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Abstract: In this study, conversion coatings were produced on the AM50 magnesium alloy by a plasma
electrolytic oxidation (PEO) process in alkaline-silicate electrolyte with the addition of potassium
hexafluorophosphate, using a unipolar pulse power source. The coating microstructure and its
composition were determined using scanning electron microscopy (SEM) and an X-ray photoelectron
spectroscopy (XPS). The corrosion resistance of the conversion coatings was evaluated by means of
potentiodynamic polarization tests (PDP) and electrochemical impedance spectroscopy (EIS) in a
dilute Harrison solution (DHS). It has been found that the properties (microstructure, composition,
and coating thickness) of the obtained layer and, therefore, their anticorrosive resistance strongly
depend on the electrolyte composition. The best anticorrosive properties were observed in the layers
obtained in the presence of 2.5 g/L KPF6. It was found that the conversion coating produced with
the addition of hexafluorophosphate is characterized by a different morphology (sponge-like) and
better anticorrosion properties, in comparison to the coating obtained with the addition of fluoride
and orthophosphate salts commonly used in PEO synthesis. The sponge-like structure, which is
similar to bone structure in combination with the presence of phosphates in the layer, can increase
the biocompatibility and the possibility of self-healing of this coating. However, neither Mg(PF6)2,
nor any other compounds containing PF6

−, have been found in the layers produced.

Keywords: magnesium alloy; plasma electrolytic oxidation; corrosion resistance; microstructure

1. Introduction

Magnesium is the lightest construction material (1.74 g/mL), but due to its high re-
activity and poor mechanical properties, it is practically not used in its pure form. The
most frequently added alloying element is aluminum, which ensures high strength, creep
resistance, and anticorrosive properties. The addition of zinc increases the ductility and
castability, and improves the strength of the alloy at room temperature. Manganese in-
creases the strength of the alloy, enables its weldability, and increases the hardness of Mg-Al
alloys. Calcium primarily increases the biocompatibility of alloys (accelerates bone growth),
improves the mechanical properties, and the anticorrosive properties. The addition of rare
earth elements, for example, Ce, La, Nd, and Gd, improves the mechanical properties at
elevated temperatures, and the resistance to corrosion [1,2].

Magnesium alloys, due to their excellent properties—such as a high strength to weight
ratio, good dimensional stability, electromagnetic shielding, and biocompatibility—are
widely used in industry. The most commonly used alloys include those with the addition of
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aluminum and zinc or manganese (AZ and AM series), as well as rare earth elements (RE).
Alloys such as AZ91, AM50, or WE43 are used in the electronic, automotive, and aerospace
industries [3–6]. Magnesium-calcium alloys can be used in biomedical applications, e.g.,
biodegradable orthopedic implants [7,8]. However, magnesium alloys are characterized by
very low corrosion resistance, which is caused by the high chemical activity of magnesium,
and also by the unstable passive layer formed on the surface of the alloys [2,9–11]. To
improve the corrosion resistance of magnesium alloys, an appropriate surface treatment is
necessary to produce anticorrosive coatings on the substrate [12,13]. Plasma electrolytic
oxidation (PEO) is a useful technique for developing a protective coating on magnesium
alloys, which involves generating sparks on the alloy surface to produce relatively thick,
dense, and hard ceramic oxide coatings [14–20].

This is a high-voltage anodization process, in which metallic magnesium, acting
as the anode of the system, is oxidized to Mg2+, which reacts with components of the
electrolyte. Since strongly alkaline baths (pH~13) are used in the process the most often,
the intermediate product is magnesium hydroxide [Mg(OH)2], which, as a result of the
high process temperature (approximately 3000 K), is immediately dehydrated to form
magnesium oxide (MgO), the main end product of the PEO process. When using additives
in the electrolytic bath, such as silicates, phosphates, aluminates, or fluorides, appropriate
magnesium salts are also incorporated into the coating structure [17]. The formation
of the conversion coating in the PEO process occurs simultaneously with the intensive
evolution of gases (oxygen and hydrogen), and therefore the overall process is the sum of
electrochemical processes, plasma chemical reactions, and thermal diffusion of oxygen [20].

