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Abstract: Metal additive manufacturing (AM) is a layer-by-layer process that makes the direct
manufacturing of various industrial parts possible. This method facilitates the design and fabrication
of complex industrial, advanced, and fine parts that are used in different industry sectors, such as
aerospace, medicine, turbines, and jewelry, where the utilization of other fabrication techniques is
difficult or impossible. This method is advantageous in terms of dimensional accuracy and fabrication
speed. However, the parts fabricated by this method may suffer from faults such as anisotropy, micro-
porosity, and defective joints. Metals like titanium, aluminum, stainless steels, superalloys, etc.,
have been used—in the form of powder or wire—as feed materials in the additive manufacturing
of various parts. The main criterion that distinguishes different additive manufacturing processes
from each other is the deposition method. With regard to this criterion, AM processes can be divided
into four classes: local melting, sintering, sheet forming, and electrochemical methods. Parameters
affecting the properties of the additive-manufactured part and the defects associated with an AM
process determine the method by which a certain part should be manufactured. This study is a survey
of different additive manufacturing processes, their mechanisms, capabilities, shortcomings, and the
general properties of the parts manufactured by them.

Keywords: additive manufacturing; metal 3D printing; deposition

1. Introduction

The additive manufacturing (AM) process (or 3D printing), as a new and strategic
process, has attracted much attention in the industry in the last years and, as a result, has
been growing drastically. Typically, AM is a layered manufacturing process [1–3] that
includes forming and processing of material. It is worth mentioning that this technique is
fully computer-controlled [4].

According to the ASTM 52900 [5], the AM process is defined as “a method of the joining
of materials to fabricate parts from 3D-model data, made layer upon layer. This process is
opposed to formative manufacturing and subtractive manufacturing methodologies”.

Additive manufacturing is a process based on discrete stacking, which is controlled
via software and a material control system. Generally, 3D-manufactured parts are made by
stacking multiple layers. Hence, this process is so flexible that high-speed manufacturing
can be achieved while having minimum material waste. One of the main advantages
of the AM process is the production of complex-structured parts that find application in
aerospace, medical industries, etc., because the traditional manufacturing processes for
these specific parts are extremely limited. This extensive attention toward this process
has motivated many researchers to develop new advanced metal additive manufacturing
techniques [6–9]. A classification of the metal AM processes is presented in Figure 1.
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These processes have been classified with regard to various criteria like the form of
utilized material (e.g., wire, powder, etc.), types of heating sources (e.g., laser, arc, electron
beam, etc.), build volume, etc. According to the above-mentioned classifications, metallic
additive manufacturing processes can be divided into multiple methods like SLA, SLS,
SLM, WAAM, etc. [2,10–12]. The main purpose of this study is to present the classification
and introduction of metal AM processes based on the heating source, materials, and
deposition methods.
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2. Material Jetting

Material Jetting (MJ) is a class of AM techniques. In this process, the feedstock droplets
of the materials are deposited selectively [1].

2.1. Liquid Metal Jetting

Liquid Metal Jetting (LMJ) is a solid freeform production technique for making poly-
meric, ceramic, and metallic parts as well as electronic interconnects. LMJ is a process like
inkjet printing in which molten droplets are printed. By controlling the solidification speeds
and the composition of the alloy, LMJ can create parts with outstanding properties. This
method leads to the production of dense parts with a finer grain structure that enhances
the mechanical properties. In the case of aluminum, the use of this method increases the
yield strength by 30% compared to the other jetting methods. Liquid metal jet printing
(LMJP) is an emerging production process that addresses several challenges in the solid
freeform fabrication (SFF) method. The method is based on the technology analogous to
inkjet printing. Unlike the spray deposition and spray forming techniques that spray the
materials in an uncontrolled route, the LMJP controls and dispenses every single molten
droplet of the material to a determined location by computer-aided design (CAD) data.
Among the parameters affecting the properties of the final part fabricated by this method,
the droplet exit speed, size, shape, and solidification speed can be mentioned. The possible
applications of the LMJP involve the ability to quickly fabricate 3D electronic circuitry and
mechanical parts [13,15,16].
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There are two jetting techniques: drop-on-demand and continuous jetting. The
schematics of these processes are shown in Figure 2. Continuous jetting is applied when
the material is continuously jetted. A thin-liquid jet is examined to be discontinuous if
the jet breaks up, and then the droplet formation takes place at the orifice or nozzle of the
jet. Table 1 depicts the differences between drop-on-demand and continuous methods and
their applications. The utilization of this method has increased the printing speed and
reduced the costs compared to other additive manufacturing methods. Also, the volume of
the formed melt is not a limiting factor, and it is possible to recycle the melt in this method.
Oxidation is one of the problems in this technique, which can be overcome by using the
drop method [16–18].

Materials 2023, 16, x FOR PEER REVIEW 3 of 30 
 

 

techniques that spray the materials in an uncontrolled route, the LMJP controls and dis-
penses every single molten droplet of the material to a determined location by comput-
er-aided design (CAD) data. Among the parameters affecting the properties of the final 
part fabricated by this method, the droplet exit speed, size, shape, and solidification 
speed can be mentioned. The possible applications of the LMJP involve the ability to 
quickly fabricate 3D electronic circuitry and mechanical parts [13,15,16]. 

