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Abstract: Nickel-based superalloys are among the most difficult materials to machine because they
have high thermal strength, they are prone to hardening, carbides severely abrade the tool, and they
have very poor thermal conductivity. Slot milling is a specific issue as it is characterized by rapid
tool wear and frequent tool breakages. This is why reconditioned tools are frequently employed
in industrial environments, as they can considerably decrease the expenses associated with tools.
The chosen machining strategy also plays a crucial role in the tool’s lifespan and the quality of the
machined surface, making it essential to select the appropriate strategy. Hence, the authors have
opted for two conventional trochoidal strategies, namely the circular and swinging toolpath, along
with a contemporary toolpath known as the Autodesk Inventor HSM Adaptive strategy. The authors
investigated the effects of technological parameters and toolpaths on cutting forces, tool wear, surface
roughness and burr formation on machined edges. The results show that lower cutting parameters
and adaptive strategies lead to the smallest tool loads, tool wear, the best quality of surface roughness
and burr formation on machined edges.

Keywords: surface roughness; trochoidal strategy; tool wear; nickel-based superalloy; slot milling;
new and reconditioned tools; cutting force; burr formation

1. Introduction

Nickel-based superalloys are among the most difficult-to-machine materials due to
their high tensile strength and hardness at high temperature, poor thermal conductivity
and low elongation at break [1,2]. Because of these mechanical and physical properties,
as illustrated in Figure 1, the machinability of these materials is low, as increased thermal
expansion (1000 ◦C) and huge tool loading are observed during the machining process,
resulting in significant cutting force and vibration [3,4], and, as a result, rapid wear of
cutting tools and frequent breakages [5,6]. Tool wear is a multifaceted phenomenon arising
from the interplay of both mechanical (abrasion) and chemical (diffusion) interactions
between the cutting tool and the workpiece during machining processes. In the context
of machining Ni-based superalloys, various forms of tool wear, such as mechanical wear,
adhesive wear, diffusion wear and oxidation wear, become significantly more pronounced
and problematic [7,8]. In addition, very strict tolerances must be observed with respect
to the geometry of the components, which is greatly affected by tool wear [9–11]. A high
content of metal carbides (MC, M23C6) in raw material further increases tool wear [12]. Due
to these properties, high technological parameters cannot be achieved with metal carbide
cutting tools, unlike with ceramic tools, where cutting speeds of up to 1000 m/min must
be achieved [13].

Some parameters influence cutting tool life. Several researchers worked on investi-
gating the effects of cooling–lubricating methods, such as wet cooling [1,14], minimum
quantity lubrication (MQL) [15,16], cryogenic cooling [1,17], cryogenic cooling and MQL
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combination [18,19] and laser-assisted machining [20,21] in the case of machining nickel-
based superalloys. However, even for these raw materials, there is considerable variation in
mechanical and physical properties and clear trends cannot always be drawn, so it is worth
examining the effect of these cooling–lubricating methods on all types of raw materials.
Among these, the effects of linear and different types of trochoidal strategies, tool geometry,
especially that of new and renovated cutting tools, and cutting parameters on the cutting
force, tool wear, resulting surface roughness of the bottom of the slots and burr formation
will be investigated.
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Kun et al. [22] investigated the effect of cutting parameters on tool wear during the
milling of a GTD-111-type nickel-based superalloy using a PVD-coated carbide indexable
end mill. They found that a 10 m/min cutting speed and 0.03 mm/tooth resulted in the
smallest tool wear. In the case of the other parameter combinations, the cutting inserts could
not withstand the 130 mm machining length [22]. Jiang et al. (2023), in their studies, milled
a GH4169-type nickel-based superalloy with a tungsten steel cutting tool with different
technological parameters. They changed the cutting speed, feed per tooth and radial depth
of cut and investigated their effect on cutting force and resulting surface roughness under
minimal quantity lubrication. They found that a higher cutting speed and smaller feed per
tooth and radial depth of cut cause less surface roughness; however, if these parameters
are increased, the cutting force will also be increased [23].