The most commonly used types of baths in the PEO process include silicate [21,22]
and phosphate electrolytes [23,24], which ensure appropriate mechanical and anticorro-
sive properties of the coatings are produced [25,26]. Baths combining both components
are also used to further optimize the protective properties of the synthesized surface lay-
ers. The presence of silicate increases the hardness of coatings, and phosphates improve
biocompatibility and biodegradability, which is particularly important in biomedical appli-
cations of magnesium alloys [27,28]. In the case of phosphates, the properties of coatings
depend not only on their amount, but also on the kind of compound used, for example:
Na3PO4 [23,24,29], Na2HPO4 [30], (NaPO3)6 [28,31], and Na4P2O7 [32]. Another important
ingredient often added to PEO baths is fluoride, which increases the corrosion resistance,
surface hardness, and wear resistance of the protective layer [33–35]. Simple fluorides
(NaF [33], KF [34], or CaF2 [36]) are used the most frequently, but attempts have also
been made to use substances containing multifluoride anions, for example K2ZrF6 [37–39],
K2TiF6 [40,41], NaSiF6 [42,43], Na3AlF6 [44,45], and NaBF4 [46].

In this study, the influence of the addition of KPF6 to electrolytes on the structure
and anticorrosive properties of PEO coatings produced on the AM50 magnesium alloy
has been investigated. To our knowledge, the application of KPF6 to electrolytic baths
has not yet been reported. The analysis of the impact of the addition of KPF6 on the PEO
process is interesting because there are reports in the literature that state that the PF6

−

ion is not hydrolyzed in a strongly alkaline medium (pH > 12) [47], unlike K2ZrF6 [39],
K2TiF6 [41], or Na3AlF6 [44]. Therefore, the formation of a polyfluorine magnesium salt
in the structure of the conversion coating is possible, as we found in the case of the
addition of NaBF4 salt [46]. The properties of conversion coatings prepared at the optimal
concentration of hexafluorophosphate ions have also been compared with those produced
in a bath containing equimolar amounts of fluorine and phosphorus in the form of the most
commonly used fluoride and orthophosphate salts.

2. Materials and Methods
2.1. Materials and Coatings Preparation

AM50 magnesium alloy (Neo Cast, Krakow, Poland), with the composition presented
in Table 1, was used as substrate for PEO treatment. Before PEO, the specimens in the shape
of rectangular plates of 50 mm × 50 mm × 8 mm were polished with SiC abrasive paper to
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a grit of 1200. The samples were then washed in deionized water, ultrasonically degreased
with acetone, and dried. Subsequently, they were electrochemically activated as anodes in
a saturated NaF solution for 5 min at a voltage equal to 80 V (DC). Immediately after this
procedure, the sample was rinsed with deionized water and submitted to the PEO process.

Table 1. Chemical composition (wt.%) of the AM50 alloy according to EN 1753:2019 [48].

Al Mn Zn Si Fe Cu Ni Mg

4.40–5.50 min. 0.1 max. 0.02 max. 0.1 max. 0.005 max. 0.01 0.002 balance

The electrolyte used in the PEO process consists of NaOH (4 g/L) and Na2SiO3·5H2O
(10 g/L). The coatings were prepared in the electrolyte without and with KPF6 in an
amount ranging from 0.5 to 4.0 g/L. Additionally, the synthesis was carried out in a bath
containing a mixture of NaF and Na3PO4, instead of KPF6. All solutions were prepared
using commercially available, analytical grade reagents and deionized water (conductivity
below 0.1 µS/cm at 25 ◦C). The PEO process was performed using a pulse electrical
source pe861UA-500-10-24-S (Platnig Electronic GmbH, Sexau, Germany). The electrical
parameters were set as follows: frequency 200 Hz, duty cycle 40%, and current density
5 A/dm2. The PEO process time was 10 min and the electrolyte temperature was kept
within the 5–15 ◦C range. The magnesium alloy sample was used as an anode, and stainless
steel as a cathode. The coatings obtained were cleaned with deionized water, and dried.

2.2. Coatings Characterization

The thickness of the coatings was measured using a Dualscope MP20 eddy current
film thickness measurement gauge (Fischer, Sindelfingen, Germany) with FTA 3.3 H sonde.
The average layer thickness and standard derivation of each sample were calculated from
20 measurements.

The surface roughness of the coated surface was measured using a Surftest SJ-210
(Mitutoyo, Kawasaki, Japan). The standard roughness parameter (Ra) as the arithmetic
mean deviation was determined based on measurements performed 10 times in a row.