There are two jetting techniques: drop-on-demand and continuous jetting. The 
schematics of these processes are shown in Figure 2. Continuous jetting is applied when 
the material is continuously jetted. A thin-liquid jet is examined to be discontinuous if the 
jet breaks up, and then the droplet formation takes place at the orifice or nozzle of the jet. 
Table 1 depicts the differences between drop-on-demand and continuous methods and 
their applications. The utilization of this method has increased the printing speed and 
reduced the costs compared to other additive manufacturing methods. Also, the volume 
of the formed melt is not a limiting factor, and it is possible to recycle the melt in this 
method. Oxidation is one of the problems in this technique, which can be overcome by 
using the drop method [16–18]. 

 
Figure 2. Continuous and drop-on-demand methods of jetting 3D printing methods [17]. Figure 2. Continuous and drop-on-demand methods of jetting 3D printing methods [17].

Table 1. Differences between drop-on-demand (DOD) and continuous methods and their utilizations
[16].

Parameters Drop-on-Demand Continuous

Jet Speed
(droplet numbers per second) Less than 10 kHz 10–100 kHz in a cylindrical configuration and 5 to

20 (kHz) in a pump configuration.

Drop Size Relative to Orifice Size
(diameter to diameter)

Same, which is better for smaller
drops producing

Droplets are 1.8 times bigger than the orifice
diameter that is better for producing larger drops.

Material Usage Less Unwanted droplets should be guttered. Unused
materials can be reused in various applications.

Generator
(Force/Energy Required) More Less
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2.2. Nanoparticle Inkjet Printing

The inkjet printing method is a deposition method applied for the liquid phase mate-
rials. These materials or inks involve a solute-dissolved material or a dispersed material
in a solvent. This technique includes the ejection of a specific amount of the ink in the
chamber from a nozzle and quasi-adiabatic reduction of the volume of the chamber through
piezoelectric action. The chambers filled by the liquid are contracted in response to the
utilization of the external voltage. These sudden reductions set up a shockwave in liquid
and make a liquid drop eject from nozzles. A schematic of this technique is depicted
in Figure 3 [19]. The deposition process of the inkjet printing may also be performed
continuously (as opposed to drop-wise deposition of the material) [8,20].

Nanoparticles possess several exceptional properties that are different from the bulk
material. The thermodynamic size lowers the nanoparticles’ melting point compared with
the bulk material. This property of the nanoparticles is much more useful for flexible
electronics. In order to obtain highly conducting printed tracks, metallic nanoparticles like
gold, silver, and copper are utilized. Silver nanoparticles become an appropriate material
for ink formulation compared to gold, especially for obtaining low cost, low resistivity, and
low oxidation rates [7,21].
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2.3. Aerosol Jet Printing

Aerosol Jet Printing (AJP) is the spraying of ink containing small size droplets that are
dispersed in the liquid (Figure 4). The technique involves two components: an atomizer and
a deposition head. An atomizer is an ultrasonic or pneumatic device that produces a dense
vapor of droplets. A carrier gas like nitrogen moves [10,23] across the atomizer in order
to transfer the dense vapor into the deposition head section. The resulting material flow
leaves the head from a nozzle onto the substrate. This process is suited for 3D utilizations
because the deposition head could be mounted to a 5-axis positioning stage to follow the
substrate contour at 1 to 5 mm of fixed distance. Furthermore, acquiring fine characteristics
is achievable because the aerosol involves a large density of micro-droplets, which are
focused on fabricating lines with thickness values of about 10 µm [11,24–26].
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3. Powder Bed Fusion

Powder Bed Fusion (PBF) methods are based on coating a metal powder layer with
a thickness of 20 to 200 microns on a platform and then scanning the powder bed with a
source of heat that melts and then solidifies the powder along the beam path. The layer-
by-layer laser scanning is managed by the CAD program of the part to be manufactured.
Figure 5 depicts the schematic steps of this process [14,27–29].
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3.1. Selective Laser Melting

Selective laser melting (SLM) is one of the PBF techniques that are the much widely
utilized in the AM industries due to their high production speed, covering a wide range
of materials, and the possibility of powder recycling. This method is commonly used for
the production of chromium and titanium alloys and stainless steels, especially in medical
applications. A layer of metallic powders is utilized to coat the building platform on the
previously deposited layer or the substrate by a blade and then melted by a laser beam. The
laser beam melts the powders as programmed by the CAD data. Afterward, the building
platform moves to the downside, and then a new layer of the powder is subjected to the
laser. The technique is repeated until the height of the part is completed. In the SLM
process, powders with particle sizes of 20 to 50 µm are used, and each layer thickness
value varies from 15 µm to 150 µm. Many parameters must be considered carefully to
produce a defect-free sample. Some of the main parameters of the powder are the shape,
size, fluidity, laser scan speed, laser power, hatch overlaps, hatch distance, and hatch style,
which have an important influence on the mechanical properties of the produced parts.
The technique is performed inside a chamber. The chamber is filled with Ar or N2 as inert
gases. The used gas depends on the metal powder reactivity. Moreover, the chamber is
subjected to overpressure situations. The existence of the inert gas in the chamber reduces
the oxidization during this process. The substrate plate is preheated between 200 ◦C to
500 ◦C to minimize the solidification rate in the produced parts [30–34]. A schematic of the
SLM technique is depicted in Figure 6.
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The SLM process imparts superior mechanical properties compared to the SLS tech-
nology as a result of the complete melting of the powder. The main disadvantage of
SLM compared to SLS is the surface tension of the melt, which makes the process more
difficult to control. This technology is known for producing high-precision complex parts
with high resolution in the range of 250 to 700 µm. Among the disadvantages of SLM,
time-consuming post-processing, dependence on the powder morphology, high electricity
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consumption, and creation of structural defects such as anisotropy, gas entrapment, lack of
fusion, and the micro-porosity (less than 2%) can be mentioned (Table 2) [35,36].