There are two main types of slot milling processes, linear and trochoidal milling.
Basically, linear milling has gained popularity in the industry because it is easy to program
and achieves a high material removal rate (MMR). However, this leads to high cutting forces
and vibration, which can cause tool failure, and the 180◦ contact angle makes chip removal
difficult. These problems make its applicability in machining difficult-to-machine/cut metal
alloys questionable, and various toolpath slotting techniques have been introduced [24,25].
Trochoidal milling is defined as a type of slot milling where the slot width must be at least
15% greater than the diameter of the tool used, the step size must be between 2 and 25%
of the tool diameter, and the radial depth of cut must be no deeper than twice the tool
diameter [26]. In the case of these toolpaths, the circular sections are connected by straight
sections or by a continuous curve, which is constructed using a mathematical function [27].
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This is the basis for various motion cycle algorithms that try to keep the contact angle
constant during machining [28,29]. Consequently, the tool load can be reduced, thus
reducing the rate of tool wear. Due to the reduced cutting forces, the cutting speed can
be increased, thus improving the surface roughness. By reducing the contact angle, the
cutting temperature is reduced, and chip flow is improved [30].

Some papers investigate the effects of cutting tool geometry, raw material and the
coating of tool on the tool life and resulting surface roughness [31–33]. Kónya et al. (2023)
first investigated the performance of new and renovated cutting tools in terms of tool
loading, tool wear and surface roughness [34]. The first step in reconditioning coated
cutting tools is tool grinding, where the original geometry is restored. This is followed
by edge preparation, where the cutting edge is shaped according to the application, for
example, by polishing. This is followed by a thorough cleaning and then coating with the
desired coating. The result is that tool reconditioning has a large impact on the machining
process, but the extent of this impact cannot be predicted. Such tests have great importance,
as many industries use reconditioned tools, as the cost of reconditioning is one fifth
of the cost of buying a new tool. In this paper, the authors investigated the effect of
technological parameters on cutting force and resulting surface roughness in the case of
new and renovated tools, and based on the results of this experiment row, the authors
validated the previous research [35] work.

2. Methodology

The experimental setup for the milling experiments is presented, which includes the
machining center, the device of force measurement and the cutting tool. Furthermore, the
material, the difference between the tool geometry of the new and renovated tools, the
technological parameters and the toolpaths are presented.

2.1. Experimental Setup

Hard milling can subject a machining center to significant stress, necessitating the use
of a robust and highly rigid machine. Considering this, the NCT-EmL 850D (NCT Ipari
Elektronikai Zrt., Budapest, Hungary) was selected for the experiment. The experimental
setup is shown in Figure 2. The authors utilized a KISTER 9125A24 rotary force meter in
conjunction with a KISTER 5327A signal booster unit and a KISTLER 5697 signal processing
unit to measure the cutting force Fz component. The obtained results were recorded using
DynoWare software (Version 3.2.5.0) and analyzed using OriginPro 2021 software.
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2.2. Material

In this study, the authors utilized a Rene108-type nickel-based superalloy as the
material for the workpiece. The chemical composition of this material is shown in Table 1,
and the mechanical and physical properties are shown in Tables 2 and 3.

Table 1. Chemical composition of Rene108.

Ni (%) C (%) Cr (%) Co (%) Al (%) Ti (%) W (%) Mo (%) Ta (%) Zr (%) B (%) Hf (%)

63.3 0.07 8.00 9.00 5.25 0.60 9.30 0.40 2.80 0.005 0.01 1.3

Table 2. Mechanical properties of Rene108.

Tensile Strength, Rm (MPa) Elongation, A5 (%) Contraction, Z (%) Hardness, HRC

1331 8 10 42.1

Table 3. Physical properties of Rene108.

Density ρ (kg/m3) Thermal Conductivity λ (W/mK) Specific Heat, c (J/kgK)

8130 12.10 0.444 × 103

2.3. Cutting Tool

For slot milling, Walter Proto maxTM
ST H4038217-8-1-type solid carbide end mills

were used with TiN and ZrN coatings. The tools had a diameter of 8 mm and 4 edges [35].
In this research, 13 new and 13 reconditioned tools were used, with the same technological
parameters at a 1-1 ratio.