A scanning electron microscope (SEM) Phenom XL (Thermo Fisher Scientific Inc.,
Waltham, MA, USA) was used to characterize the surface and cross-sectional morphology
of the PEO coatings.

An energy dispersive X-ray spectrometer (EDS) attached to an SEM was employed to
analyze the elemental distribution in the coating. Composition of outer and inner layer PEO
coating was investigated by an X-ray Photoelectron Spectrometer (XPS) using a K-Alpha
anode (Thermo Fisher Scientific Inc., Waltham, MA, USA), equipped with an argon ion gun
to obtain measurements in the inner layer. All energy values were corrected according to
the adventitious C 1s set at 284.5 eV.

Electrochemical corrosion tests were carried out using a PARSTAT 2273 (Princeton
Applied Research, Houston, TX, USA) potentiostat in a conventional three-electrode cell
with the sample as the working electrode (exposed area 0.785 cm2), a platinum plate as the
auxiliary electrode, and a silver chloride electrode immersed directly in a corrosive solution
as the reference electrode. The corrosion resistance of the samples was evaluated by using
potentiodynamic polarization (PDP) curves and electrochemical impedance spectroscopy
(EIS) measurements in a dilute Harrison solution [0.35 wt.% (NH4)2SO4, 0.05 wt.% NaCl]
at room temperature (22 ± 1 ◦C). The potentiodynamic polarization curves were measured
from −0.25 to +0.25 V with respect to the open circuit potential (OCP) at a scan rate of 1
mV/s after an initial 3 h exposure in solution to stabilize OCP. The Tafel analysis of the
potentiodynamic curves was performed, and the values of the following electrochemical
parameters were obtained: corrosion potential (ECORR), corrosion current density (jCORR),
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and anodic (βA) and cathodic (βC) Tafel slopes. Polarization resistance (RP) was calculated
according to the Stern-Geary equation [49]:

RP =
βA·βc

2.303·jCORR(βA + βC)
(1)

EIS measurements were conducted at AC frequencies ranging from 100 kHz to 10 mHz
at an interval of 10 points per decade, with 10 mV rms after an initial 3 h exposure in
solution. The results obtained were analyzed using an equivalent circuit, which was found
by the fitting procedure implemented in the ZSimpWin 3.21 software (EChem Software,
Ann Arbor, MI, USA).

3. Results and Discussion
3.1. Plasma Electrolytic Oxidation Process

A voltage-time curve was used to investigate the influence of electrolyte composition
on the PEO process (Figure 1). Three typical stages were identified during the PEO process,
which included conventional anodization (without discharges), spark anodization (with
small white discharges), and micro-arc oxidation (with large orange discharges). Figure 2
presents images of samples at particular stages. These stages are separated by characteristic
voltage values called breakdown voltage and critical voltage. Based on observations of
the surface of magnesium alloy samples during the PEO process, it was found that the
composition of the electrolyte did not noticeably affect the value of breakdown voltage and
critical voltage, which were approximately equal to 200 V and 450 V, respectively. The time
for the first visible sparks to appear, which means that the breakdown voltage was reached,
was approximately 30 s, regardless of the amount of KPF6 in the solution. Table 2 presents
the time values needed to reach the critical voltage (450 V) and the final voltage values for
different concentrations of KPF6 in the electrolyte.
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The increase in KPF6 concentration in the electrolyte up to 2.5 g/L decreases the time
to reach the critical voltage from 8.8 to 5.0 min. In these cases, the obtained coatings are
smooth, continuous, and without visible damage. Higher KPF6 content causes the time to
increase, and for 4 g/L the critical voltage is not achieved. The final voltage values also
increase with the addition of KPF6 up to 2.5 g/L (from 455 to 470 V), and then decrease
to 346 V for KPF6 concentration equal to 4 g/L addition. When the critical voltage is not
achieved, the oxidation process is unstable, with visible local burns resulting from the
formation of local pits on the surface of the magnesium sample after the PEO process.
(Figure 3).
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Figure 2. Images of the magnesium alloy surface during the PEO process at its various stages:
(a) conventional anodization, (b) spark anodization, and (c) micro-arc oxidation.

Table 2. Time to reach the critical voltage (450 V) and the final voltage of the PEO processes in the
electrolytes containing different concentrations of KPF6.