Table 2. Comparison of commercialized SLM, EBM, and DLMS processes [37,38].

System Process Build Volume
(mm) Energy Source Surface

Roughness (µm)
Layer Thickness

(µm) Porosity

Concept laser SLM 300 × 350 × 300 200 or 400 W
5–15 10–100 Low than 2%

Phenix system SLM 245 × 245 × 360 200 W

Arcam AB EBM 200 × 200 × 350 7 kW electron beam 20 50–200 Low than 1%

EOS DMLS 250 × 250 × 325 200–400 W
Yb-fiber laser 5–16 20–100 2–5%

Zhang et al. [39] investigated the effect of selective laser melting energy density on
the stainless steel 316 L. According to their studies, among the factors that determine the
energy density, the laser scanning speed and laser power have the greatest influence on
the grain size of porous scaffolds. As the energy density increases, the distance between
primary dendrites increases and the microhardness decreases. Moreover, low residual
stress was reported at low energy density values.

3.2. Electron Beam Melting

Electron Beam Melting (EBM) technology was developed by researchers from Chalmers
University of Technology in Sweden in 2003 [40]. The EBM process (Figure 7) applies the
electron beam energy to melt the metallic powders. Each layer is provided by the following
steps: spreading the metallic powders, preheating and then sintering the powder with a
defocused beam that obtains mechanical stability as well as electrical conductivity to the
metallic powder layer, melting the powders by using a focused beam, and lowering the
building platform by the thickness of one layer which may vary from 50 µm to 200 µm.

The process occurs in a vacuum with a pressure of roughly 10−5 mbar and at high
temperatures. The materials produced with EBM have microstructural features that are
better than those of wrought and cast materials because this method produces stress-
relieved materials with microstructures free from martensitic features. The helium gas with
a partial pressure of 2 × 10−3 mbar is introduced to the EBM chamber during the melting
process to protect the chemical specification of the produced material. Therefore, EBM
is suited for the production of materials with a high affinity to reacting with O2 like Ti
alloys [29,30,41].

The EBW process has a higher speed than SLM and provides the possibility of making
complex parts. Some of the advantages of this method are the possibility of contamination
protection, less residual stress and shrinkage, and freedom in design. The EBM is currently
the preferred process for metal fabrication; however, it is limited by the electrical conductiv-
ity of the material and the need to perform the process in a vacuum. The disadvantages of
this method include higher fatigue cracking of the produced samples, electrostatic charge
of the powder, and rougher surface compared to SLM samples. The comparison of the
surface roughness, porosity, and the thickness of layers of some processes are shown in
Table 2 [38,42].

Murr et al. [43] investigated the mechanical properties of IN 625 superalloy made by
the EBW method under different conditions. Based on the results, the yield strength in
the normal EBW condition (as fabricated sample) was reported to be 9% lower than the
annealed condition, while the ductility did not change. Furthermore, in HIPing conditions,
the ductility is increased by 57%, while the yield strength is decreased by 20%.
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Layer-by-layer deposition techniques lead to the creation of structures that intensify
the possibilities of fatigue crack initiation and have a significant impact on fatigue life. The
fatigue life of Ti-6Al-4V alloy parts fabricated by EBM and LBM was investigated. The
results of the study illustrated that the LBMed Ti-6Al-4V alloy has a longer fatigue life than
the EBMed part. The difference in the fatigue life behavior may be attributed to the surface
features (higher roughness values). High surface roughness sites act as the fatigue crack
initiation sites in EBM materials. In EBW, the surface roughness is higher than the LBW
(Table 2) and as a result, its fatigue life is lower than the EBW [44].

3.3. Direct Metal Laser Sintering

With the development of high-energy-density lasers in the mid-1990s [45], the devel-
opment of the Direct Metal Laser Sintering (DLMS) process was initiated. DMLS is an
advanced laser-based additive manufacturing process that utilizes 3D-design data to create
a part by a layer-by-layer consolidation route. DMLS initiates using the application of a
thin layer of metallic powder on the platform. As depicted in Figure 8, a laser beam with a
high-power liquid phase sinters each layer of the powder. Afterward, the build platform
moves and is lowered, and then the re-coater blade spreads the powders on the platform
after each scanning. Because of its flexibility in shapes and feedstock, this process provides
notable potential for producing complex products that cannot be manufactured by other
techniques. DMLS is a much more effective process among different types of AM processes
that can manufacture any complex shape. Some advantages of the DMLS process are less
wastage of powder materials, less surface roughness than EBW (Table 2), and the material
variety that can be utilized in this technique such as Ti6Al4V, AlSi10Mg, IN 718, aluminum
alloys, etc. [38,45–47].
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3.4. Selective Laser Sintering