The new and reconditioned tools were examined using a Mitutoyo Quick Vision Elf
Pro microscope. Figure 3 illustrates that there was a noticeable difference in the edge
geometry of the refurbished tool compared to the new one. It can be seen that the cross-
edge was completely changed in the case of the renovated tool, which suggests that the
original geometry could not be reproduced. It can also be observed that the grinding marks
were deeper and not as even as those made with the new tool; thus, the coating quality was
not as good, which had a strong influence on the friction conditions and chip separation.
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2.4. Applied Technological Parameters for 1st Experiment Row

The authors investigated in the first experiment row the effects of cutting speed, feed
per tooth and the kind of tool used on cutting forces and the surface roughness of the
bottom of the slots after milling with Adam Jacso’s trochoidal strategy, which is illustrated
in Figure 4. In the experiments, flood cooling was used, and the axial depth of cut was
ap = 4 mm. Each slot was 12 × 12 × 4 mm. Cutting parameters and their levels are shown
in Table 4, and the details of the experimental trials are shown in Table 5.
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Table 4. The input parameters and their levels.

Input Parameters Levels

Cutting speed, vc (m/min) 25 50 75
Feed per tooth, f z (mm/min) 0.01 0.02 0.03

Table 5. Experimental trials.

Exp. No. vc (m/min) f z (mm/min)

1. 25 0.01
2. 25 0.02
3. 25 0.03
4. 50 0.01
5. 50 0.02
6. 50 0.03
7. 75 0.01
8. 75 0.02
9. 75 0.03

2.5. Applied Technological Parameters and Trochoidal Strategies for 2nd Experiment Row

In the second experiment, the authors investigated the effect of strategies and the
kind of tool used on cutting forces and the surface roughness of the bottom of slots. The
technological parameters applied for the experiments were derived from the 1st experiment
row. The cutting speed was set at vc = 25 m/min, the feed per tooth at f z = 0.03 mm/tooth
and the radial depth of cut at ae = 0.2 mm and 0.1 mm when tool milling in the opposite
direction in the case of swinging strategy. The axial depth of cut was increased to ap = 8 mm,
because this is the depth at which the industry mills slots with similar technological
parameters. Each slot was 12 × 12 × 8 mm.

The authors selected three trochoidal toolpaths for the study because these are easily
programable in the industry: (a) the adaptive strategy using Autodesk Inventor HSM, (b) a
circular strategy and (c) the swinging strategy developed by Szalóki et al. [26]. The specific
trochoidal strategies employed are illustrated in Figure 5. Additionally, flood cooling was
implemented for all slot machining processes.
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3. Results
3.1. Results from 1st Experiment
3.1.1. Cutting Force

The cutting force as a function of feed rate and cutting speed for new and reconditioned
tools is shown in Figures 6–8. It was observed that in all cases, the renovated tools produced
higher cutting forces than the new tools. There was no clear trend in the increase in cutting
forces as a function of feed per tooth, since at a cutting speed of 25 m/min, the cutting force
decreased continuously as a function of feed per tooth, while at a cutting speed of 50 and
75 m/min, a maximum value was seen at 0.03 mm/tooth feed per tooth.
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As illustrated in Figure 8, as the cutting speed increased, the cutting force also in-
creased proportionally, a trend which indicates that it has a greater effect on tool load than
the feed per tooth. The lowest cutting force was achieved at a cutting speed of 25 m/min
and a feed per tooth of 0.03 mm/tooth, as shown in Figure 8.

3.1.2. Surface Roughness

The average surface roughness (Ra) as a function of feed per tooth and cutting speed
for new and reconditioned tools is shown in Figures 9–11. In terms of average surface
roughness, there was no clear trend showing whether the new tool or the renovated tool
produced a better surface. Contrary to the literature research review, in the case of Rene108,
it was found that increasing the cutting speed increased the surface roughness. The effect
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of cutting speed was greater than that of the feed per tooth on average surface roughness.
The smallest average surface roughness was achieved at a 25 m/min cutting speed and
0.03 mm/tooth feed per tooth, as shown in Figure 11.
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(a) new and (b) reconditioned tools.