Concentration of KPF6,
g/L

Time to Reach Critical Voltage,
min

Final Voltage,
V

0.0 8.8 455
0.5 8.3 461
1.0 8.0 465
1.5 7.0 466
2.0 5.9 467
2.5 5.0 470
3.0 9.5 453
4.0 - 346
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3.2. Thickness and Roughness of PEO Coatings

The effect of KPF6 concentration on the average thickness and surface roughness of
PEO coatings formed on the magnesium alloy is shown in Figure 4.

The measured thickness and roughness coefficient (Ra) of the conversion coating
produced by the PEO process in the base bath (without KPF6 content) were 8.4 and 0.76 µm,
respectively. The introduction of KPF6 into the electrolyte in an amount of up to 3 g/L
increases the thickness of the coating to 16.4 µm, simultaneously increasing its roughness
coefficient to 2.11 µm. The addition of a larger amount of KPF6 to the electrolytic bath causes
a decrease in the average coating thickness, but also a further increase in its roughness. The
coating synthesized in an electrolyte containing 4 g/L KPF6 is characterized by a lower
average thickness (8.0 µm) than that produced in the base solution. An increase in the
standard deviation value in thickness measurements (from 0.4 to 1.4 µm) and an increase
in the roughness coefficient (up to 2.9 µm) means that a heterogeneous porous layer with
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a more variable structure is formed. This suggests that partial dissolution of the coating
can occur.
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3.3. Corrosion Resistance of PEO Coatings

The anticorrosive performance of all PEO coatings has been evaluated by potentiody-
namic polarization (PDP) testing after 3 h immersion in dilute Harrison solution (DHS).
The results are shown in Figure 5 and Table 3.
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Figure 5. Potentiodynamic curves of PEO coatings synthesized in electrolytes with different concen-
trations of KPF6 after 3 h exposure in DHS.

Table 3. Electrochemical parameters of PEO coatings synthesized in electrolytes containing different
concentrations of KPF6, obtained from polarization measurements after 3 h exposure in DHS.

Concentration
of KPF6, g/L ECORR, V jCORR, µA/cm2 RP,kΩ·cm2

0.0 −1.630 33.01 1.04
0.5 −1.606 23.11 1.46
1.0 −1.596 9.35 3.81
1.5 −1.595 4.55 7.88
2.0 −1.593 3.91 9.41
2.5 −1.587 1.76 21.09
3.0 −1.555 2.94 13.09
4.0 −1.453 5.94 7.25
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Higher polarization resistance (RP) and lower corrosion current density (jCORR) in-
dicate better corrosion resistance. Based on the recorded curves, it was found that the
addition of KPF6 up to 2.5 g/L systematically decreased jCORR (from 33.01 to 1.76 µA/cm2)
and increased RP (from 1.04 to 21.09 kΩ·cm2). The addition of a larger amount of KPF6
reverses the observed trend and reduces the anticorrosive properties of PEO coatings. The
corrosion potential (ECORR) shifts to more positive values in the entire tested range of KPF6
concentrations in the electrolyte bath.

To better describe the electrochemical behavior of PEO coatings synthesized in elec-
trolytes with different concentrations of KPF6, electrochemical impedance spectroscopy
(EIS) studies have been performed. To achieve the best fit of the data obtained, several
equivalent circuits were analyzed, taking into consideration the physical model of the con-
version coating and the possible corrosion processes. Finally, the impedance data obtained
by EIS (Figure 6a–c) were analyzed using an equivalent circuit (EQC) model, as shown in
Figure 6d.
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data measurements of PEO coatings.

In the circuit selected, RS represents the resistance of the electrolyte between the
working and reference electrodes. Two consecutive groups of parallel combinations of
resistors (ROL and RIL) and constant phase elements (QOL and QIL) were applied to describe
the resistance and capacitance of the outer porous layer (103–105 Hz), and the inner barrier
layer (103–101 Hz), respectively. Rct and Cdl represent the resistance of charge transfer
and the electrochemical double layer capacitance at the substrate/coating interface, which
corresponds to the low frequency time constant (101–10−1 Hz). An inductive loop in the
low-frequency range is related to the dissolution of Mg and indicates that pitting corrosion
of the substrate takes place. It is represented by the resistance RL and the inductance
L [50]. Constant phase elements (Q) used in equivalent circuits were selected instead
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of pure capacitance for better fitting because the surface of the conversion coatings is
physicochemically inhomogeneous, uneven, and rough. The Q impedance is described as:

ZCPE =
1

Q0(jω)n (2)

where ω is the angular frequency, j is the imaginary number, Q0 is the constant admittance,
and n is the empirical exponent.