The Selective Laser Sintering (SLS) technique is a method that fabricates layers with
predesigned geometry by sintering the powders with the laser beam (Nd-YAG or CO2).
This method was developed in 1989 for the additive manufacturing of polymers and has
been recently used widely for metals [45]. The technique steps are as follows: (1) the
substrate is moved down to a depth equal to the layer thickness; (2) a layer of powder is
rolled out on the substrate; and (3) the laser scans deposited a layer of powder to sinter
powders at the determined area. Stages 1, 2, and 3 are repeated until the designed sample
is completed. A schematic of SLS is depicted in Figure 9 [48–50].
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4. Binder Jetting

Binder jetting (BJ) is an AM technology capable of handling alloys such as Cu-, Al-,
Ni-, Fe-, and Co-based alloys, bronze, brass, and gray iron, as well as ceramics such as
glasses, sand, and graphite. However, this process could use any material that is available
in powder form and allows color printing. This process applies two materials: one is the
ceramic/metal-based material of which the part is to be built, and the other is the binder
material that glues the ceramic/metal powders within and between the layers [31]. The
binder is normally liquid, while the ceramic/metal powder is in the form of a solid. In this
process, the ceramic/metal powder is firstly spread on a substrate, and then a layer of the
binder is deposited on the ceramic/metal layer. This is performed by the CAD model. The
BJ process includes some post-processing like infiltration, sintering, depowering, curing,
and finishing. The post-processing usually takes a longer time compared with the actual
printing, especially in the sintering part. One of the important advantages of this process
is that the products can be manufactured without the support structures [52,53]. The
advantages and disadvantages of this method are summarized in Table 3.

Table 3. Some disadvantages and advantages of the binder jetting technique [54,55].

Advantages Disadvantages

Fast process Low density

Wide range of materials Its application limited to metals.

High build size Need for post-processing

As BJ utilizes binders as the adhesive materials, the material characteristics are not
always suitable for automobile and aerospace applications because the binder could lead
to porosity formation in conventional sintering techniques. The speed of this technique
(12–24 mm/h) is quicker than that of the EBM/SLM techniques and could be accelerated
by the increase in the number of the print head holes, which deposit the binder and the
material. This also allows the two-material approach in which different binder–powder
combinations lead to various mechanical properties by changing the binder-to-powder
ratio [31,37,56]. The process schematic is illustrated in Figure 10.
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In this route, a powder layer is first spread by a counter-rotating roller. Then, the
inkjet printing head sprays the liquid agent on the bed in order to fabricate the 2D pattern
for each layer. Some powder/binder systems can utilize heaters in order to control the
curing and moisture. However, the heat is not a fundamental requirement in the process.
After making each layer (minimum layer thickness of 0.09 m) [37], the build platform is
moved down to provide room for the next layer. As-printed parts are normally brittle and
usually are subjected to post-processing to improve their mechanical properties [54,58].
The maximum build volume of this method is 4000 × 2000 × 1000 mm3 [37].

Nowadays, a large percentage of industrial BJ manufacturing is associated with metal-
lic materials. Many of these processes focus on the powder metallurgy of alloys like stainless
steels. Many industrial applications need high-density alloys. Although high densities
have been obtained in different materials, this is still a challenge to decrease defects and
provide accuracy in the geometry of the sample. The maximum level of density obtained
for the powders of steel after the sintering is about 92–95%. The Hot Isostatic Pressing
(HIP) process is a technique to densify powder-based products to over 99% density [54,57].

5. Cold Spray Additive Manufacturing

Cold Spray Additive Manufacturing (CSAM) is a method in which solid-state particles
are delivered to the substrate through a carrier gas with a supersonic speed to deposit a
layer on the substrate. Figure 11 depicts a schematic of this method. High speed is a main
requirement for particle deposition and achieving dense coating. Parameters such as nozzle
geometry, particle characteristics, and gas conditions affect the velocity. This process is
suitable for thermally sensitive coatings such as nano-crystalline, amorphous materials,
and oxygen-sensitive materials like titanium, aluminum, and magnesium composites. The
application of this process is the surface upgrading of metals to increase the corrosion
resistance and wear and electrical/thermal conductivity. Because this method is performed
at low temperatures, it is suitable for coating metals such as magnesium. The process could
be designed in either a manual or an automated operation mode. Gases with aerodynamic
properties such as N2, He, combinations of N2 and He, and dry air (21% O2 + 79% N2) are
used in this process [59–61].
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Figure 11. A gun schematic of a cold spray process [59].

The main components of the process include the following: powder feeder and spray
gun; gas source; the pre-nozzle entry of the gas heater to compensate for the cooling due to
quick nozzle expansion; a supersonic nozzle; a spray chamber with a motion mechanism;
and the monitoring and controlling the gas temperature and pressure of the spraying.