3.1.3. The Goodness of Tool Reconditioning

The goodness of tool reconditioning for cutting force and average surface roughness is
illustrated in Figure 12. It can be seen that the quality of the tool reconditioning had a very
large effect on the cutting force, as a difference of 12–48% in cutting force was measured
between the new tool and the resharpened tool for the same process parameters. This is a
very large variance, which makes the machining process unstable in automated production.
The differences in average surface roughness had a similar variance, between 10 and 54%,
suggesting that tool reconditioning has a similarly significant effect on surface roughness
as on cutting force. There were also cases where the renovated tool achieved better surface
quality than the new tool. This is because the cutting edges had a larger radius. This surface
roughness difference was larger in the case of the higher cutting speed.
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3.2. Results from 2nd Experiment
3.2.1. Cutting Force

The measured cutting force for new and renovated tools for each strategy and the
goodness of tool reconditioning are shown in Figure 13. The linear strategy led to the
highest value of cutting force, but it is important to note that both tools were used to failure
here to see how much tool load they would fail under. As can be seen, there was a 9%
difference in performance between the two tools, but since the same difference was seen in
the performance of the renovated tools, it is possible that another tool would have been
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able to bear a greater load. The lowest cutting force was observed for the adaptive strategy,
followed by the circular and then the swinging strategy, where more an increase in cutting
force of almost two times was observed compared to the adaptive strategy. This is due to
the directional changes in the toolpath, as the strategy conducts up and down milling in
one machining operation.
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3.2.2. Average Surface Roughness Evaluation in the Second Experiment

As illustrated in Figure 14, the best surface roughness was obtained with the adaptive
strategy, followed by the circular and swinging strategy. This is due to changes in the
direction of the toolpaths. It is interesting to note that in the case of the adaptive strategy,
machining with the renovated tool resulted in almost twice the surface roughness compared
to the surface machined with the new tool. The difference was almost the same for the
other two strategies.
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3.2.3. Tool Wear

The tool wear using each strategy for new and reconditioned tools is shown in
Figures 15–17. It can be said that in all cases, the renovated tool was more damaged. This
is also because the geometry changed compared to the original, having a rougher surface
due to the different grinding process, resulting in a change in the friction conditions.
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Figure 17. (a) New and (b) renovated tools used in swinging strategy.

Regarding the cutting force, the lowest tool wear occurred when milling with the
adaptive strategy, followed by the circular and pendulum strategy. With the adaptive
strategy, abrasive wear and pitting were visible. With the circular strategy, more intensive
abrasive wear and pitting were seen. The tools used for the swinging strategy experienced
the greatest wear and, in the case of the renovated tool, the cutting edge was torn off. Here,
proper toolpath design and using toolpaths with a constant contact angle are the solution
for smaller tool wear and tool load. As can be seen, the directional change in the toolpath
had a great influence on tool life.
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3.2.4. Burr Formation on Machined Edges

Burrs in general can be defined as unseparated chips and are formed largely due to the
cutting edge radius being larger than the undeformed chip thickness, causing a ploughing
effect due to the excessive plastic flow of the material [30]. This phenomenon occurs to a
lesser or greater extent in almost all cases, especially with difficult-to-machine materials.
In all cases (Figures 18–20), a top and cut-off burr was seen, the size of which varied
depending on the strategy used. The smallest burr was achieved in the case of the adaptive
strategy, while the largest was visible in the case of the swinging strategy. The magnitude
of the burr was directly proportional to the magnitude of the cutting force, as Santos et al.
(2023) described in their studies. According to Santos et al. (2023), as the radius of the
cutting edge increases compared to the feed per tooth, the burr size increases [36]. This
explains why machining with a resharpened tool resulted in a larger line for each strategy.
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4. Conclusions

This paper examined the effects of technological parameters, tool conditions and
milling strategies on the cutting force, tool wear and average surface roughness of milled
slots. The authors reached the following conclusions:

• The applied technological parameters have a great influence on the cutting force and
average surface roughness of milled slots.

• The applied strategies have a great effect on tool life and average surface roughness
due to directional changes. It is advisable to use toolpaths that ensure a constant
contact angle.

• Tool reconditioning has a great influence on tool life and average surface roughness of
milled slots; however, this influence is unpredictable, as seen from the goodness of
tool reconditioning.

• The applied trochoidal strategy and tool reconditioning have a great influence on burr
formation on the machined edge.
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