The simulated values (fitting parameters) obtained by matching the theoretical model
and the experimental data are presented in Table 4. Good fit quality was achieved, which is
demonstrated by the low values of the chi-square test (X2) and the good agreement between
the experimental data and the fitting results (dots and lines in Figure 6a–c).

Table 4. EIS fitting parameters for coatings obtained at different concentrations of KPF6.

Concen.
of KPF6,

g/L

RS,
Ω·cm2

QOL,
µFn/cm2 nOL

ROL,
Ω·cm2

QIL,
µFn/cm2 nIL

RIL,
kΩ·cm2

Cdl,
mF/cm2

Rct,
kΩ·cm2

L
kH·cm2

RL
kΩ·cm2

Rtotal
kΩ·cm2 X2

0 155.5 - - - 5.713 0.877 3.296 0.469 1.533 25.5 0.75 3.80 5.12 × 10−4

0.5 146.8 1.032 0.905 37.9 4.189 0.917 3.476 0.516 1.927 53.8 3.87 4.80 2.88 × 10−4

1.0 147.9 0.784 0.913 42.5 3.347 0.926 4.971 0.348 2.928 24.2 18.64 7.54 4.25 × 10−4

1.5 135.9 0.814 0.858 79.1 2.051 0.922 5.728 0.178 4.361 200.7 21.60 9.44 3.31 × 10−4

2.0 153.9 0.803 0.873 74.2 1.974 0.922 6.222 0.180 4.550 233.1 15.92 9.84 2.74 × 10−4

2.5 141.1 0.392 0.847 218.2 0.819 0.892 13.400 0.093 9.271 231.5 28.51 20.61 5.13 × 10−4

3.0 151.1 0.425 0.867 129.4 1.431 0.894 7.921 0.189 7.069 293.1 16.92 13.04 3.30 × 10−4

4.0 144.9 1.115 0.896 64.9 2.818 0.903 5.975 0.345 5.035 - - 11.07 6.37 × 10−4

It is possible to calculate the total resistance (Rtotal) of PEO coatings from the difference
between the resistance at low frequency (|Z|f→0) and the resistance of the electrolyte
solution (|Z|f→∞) [51,52]. When the frequency goes to zero, the impedance of the capacitive
components approaches infinity and the inductive component tends to zero (|ZL|→0).
Therefore, the total resistance of the corrosion system can be calculated from a combination
of ROL, RIL, Rct, and RL:

Rtotal = |Z| f→0 − |Z| f→∞ = ROL + RIL +

(
1

Rct
+

1
RL

)−1
(3)

From the EIS measurements, it follows that after 3 h of immersion in a corrosive
medium, the outer layer of the PEO coating has no influence on the anticorrosive properties
of the system, and the resistance of the layer is below approximately 0.2 kΩ·cm2. The
corrosion resistance of the PEO coatings depends mainly on the resistance of the dense inner
layer, and the resistance of charge transfer at the substrate/coating interface [23,31,33,53].
With an increase in the amount of KPF6 in the bath, an increase in the ratio of Rct to RIL
is observed, which suggests the influence of the additive on the self-healing processes.
The sealing process of PEO coatings on magnesium alloys by corrosion products has been
reported [39,53]. However, the presence of aggressive ions in the corrosive medium causes
pitting corrosion (dissolution of Mg), which is indicated by the inductive loop in the EIS
spectrum at low frequencies [50,51,54]. The addition of up to 2.5 g/L KPF6 to the electrolyte
bath increases the corrosion resistance of the PEO coatings, while its larger amounts
result in a reduction in the protective properties of the coatings. The best anticorrosive
properties were demonstrated by the PEO coating prepared with the addition of 2.5 g/L
KPF6 (Rtotal = 20.61 kΩ·cm2). The observed decrease in the anticorrosive properties of the
coatings obtained at higher concentrations is probably due to the hydrolysis of KPF6 during
the PEO process, with the release of HF. The hydrolysis process of KPF6 leading to the
formation of HF has been reported [55,56]. An increase in the concentration of KPF6 in
electrolytic baths can induce the local appearance of larger amounts of HF in the reaction
environment, which can cause damage to the formed coatings.