Figure 12 represents cold spray components. Compressed gases like He, O2, and
N2 pass through a system that consists of a powder feeder and a gas heater at pressure
values in the range of 1.4–3.4 MPa, which is maintained at about 1.7 MPa. The gas is
heated electrically at 100–600 ◦C and then travels across a diverging/converging nozzle
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till it reaches the supersonic speed. The powder is subjected to the gas stream before the
converging zone of the nozzle. The extending gas accelerates the technique. A decrease
in the temperature happens In the middle of the supersonic expansion of the nozzle.
Consequently, the temperature of the gas stream is almost below the particles’ melting
point, which develops a solid-state coating from particles without any oxidation [60,62].
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The cold spray technique could be divided into two classes based on the propulsive
gas pressure: low-pressure cold spray (less than 1 MPa) and high-pressure cold spray
(more than 1 MPa). Figure 13a depicts a schematic of a high-pressure cold spray process.
Compressed gas is separated into two streams before entering the spray system. One stream,
which is named propulsive gas, proceeds across a gas heater and is warmed to a high
temperature. The second stream, which is named carrier gas, goes across the powder feeder,
where it is loaded with the feedstock. Then, the aforementioned gas streams are mixed
before entering the nozzle and expanding to produce a supersonic gas and also a powder
stream. Figure 13b represents the schematic of a low-pressure cold spray process [61,63].

The CSAM process has similarities with some manufacturing processes such as extru-
sion, laser AM, and friction stir welding. This process imparts anisotropic properties due
to its layering and particle distribution. The extent of his anisotropy is partially dependent
on the inherent properties of the matter. For this reason, more malleable metals such as
aluminum and copper are used. This process is generally used for coating and has not been
investigated on a large scale. This method has a lower production rate and poor mechanical
properties compared to friction stir welding. In the CSAM process, high hardness has
been observed due to the impact of the projectile motion of the powder. Meanwhile, other
properties such as plasticity, mechanical strength, electrical conductivity, and abrasion
properties are weakened, which can be attributed to the micro-porosity and intergranular
boundaries formation [37,64,65].
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Figure 13. Schematic of (a) high- and (b) low-pressure cold spray processes [63].

6. Hybrid Metal Extrusion and Bonding Additive Manufacturing

Hybrid Metal Extrusion and Bonding Additive Manufacturing (HYB-AM) is a new
solid-state technique that uses metal wire to deposit the metal in a stringer-like manner
in order to make layers and produce a net-shaped structure. After the deposition, the
produced part is finished by the machining to create the desired net shape [64].

The flow of the material in this method is based on continuous rotary extrusion, which
is also recognized as Conform extrusion. The extrusion sequence involves two steps. In
the first step, the feedstock is deformed in an extruder. This step causes the oxides present
on the feedstock surface to become dispersed into the extrudate. In the second step, the
extruder supplies the pressure to acquire bonding at the interface between the underlying
structure and the extrudate. According to Figure 14a, the extrusion pressure is produced
by the frictional force between the tapered groove and the feedstock wire in the rotating
wheel. The feedstock is compressed into the groove and is also driven forward by the
wheel rotation. Then, the feedstock wire is blocked by the abutment and axial compression
is induced. This causes the material to be yielded and fill the cross-section. This enhances
the contact surface and also the friction and leads to a build-up in further pressure and
causes the material to flow out of the die. Figure 14b represents the HYB-AM deposition
process. The extruder adds the material as it shifts in the deposition direction and places
stringers side-by-side to create a layer. Then, it allows new layers to be built on the top of
the material. The die is constantly scrapping the underlying layer top during deposition,
and then the adjacent stringer side wall removes the surface oxide. Before the deposition,
a metal strip is fixed on the heated bed to behave as a substrate on the first layer of the
deposited material. In the HYB-AM process, the merging metal streams must be considered
as the mating streams of substrate and extrudate, as shown in Figure 15 [65,66].
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7. Sheet Lamination

The sheet lamination processes used in metal additive manufacturing are divided
into three categories: ultrasonic additive manufacturing (UAM), friction stir additive
manufacturing (FSAM), and friction-forging tubular additive manufacturing (FFTAM)
techniques [67].

7.1. Ultrasonic Additive Manufacturing

The UAM technique utilizes metallic sheets, which are bound together by using
ultrasonic welding. Different alloys used in this process include copper alloys, aluminum
alloys, titanium alloys, and stainless steels. The process happens at a low temperature. One
advantage of this process is that the technique can bond various materials. Meanwhile,
it requires little energy. The alloy is not melted. The layers are bonded together using a
combination of ultrasonic oscillation and pressure [68].

