-organized honeycomb
lattice with an interatomic distance of approximately 0.316 nm, which is consistent with
previous observations for MoS2 [46,47]. The lattice consists of hexagonal rings formed
by alternating molybdenum and sulfur atoms. Owing to the contrast of bright-field TEM
image scales that are roughly at the square of atomic number Z [48], the brighter atomic
spots are molybdenum sites, and the dimmer ones are the two stacked sulfur atoms, as
indicated by the top-view schematic. The fast Fourier transform (FFT) pattern in the
inset of Figure 2a reveals only one set of six-fold symmetry diffraction spots, suggesting
a hexagonal arrangement. And the lattice spacing of 0.27 nm can be assigned to (1 0 0)
planes. In Figure 2b, a grain boundary is highlighted within the white dashed box. The
FFT pattern reveals two sets of six-fold symmetrical diffraction spots with a rotation angle
of ~21◦, indicating the presence of two grains in this region. Figure 2c demonstrates the
high-angle annular dark field transmission electron microscopy (HAADF) image of the
crystal structure for the corresponding composite. The composite image is obtained from
overlapping false color-coded HAADF-TEM images, where the color contrast corresponds
to different domains. The intersections of the grains constitute many faceted tilt and twisted
boundaries, arising from disordered crystals that form randomly oriented polycrystalline
aggregates. As shown in the legend, the black areas are holes of the TEM grid, the brown
and grey areas correspond to carbon films, and the other colorful areas represent MoS2
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on the carbon films. Energy-dispersive X-ray spectroscopy (EDS) elemental maps also
show the chemical composition and are zoomed-in in the HAADF image. The maps reveal
that the carbon element uniformly distributes throughout the detection area, while Mo
and S are vertically localized within their corresponding irregular domains. This indicates
that carbon layers form on top of MoS2 without forming any inter- or in-plane chemical
bonds. Therefore, the interaction between these layers is primarily governed by van der
Waals forces.
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Figure 2. Structure characterizations of the transferred MoS2/carbon composite film. (a) The high-
resolution bright-field TEM image of a freely suspended MoS2/carbon composite film on a TEM grid.
The inset shows the FFT pattern of the TEM image and the intensity profile of the corresponding
white dashed box. (b) The grain boundary is highlighted by the white dashed box with a rotation
angle of ~21◦, as confirmed by the FFT pattern shown in the inset. (c) The false color-coded HAADF-
TEM image. Corresponding EDS elemental maps display the composition and distribution of each
chemical element.

To further confirm the growth process of the MoS2/carbon film, the cross-sectional
TEM samples are fabricated by focused ion beam (FIB) milling. A thin layer of aluminum
is thermally evaporated on top of the sample to enhance the color contrast with carbon.
A thin layer of gold is thermally evaporated to prevent the oxidation of aluminum and
enhance conductivity. The cross-sectional TEM of the sample (Figure 3a) confirms the
presence of MoS2 with pristine interfaces and reveals the carbon layers above the MoS2.
The thickness of the MoS2/carbon film is approximately 3 nm, which is consistent with the
corresponding height profile value of ~3.16 nm shown in the AFM image of the sample
edge (Figure 3b).
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Figure 3. (a) The cross-sectional TEM of the MoS2/amorphous carbon composite film grown on sap-
phire. The EDS elemental maps are on the right panel. (b) The AFM image of the MoS2/amorphous
carbon composite film edge transferred onto the SiO2/Si substrate.

To assess the elemental composition of our MOCVD-grown samples, we perform
X-ray photoelectron spectroscopy (XPS) measurements of the films. The XPS spectra of
films grown on sapphire are displayed in Figure 3. As shown in the legend, in addition
to the prominent peaks corresponding to Mo, S, and C elements (Figure 4a–c), signals
related to O and Al are also observed (Figure 4d). This suggests good surface coverage of
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the substrate and the formation of large-area continuous MoS2 layers. The XPS spectrum
of the Mo 3d core level (Figure 4b), which corresponds to the expected energy positions
of the MoS2 film, exhibits correct splitting spin orbitals, displaying two main peaks at
approximately 229.6 eV (Mo 3d5/2) and 232.8 eV (Mo 3d3/2) for the 2H phase, respectively.
These peaks are characteristic of Mo4+ in MoS2 [49–56]. Additionally, the MoS2 film on
sapphire exhibits a minor but discernible peak at ~227.1 eV, which is attributed to the
presence of S 2s or the molybdenum carbide (Mo-C bond) [50,56]. Another notable peak
at a higher binding energy in the Mo 3d core level spectrum is related to the Mo6+, which
arises from the oxidation of MoO3 [49]. Regarding the S 2p region (Figure 4c), the binding
energy peaks observed at 162.5 eV and 163.8 eV correspond to the S 2p3/2 and 2p1/2 core
orbitals, respectively, further confirming the presence of MoS2 in the 2H phase [50]. The
XPS survey spectrum of the C 1s orbital exhibits two main peaks centered at 284.6 eV
and 288.8 eV [49,55], where the major peak at 284.6 eV represents the hybridization of
sp2 bond (Figure 4a). It indicates the presence of graphene and further verifies that our
MOCVD-grown sample is a MoS2/carbon composite film. However, the minor but unique
peak (288.8 eV) remains dim; therefore, we cannot definitively conclude that the peak at
~227.1 eV in the Mo 3d binding energy represents the Mo-C bond.
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Figure 4. XPS spectra of the MOCVD-grown MoS2/carbon film on the sapphire substrate. The
XPS spectrum of (a) the C 1s orbit, (b) the Mo 3d orbit, and (c) the S 2p orbit of MOCVD-grown
MoS2/carbon films. (d) The XPS spectrum of the sapphire substrate.