To show the advantage of using KPF6 instead of the combination of NaF and Na3PO4,
which are commonly applied as additives to the PEO electrolyte baths, the anticorrosive
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properties of the layers obtained in different electrolytes, listed in Table 5, have been com-
pared. In the baths containing fluorine and phosphorus, their contents were equimolar. The
bath containing 2.5 g/L KPF6 was chosen for comparison, as the coatings obtained in this
electrolyte have shown the best anticorrosive properties. The results of the measurements of
potentiodynamic polarization and electrochemical impedance spectroscopy for the coatings
obtained, and also for the uncoated AM50 magnesium, are presented in Figures 7 and 8, as
well as Tables 6 and 7.

Table 5. Composition of electrolytes used in comparative studies of PEO coatings.

Sample
Composition of

Electrolyte,
g/L

Molar Contents
of Fluorine,

mM/L

Molar Contents
of Phosphorus,

mM/L

Base
Na2SiO3·5H2O: 10 - -

NaOH: 4

2.5PF6
Na2SiO3·5H2O: 10

81.5 13.6NaOH: 4
KPF6: 2.5

FPO4

Na2SiO3·5H2O: 10

81.5 13.6
NaOH: 4
NaF: 3.42

Na3PO4·12H2O: 5.17
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Table 6. Electrochemical parameters of the uncoated AM50 alloy and the PEO coatings synthesized
in different electrolytes from the polarization measurements after 3 h exposure in DHS.

Sample ECORR, V jCORR, µA/cm2 RP,kΩ·cm2

Uncoated AM50 −1.607 140.10 0.22
Base −1.630 33.01 1.04

2.5PF6 −1.587 1.76 21.09
FPO4 −1.501 2.75 13.41
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Table 7. EIS for the coatings obtained from different electrolytes.

Sample RS,
Ω·cm2

QOL,
µFn/cm2 nOL

ROL,
Ω·cm2

QIL,
µFn/cm2 nIL

RIL,
kΩ·cm2

Cdl,
mF/cm2

Rct,
kΩ·cm2

L
kH·cm2

RL
kΩ·cm2

Rtotal
kΩ·cm2 X2

Base 155.5 - - - 5.713 0.877 3.296 0.469 1.533 25.5 0.75 3.80 5.12 × 10−4

2.5PF6 141.1 0.392 0.847 218.2 0.819 0.892 13.400 0.093 9.271 231.5 28.51 20.61 5.13 × 10−4

FPO4 130.6 0.828 0.890 63.7 2.411 0.910 10.270 0.016 5.271 - - 15.60 5.73 × 10−4

Sample RS,
Ω·cm2

QC,
µFn/cm2 nC

RC,
kΩ·cm2

Cdl,
mF/cm2

Rct,
kΩ·cm2

L
kH·cm2

RL
kΩ·cm2

Rtotal
kΩ·cm2 X2

Uncoated
AM50 122.9 0.302 0.873 0.073 7.627 0.029 1.53 0.153 0.061 2.50 × 10−4

The uncoated AM50 magnesium alloy shows a very high corrosion rate in the DHS
solution (corrosion current density and polarization resistance are equal to 140 µA/cm2 and
220 Ω·cm2, respectively). The PEO treatment in the base electrolyte increases the corrosion
resistance of the substrate by more than 4 times. The introduction of additives containing
fluorine and phosphorus into the electrolyte further increases the anticorrosive properties
of conversion coatings, and the presence of an additive in the form of a single salt (KPF6)
is more effective than a mixture of fluoride and orthophosphate (jCORR and RP are equal
to 1.76 µA/cm2, 21.09 kΩ·cm2 and 2.75 µA/cm2, and 13.41 kΩ·cm2, for 2.5PF6 and FPO4
samples, respectively).

The impedance spectrum obtained for the coating produced on the FPO4 sample (with
NaF and Na3PO4) does not show a visible induction loop at low frequencies. This means
that the value of the total resistance (Rtotal) is equal to the sum of ROL, RIL, and Rct). In
the case of the EIS spectrum of the uncoated AM50 alloy, the occurrence of two capacitive
loops (at high and medium frequencies) and an impedance loop at low frequencies can
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be observed. The first capacitive loop is the result of a naturally formed oxide layer
in an aqueous environment (RC, QC), while the second loop can be associated with the
charge-transfer process (Rct, Cdl). The visible inductive loop indicates the presence of
localized corrosion (RL, QL) [52]. The equivalent circuit model used to fit the EIS data for
measurements on the uncoated magnesium alloy is shown in Figure 8d. The total resistance
(Rtotal) in this case could be obtained by a combination of RC, Rct, and RL:

Rtotal =

(
1

RC + Rct
+

1
RL

)−1
(4)

The results obtained have shown that the conversion coatings produced in the PEO
process significantly increase the corrosion resistance of the AM50 magnesium alloy
(Rtotal = 3.8 kΩ·cm2). The introduction of additives into the silicate base bath further im-
proves the barrier properties of the coatings. The addition of KPF6 makes it possible to
obtain better anticorrosive properties of the synthesized coating, compared to a mixture
of NaF and Na3PO4 with an equimolar content of fluorine and phosphorus (the total
resistance for the 2.5PF6 sample is higher, compared to the FPO4 sample).

3.4. Morphological and Composition Characteristics of PEO Coatings

The SEM images of the surface microstructure of PEO coatings formed on AM50 alloy
in different electrolytes are shown in Figure 9. The cross-sectional morphology and EDS
elemental mapping of the coatings are shown in Figures 10–12.
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Figure 10. Microstructure and elemental distribution in the cross-section of the coating for the Base
sample, measured by EDS.

For all samples, the surface is rich in pores, which is typical for PEO coatings. It can be
seen that in the case of the coating prepared with the addition of 2.5 g/L KPF6, the pores
are smaller and distributed more evenly than in the other coatings (no large external pores).
However, the morphology of this coating resembles a sponge-like structure, in contrast to
the crater-like structures observed in other coatings (Figure 9b,e).

Based on the cross-sectional images, it can be concluded that in all cases the coatings
show excellent adhesion to the substrate. The structure of the coatings includes an outer,
thick, porous layer and an inner (localized right next to the substrate material), thin, barrier
layer. The coating produced in a silicate bath (Base sample) is characterized by lower
porosity of the outer layer, compared to that of other coatings. However, in this case the
inner layer is thinner and less compact. In the case of the coating prepared with the addition
of KPF6 (2.5PF6 sample), the inner layer appears to be the most continuous and without
damages. This causes the conversion coating with the addition of KPF6 to have the best
anticorrosive properties.
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The EDS measurements have shown that the PEO coatings are composed of mag-
nesium, aluminum, oxygen, silicon, and in the case of 2.5PF6 and FPO4 coatings, also
phosphorus and fluorine. These elements, with the exception of fluorine, are evenly dis-
tributed in the conversion coating. In the case of fluorine, an increase in its content is visible
near the magnesium substrate (in the inner layer of the PEO coating).

Using XPS analysis, the chemical composition of the outer and inner layers of the
coatings obtained in the PEO process was determined, and the results are listed in Table 8.

Table 8. Elemental contents (in atomic percentage) determined by XPS for the coatings obtained in
different electrolytes.

Sample Layer
Elements Content, at.%

Mg O Si Al F P

Base
outer 49.1 37.3 11.2 2.4 - -
inner 53.8 37.4 6.4 2.5 - -

2.5PF6
outer 39.6 43.0 10.1 3.7 2.6 1.1
inner 39.6 40.5 9.1 3.3 6.3 1.1

FPO4
outer 45.0 41.3 7.6 3.1 1.7 1.4
inner 38.9 42.8 7.4 3.7 5.2 1.9
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The XPS results indicate that the main components of the coatings obtained are Mg
from the substrate as well as O and Si, which are components of the basic silicate electrolyte.
Small amounts of Al were also found (Al is a component of the AM50 alloy). When the
electrolyte contained KPF6 (sample 2.5PF6) or a mixture of NaF + Na3PO4 (sample FPO4),
fluorine and phosphorus were also present in the coatings. The 2.5PF6 coating contained
more fluorine than the FPO4 coating, while a reverse relation was observed in the case
of phosphorus. It should be noted that phosphorus was evenly incorporated into the
coating, but in the case of fluorine, its clear enrichment is visible in the inner layer of the
PEO coating.