This process which is also recognized as Ultrasonic Consolidation (UC) is a hybrid
method that combines ultrasonic metal seam welding and computer numerical control
(CNC) milling. In this method, the part is built up on the base plate, which is rigidly bolted
onto the heated plate. The temperature of this plate ranges from room temperature to
approximately 200 ◦C. Parts are manufactured in a bottom-to-top manner. Furthermore,
each layer is built up of metal tape-like foils laid side-by-side and then cut utilizing CNC.
As depicted schematically in Figure 16, in this process, a rotating sonotrode advance along
a length of thin metal foil (usually 100–150 µm thick) while applying a normal force to
the new layer, keeping it in close contact with a base plate/previous layer. This ultrasonic
oscillatory force is applied transversely to the motion direction at a constant frequency of
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20 kHz and a user-set amplitude. After the deposition of a foil, another foil is deposited
right next to the previous one. This process is repeated till the completion of a layer. All
these deposited layers experience the same procedure. Each level of UAM consists of four
layers of deposited metallic foils. After one level of deposition, the CNC head cuts the
deposited layers to their contour. It should be noted that the geometry of the part dictates
the contouring procedure. The consecutive addition–subtraction of layers is continued
until the final geometry of the part is achieved. Furthermore, each layer is deposited as an
assemblage of foils laid side-by-side rather than a single continuous sheet, unlike the other
sheet lamination processes [67,69].
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7.2. Friction Stir Additive Manufacturing

FSAM falls into the category of solid-state additive manufacturing processes that
could be considered a combination of layer-by-layer FSW and AM processes. Owing to its
exceptional ability for microstructural engineering and grain refinement, it can be useful in
tuning microstructures to fit the customer’s requirements. It is reported that high-strength
alloys could be fabricated by this process. In FSAM, the fundamental layer-by-layer AM
is employed. Hence, a stack of overlapping sheets/plates is penetrated by a consumable
tool, and the FSLW process is conducted along the defined direction. Figure 17 illustrates a
schematic diagram for the FSAM process. Friction and plastic deformation in a workpiece
create enough heat for the joining of the layers. The joint creation is made possible as
a result of the material transfer, heat generation, and material consolidation from the
front to the tool’s rear parts. In addition to process parameters, the tool geometry during
FSAM also partially defines the macroscopic and microscopic aspects of the manufactured
parts [71–73].
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The sequential steps carried out in the FSAM process are illustrated in Figure 18 and
can be described as follows:

1. The plates/sheets that are additively manufactured are prepared with regard to
surface properties. These plates are manufactured in the desired dimensions and
degreased with the acetone.

2. Stacking metal sheets: In this step, two plates should be overlapped, one over the
other, and oriented as desired.

3. Performing a complete FSLW run: After the stacking of the two sheets/plates, the
FSLW is performed. After the first run, provided the required build height is made,
the process will be finalized. Otherwise, the process will proceed to step 4.

4. Flattening of the upper surface: If the required build height is not made, the deposition
of new layers over the build is needed. Therefore, the upper surfaces of the previously
fabricated layers are flattened in order to remove the flash that occurred during FSLW.
After surface preparation, a new sheet/plate is placed over the top layer. Then, steps
2–4 are repeated until the desired height of the build is provided [75].
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7.3. Friction Forging Tubular Additive Manufacturing

A solid-state, three-dimensional production method similar to the FSAM technique
could be suggested in which the materials are plasticized; therefore, tubular structures
can be deposited layer by layer. This newly invented processing route is referred to as
friction-forging tubular additive manufacturing (FFTAM). The schematic of Figure 19a–d
shows different steps for the deposition of layer-upon-layer of metallic materials in the
FFTAM method. As depicted in the schematic diagram of Figure 19a, first of all, the powder
mixture in the form of chips are inserted from the storage chamber into the free space
of the central shoulder cavity by the screwing action of a rotating screw mandrel. After
inserting the material, the principal hollow cylindrical punch with a groovy surface forges
the powder and consolidates it via rotational movement, as represented in Figure 19b.
Through conducting such thermomechanical treatment, the powder mixture/chips are
plasticized drastically and then form a solid layer. In order to apply the maximum shear
strain at an elevated temperature, the rotational directions for the main outer hollow
sheath/shoulder and cylindrical punch have to be in the opposite direction with respect
to each other. Chip consolidation can be enhanced at high temperatures and shear strains
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through a deformation-assisted diffusion mechanism at hydrostatic pressure. It should be
pointed out that in the constant heat input, excessive ejection of the powder chips/mixture
can result in the unsuccessful deposition of layers caused by incomplete solidification
of feeding material. Meanwhile, lower amounts of the powder chips/mixture for each
layer could lead to overheating along the thickness and cause hot cracking between them.
Consequently, the feeding powder volume is a critical parameter. The optimization of
rotational speed for the visceral punch, main outer shoulder, and the number of feeding
chips per deposition layer is obtained via several trials and errors. According to Figure 19a,
it is possible to manufacture a short tube through several passes of the layer-upon-layer
deposition technique [71].
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Figure 19. FFTAM method steps: (a) the introduction of the powder, (b) powder pressing by forging
and rotational friction stirring, (c) the addition of the next layer of the powder, and (d) the new layer
pressing under friction forging (gray arrows: rotation direction of the inert part, red: rotation direction
and movement of the inert tools; blue: rotation direction and movement of the outer tools) [71].

8. Direct Energy Deposition

Further, 3D cladding and 3D welding are the main techniques in the direct energy
deposition (DED) additive manufacturing technique used for the production of low-carbon
steels, stainless steels, aluminum, titanium, and nickel alloys. In 3D cladding, a laser or
plasma beam melts the metal powder ejected from the feeding nozzle in order to form a
layer, and 3D welding, also called shaped metal deposition (SMD), is a wire-based technique
in which a small-diameter wire is fed and then melted, binding to the previous layers via
welding. The summary of the features and parameters of this method is presented in
Table 4.
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Table 4. Summary of the features and parameters of the DED technique [37,76].