To investigate the electrical properties of the MoS2/carbon composite films, we transfer
the films onto a pre-patterned gold electrode (Figure 5a). It can be found that the transfer
curves show a notable decrease in behavior in the left section when the gate voltage varies
from −40 to 40 V (Figure 5b), indicating an “off” process. The right section shows a gradual
increase in current, which can be interpreted as an “on” process. Although the current does
not drop to the −12 or even −13 power of a completely off state, the source drain current
exhibits a switching behavior, with a maximum current of up to 20 nA. It is important to
note that the carbon incorporation results in the conversion of the MoS2 film from a typical n-
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type semiconductor to a p-type semiconductor. The pristine MoS2 electric devices generally
display unipolar n-type behavior. However, the carbon-incorporated devices exhibit a
p-type current compared to pure MoS2 devices. This can be attributed to the influence of
carbon within the composite films, altering the semiconducting properties of MoS2. As
shown in Figure 5c, for pristine TMDC devices, the metal Fermi level aligns more closely
with the conduction band (CB) than the valence band (VB), leading to a diminished electron
Schottky barrier (ΦSB-n) compared to the hole Schottky barrier (ΦSB-P) [57]. After carbon
incorporation, the incorporation will shift from the Fermi level to the VB. This realignment
of the metal MoS2 Fermi level pinning leads to a reduction in ΦSB-P (Figure 5d). [32,58]. As
theoretically calculated by A. Chanana et al. [59], the ΦSB-P for the MoS2-Au interface is
1.2 eV. When inserted by graphene, the ΦSB-P for MoS2–graphene–Au interface decreases
to 1.14 eV; namely, the Fermi level shifts to VB. The smaller Schottky tunnel barrier no
longer impedes hole injections [32]. Therefore, carbon impurities alter the electronic or
optoelectronic properties of our composite TMDC films. The carrier concentration can be
estimated by the following formula [60]:

n = Cbg(Vbg − Vth)/e,

Cbg = ε0εr/d,

where Cbg ≈ 1.2 × 10−4 F/m2 is the gate capacitance per unit area for 285 nm SiO2
dielectric, Vbg is the back gate voltage, Vth is the threshold voltage for the channel to start
accumulating charge and conducting, e is the elementary charge, ε0 is the permittivity
of free space, εr is the relative permittivity, and d is the thickness of the dielectric layer.
A back gate voltage can be applied to the conducting Si substrate to modulate the MoS2
carrier concentration. When Vbg is 40 V, the carrier concentration is calculated to be
1.2 × 1011 cm−2.
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Figure 5. Electrical characterization of MoS2/carbon FETs. (a) The optical micrograph of the
MoS2/carbon film transferred onto the patterned SiO2/Si substrate. (b) Typical transfer charac-
teristics (Id-Vg) of as-fabricated MoS2/carbon FETs. Schematics of the valence band position (EVB)
near the source for pristine (c) and carbon-incorporated (d) FET devices. For the pristine devices, the
hole conduction is prevented by a wide ΦSB-P, so the device shows n-type behavior. However, after
carbon incorporation, the Au Fermi level pins closer to the VB of MoS2, leading to a smaller ΦSB-P for
the hole injection.
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4. Conclusions

In conclusion, we comprehensively investigate the structure, optical, and electrical
properties of a large-scale and coalesced MoS2/carbon composite film. Compared to CVD-
grown and exfoliated MoS2, MOCVD-grown MoS2 can introduce unintentional carbon
incorporation, leading to the shift of the PL characteristic peak, the emergence of carbon fea-
tures in Raman properties, the alteration of the (opto)electronic properties, etc. Specifically,
through Raman and PL spectra, we verify the presence of carbon incorporation. Addition-
ally, cross-sectional TEM and XPS are employed to observe the combination of carbon and
the MoS2 material. Furthermore, by fabricating FET devices, we explore the influence of
carbon on the electric performance of the composite film. We find that the general n-type
MoS2 can be converted to a p-type semiconductor owing to the incorporation of carbon in
the MoS2 film. A comparison chart is tabulated in Table 1. Our study provides a valuable
understanding of process-induced C impurity doping in MOCVD-grown two-dimensional
semiconductors and might have important influences on advanced electronic applications.

Table 1. Comparison chart of the properties with other methods used for MoS2.

Carbon
Incorporated or

Not
Precursors Raman [61,62] PL [61,63] Semiconducting

Property

MOCVD-grown
MoS2

yes Mo(CO)6,
(CH3)3C)2S

E1
2g(~385 cm−1),

A1g (~405 cm−1)
and some carbon

related peaks

A (~660 nm),
B (~640 nm) p-type

CVD-grown MoS2 no MoO3 and S
powders

E1
2g(~385 cm−1),

A1g (~403 cm−1)
A (~660 nm) n-type

exfoliated MoS2 no bulk materials
E1

2g(~385 cm−1),

A1g (~403 cm−1)
A (~660 nm),
B (~610 nm) n-type
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