High-resolution XPS analyses of the F 1s and P 2p peaks have been performed to
identify chemical compounds formed in the modified PEO coatings, and the results are
presented in Figure 13. The specific spectra of F 1s for both coatings (2.5PF6 and FPO4),
regardless of the depth (outer/inner layer), have shown one peak at 685.1 ± 0.1 eV, which
corresponds to the presence of MgF2 (metal fluoride at 685.0 ± 0.9 eV [57]). The P 2p spectra
have also shown only one peak at 133.4 ± 0.2 eV, suggesting the presence of Mg3(PO4)2
{(PO4)3− at 133.2 ± 0.7 eV [57]} in both layers. The results presented exclude the formation
of Mg(PF6)2, and the binding energy values for F 1s and P 2p are higher: 687.8 ± 0.2 eV and
136.4 ± 0.8 eV, respectively [57]. This is in contrast to our previous finding that Mg(BF4)2
is present mainly in the inner layer [46]. Using DFT calculation, it has been shown that
BF4

− and H3O+ form stronger hydrogen bonds than PF6
− and H3O+, which suggests that

clusters formed by the former pair are more stable [58]. These findings can be considered
as a reasonable explanation of the observed discrepancy between BF4

− and PF6
− behavior

in PEO processes.
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The compositions of the coatings obtained in the present study are in agreement
with reported literature data from studies, in which conventional silicate, phosphate, and
fluoride electrolytes were used. For PEO coatings synthetized in alkaline silicate baths, it has
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been often confirmed that they are composed of MgO and Mg2SiO4 [17,22]. In the case of
phosphate baths, the most frequently reported component of coatings is Mg3(PO4)2 [17,24].
In the presence of simple fluoride salts (NaF, KF), the common ingredient of a coating
is MgF2 [14,33,34]. In the case of polyfluorine salts, the hydrolysis of the complex anion
to a simple fluoride ion (and further reaction with the magnesium cation to form MgF2)
and the formation of an oxide or a salt derived from the other element are observed (e.g.,
ZrF6

2− to ZrO2 [39], TiF6
2− to TiO2 [41], SiF6

2− to Mg2SiO4 [42], and AlF6
3− to Al2O3 [44]).

Therefore, the use of the KPF6 additive in the electrolyte bath does not change the qualitative
composition of the bath (compared to the mixture of orthophosphate and fluoride), but has
an impact on the morphology and anticorrosive properties of the coatings obtained. The
mechanism of this behavior can probably be related to the hydrolysis of the PF6

− ion in the
PEO process, leading to the formation of fluoride (F−) and phosphate (PO4

3−) ions, as well
as monofluorophosphate (PO3F2−), difluorophosphate (PO2F2

−), and hydrofluoric acid
(HF) [56].

Based on data from the literature and the results obtained, the following processes can
be proposed, which lead to the formation of coatings on magnesium in an alkaline silicate
bath containing KPF6.

Mg0 → Mg2+ + 2e− (5)

Mg2+ + 2OH− → Mg(OH)2 → MgO + H2O (6)

2Mg2+ + SiO3
2−+ 2OH− → Mg2SiO4 + H2O (7)

PF6
− + 8OH− → [PO4]3− + 6F− + 4H2O (8)

3Mg2+ + 2PO4
3−→ Mg3(PO4)2 (9)

Mg2+ + 2F− → MgF2 (10)

4. Conclusions

In the presented study, the PEO coatings produced on the AM50 Mg alloy in alkaline
silicate baths with the addition of KPF6 have been investigated. The results obtained can
be summarized as follows:

• The anticorrosive properties of the obtained coatings increase when the KPF6 concen-
tration is increased to 2.5 g/L. The addition of larger amounts of KPF6 causes damage
to the coating (a large increase in its roughness), probably due to the local formation
of HF during the PEO process.

• The addition of KPF6 allows for better anticorrosive properties of the synthesized
coating to be obtained, compared to a mixture of NaF and Na3PO4 with an equimolar
content of fluorine and phosphorus.

• XPS measurements have shown that in coatings obtained in the presence of KPF6, as
well as a mixture of NaF and Na3PO4 in the baths, the coating components derived
from these additives are the same [MgF2 and Mg3(PO4)2]. Mg(PF6)2 was not present
in the formed coatings, which is in contrast to the formation of Mg(BF4)2, when the
silicate bath contained NaBF4 [46].

• The surface morphology of the PEO coatings produced in the KPF6-containing baths
was more uniform and showed a sponge-like structure, in contrast to commonly re-
ported crater-like structures. The sponge-like structure is similar to bone structure, and
in combination with the presence of phosphates, it can increase the biocompatibility
and the possibility of self-healing of this coating.
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