Particle size (µm) 40–110
Beam spot (µm) 660–5000
Power range (W) 300–1000

Scanning speed (mm/s) 1–20
surface roughness (µm) 30.6–63.9

Advantage

Wide range of materials
High rate of deposition and fabrication.

Can be used to fabricate relatively bulky parts.
High density
Economical.

Disadvantage

Fabrication of complex geometries is challenging.
High surface roughness.

Need for post-processing
The control of the process is the difficult task.

High residual stress

Defect

Cracking
Delamination
residual stress

Porosity

There are different types of direct energy deposition systems including wire feed
and powder feed-based DED (based on the type of feedstock), kinetic energy-based DED
(based on the source type of the energy), and melt-based DED. The melting DEDs can be
categorized based on the plasma, laser, electric arc, and electron beam. The flowchart in
Figure 20 shows the different DED classes. Some important points can be given as follows:
the DED process takes place during several stages, which include placing a substrate on
the worktable. In the case of using the laser method, the chamber of the device is filled
with inert gas, and in the case of using the electron beam process, a vacuum is used to
reduce the oxygen level in the chamber. At the beginning of the method, the electron or
laser beam creates a molten pool on the surface. The material transfer is conducted using a
nozzle (laser as powder and beam as wire). The nozzle and the beam move along the path
determined by the CAD data. The successive layers are melted and frozen on each other
until the process is completed [37,58,76–78].
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8.1. Powder Feed Systems

Figure 21 depicts a schematic of the laser-based metal deposition of the DMD technique.
Utilizing the powder feeders, numerous organizations have tried to develop powdered
DED machines, which are also recognized as laser engineered net shaping (LENS), direct
metal deposition (DMD), and laser consolidation (LC). Even though the general method
seems to have no variation, subtle nuances have been distinguished, including the laser
powder, the laser type, the laser spot size, the powered delivery method, the feedback
control scheme, the inert gas delivery method, and/or a type of motion control. The
final parts seem to acquire a dense structure during the building process because all these
processes are comprised of the deposition, the melting, and the solidification of the powder
consuming a traveling melt pool. A wide range of lasers have been utilized in the laser-
based processes including CO2 laser, Nd: YAG laser, diode lasers, and fiber laser. The LENS
technique was originated by the Sandia National Laboratories in 1997. Afterwards, it was
licensed to Optomec (USA), as the DMD technique was developed by the POM group and
the University of Michigan jointly. In the meantime, LENS and DMD technologies offer
the ability to deposit different materials in a single build and the ability to add metal to
existing parts [38,58,79,80].
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Figure 21. Schematic of the powder feed system [38].

Accufusion laser consolidation is quite analogous to the LENS process, where a
powder is deposited into a molten metal bath using a laser that provides the required
energy for the deposition. Similar to the LENS method, the laser consolidation is carried
out in a tightly sealed chamber. This process produces better as-built surface finishes than
the LENS systems; however, it suffers from lower deposition rates. Table 5 shows a list of
equipment suppliers and the specifications of their equipment [81].



Materials 2023, 16, 7514 20 of 28

Table 5. Representative powder-based DED equipment suppliers and specifications [81].

System Method Building Volume (mm) The Source of Energy

Optomec (LENS 750) LENS 300 × 300 × 300 500 W, 1 kW or 2 kW IPG fiber laser

Optomec (LENS 850-R) LENS 900 × 900 ×1500 1 or 2 kW IPG-fiber laser

POM DMD (66R) DMD 3200◦ × 360◦ × 3670◦ 1–5 kW fiber-diode/disk-laser

Accufusion laser
consolidation LC 1000 × 1000 × 1000 Nd: YAG laser

8.2. Wire Feed System

The deposit volume always equals the fed wire volume in the wire feeding, and there
is near-unity feedstock capture efficiency (if the “splatter” from the melt pool is neglected).
As simple geometries, “blocky” geometries are without many thick/thin transitions, and
the most effective coatings are mainly fabricated by wires [41,82].

8.2.1. Wire Arc Additive Manufacturing

Wire arc additive manufacturing (WAAM) is one of the modern methods among
the additive manufacturing processes of metals and is also recognized as shaped metal
deposition (SMD) or rapid plasma deposition (RPD). The schematic of this method is
demonstrated in Figure 22. The main components of this system include a wire feeding,
welding torch, power source, and computer system, which are used to control the arc,
deposition rate, and wire feeding [10].
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Figure 22. Basic WAAM process [10].

In the WAAM process, three methods are conventional to provide the heat input,
which includes the metal inert gas (MIG), tungsten inert gas (TIG), and plasma arc welding
(PAW). Among these methods, using the MIG process is easier and more convenient than
the other two methods because of the connection of the wire with the welding torch. In
PAW and TIG, an external system is required to transfer the wire [82,83].

For WAAM-fabricated Ti-6Al-4V parts, the yield strength and tensile strength in the Z
direction (normal to the deposition plane) were lower than in the X-Y plane. Moreover, the
fatigue cracks initiated in the pores near the surface and the porosity were attributed to the
absorption of N, O, and H gases in the molten deposits [84,85].
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8.2.2. Wire Laser Additive Manufacturing

Wire laser additive manufacturing (WLAM) is capable of producing full-density metal
by utilizing metal wires as the additive metallic material and the laser source energy. This
system is composed of multiple parts, an automatic wire-feeding system, a laser, and a
computer-controlled worktable. As depicted in Figure 23, the laser creates the melting
pool and molten wire metal simultaneously. Then, by feeding the molten wire to the melt
pool, a metallurgical bonding with the substrate can be formed. By movement of the laser
processing head and the wire feeder on the substrate, the bead-shaped solid is formed. The
performance in the WLAM process is determined by many terms like surface finish, the
geometry and quality of the deposit, the final microstructure of the deposited layer, and
the resulting mechanical properties [82,86,87].
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8.2.3. Electron Beam Additive Manufacturing

Electron beam additive manufacturing (EBAM) can create and sustain a molten pool
using a focused electron beam in a high-vacuum chamber. It is worth mentioning that the
feeding material in this process is mainly wire metal. CNC sequencing offers a singular
or integral combination of movement involving a part, electron beam, or wire feeder,
which facilitates the forming of complicated structures. The principal advantage of EBAM
compared to other DED technologies is the prevention of surface oxidation, which leads
to higher purity of deposited layers. Another benefit of this process is superior and faster
beam control through electromagnetic lenses, which eases the deposition rate increase in
electrically conductive materials, even in highly reflective alloys like aluminum and copper,
and improves the sensitivity index. The sensitivity index is defined as the ratio of the
component volume and the size of the actual deposition (Figure 24) [82,88,89].
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9. Electrochemical Methods

It is reported that, currently, there are two electrochemical metal AM techniques,
electrochemical fabrication (EFAB) and Fluid FM 3DP.

9.1. Electrochemical Fabrication

Electrochemical fabrication (EFAB) is a recent solid freeform fabrication (SFF) process
with high economic efficiency for fabricating prototypes or different parts on a massive
scale. EFAB generates a whole layer simultaneously versus serially, like most SFF pro-
cesses. EFAB can be utilized to form structures from electrodepositable metals. Based on
the electrodeposition, the EFAB can deposit ultra-thin layers (2–10 µm or thinner) with
minimized stairsteps, which leads to a fully dense metal structure with the possibility of
being homogeneous and isotropic. The minimum deposited linewidth is about 25 µm,
which can be further reduced. Electrochemical fabrication can be used to fabricate mi-
cromachines and micro-electro-mechanical systems (MEMS), offering high efficiency and
considerable advantages over the current methods including true 3D geometry, compatible
IC, process automation, and low capital investment. In order to build 3D micro-objects with
the EFAB method, layer-by-layer electrochemical deposition and subtractive planarization
are used. Each layer deposition involves three main steps: electroplating of sacrificial
support material through a special method known as “instant masking”, electroplating of
build material, and planarization. The steps for the manufacturing of the metal parts in
the EFAB technique are illustrated in Figure 25. By placing the first layer as a sacrificial
metal, all devices are fully separated from the substrate. It should be pointed out that this
process is usually utilized for the fabrication of medical devices. Nowadays, the EFAB
technique is compatible with three fully commercialized and specific materials like Ni–Co
alloy, Valloy™-120, Edura™-180, palladium, and a rhodium formulation. These materials
could be utilized for several applications because of their diverse functionality. It is worth
noting that it is possible to use other materials in the EFAB technique depending on the
final application requirements [91,92].
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Figure 25. The EFAB method. A three-step method is used on each layer by using two materials.
Eventually, one material is etched in order to release the structure [91].

9.2. Fluidic Force Microscope

Cynosure AG has recently developed an electrochemical technique known as the
Fluidic Force Microscope (Fluid FM) process. In this process, electro-deposition, precise
liquid ink, and scanning probe microscopy (SPM) dispense the coalescence. This technique
makes use of atomic force microscopy (AFM) cantilevers with a microfluidic channel and
a hollow tip. The electrolyte solution contained in a reservoir is pushed through the
cantilever and out of the tip via the application of pressure by a microfluidics control
system (Figure 26). The tip is a part of the printing head that can move in three dimensions
inside the buffer bath. The metal cations are deposited to form the solid metal through
the application of a proper potential to the built substrate. A real-time feedback system is
employed for the detection of any tip deflection. As the formation of a voxel is completed,
the voxel upper face interacts with the tip, exerting a force that leads to a few-nanometer
cantilever deflection. When the deflection reaches a certain amount, the voxel is considered
to be printed. Meanwhile, the tip moves to the next voxel [14,93].
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10. Summary

Metal additive manufacturing processes are relatively new methods that allow the
production of complex structures. In this review, AM processes were categorized based on
their deposition methods, and then they were investigated from a broad perspective by
focusing on the process steps, materials, and heat source types. In AM processes, feeding
materials can exist in many forms such as powder, bulk wire, foil, etc. The feeding system,
even for a single type of the feed material, may vary from one process to another. The
computer control system plays a major role in the automating of AM processes, resulting
in higher surface quality and geometrical accuracy. Some advanced technologies of the
heat sources like the electron beam, the laser beam, and the laser–arc hybrid used in these
methods make them an interesting spectrum of solutions for manufacturing challenges.
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