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Abstract: Excessive CO2 emission from fossil fuel usage has resulted in global warming and en-
vironmental crises. To solve this problem, the photocatalytic conversion of CO2 to CO or useful
components is a new strategy that has received significant attention. The main challenge in this
regard is exploring photocatalysts with high efficiency for CO2 photoreduction. Severe plastic defor-
mation (SPD) through the high-pressure torsion (HPT) process has been effectively used in recent
years to develop novel active catalysts for CO2 conversion. These active photocatalysts have been
designed based on four main strategies: (i) oxygen vacancy and strain engineering, (ii) stabiliza-
tion of high-pressure phases, (iii) synthesis of defective high-entropy oxides, and (iv) synthesis of
low-bandgap high-entropy oxynitrides. These strategies can enhance the photocatalytic efficiency
compared with conventional and benchmark photocatalysts by improving CO2 adsorption, increas-
ing light absorbance, aligning the band structure, narrowing the bandgap, accelerating the charge
carrier migration, suppressing the recombination rate of electrons and holes, and providing active
sites for photocatalytic reactions. This article reviews recent progress in the application of SPD to
develop functional ceramics for photocatalytic CO2 conversion.

Keywords: functional properties; ultrafine-grained (UFG) materials; nanostructured materials;
photocatalytic CO2 conversion; high-pressure torsion (HPT); oxygen vacancies; high-pressure phases;
high-entropy ceramics

1. Introduction

Nowadays, environmental crises, especially global warming caused by CO2 emission
from burning fossil fuels and humankind activities, are considered one of the most signifi-
cant challenges in the world. Reduction of CO2 to reactive CO gas or useful components
and fuels, such as CH4 and CH3OH, using photocatalysts is one of the clean and new
strategies, which is developing rapidly [1–3]. In photocatalytic CO2 conversion, excited
electrons transfer from the valence band to the conduction band of the photocatalysts
by solar irradiation and contribute to the reduction of CO2 to form desirable products,
as shown in Figure 1a [3]. To perform these reduction reactions, some thermodynamic
and kinetic conditions should be provided. From the viewpoint of thermodynamics, the
standard potential of the reduction and oxidation reactions should be between the valence
band and the conduction band of the photocatalyst [3,4]. On the other hand, from the
kinetic viewpoint, the electrons should absorb the light, transfer to the conduction band,
migrate to the surface of the photocatalyst, and take part in the reactions before combining
with the holes [3,4]. To satisfy these kinetic and thermodynamic conditions, a photocatalyst
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should have some features, including high light absorbance, appropriate band structure,
low recombination rate of electrons and holes, easy migration of charge carriers, and high
surface affinity to adsorb CO2 with abundant active sites [3,4]. A combination of these
thermodynamic and kinetic factors determines the speed of the reactions and the type of
final products in photocatalysis.

Semiconductors, such as TiO2 [5–7], g-C3N4 [8,9], and BiVO4 [10–12], are typical
photocatalysts that have been engineered by various strategies to enhance the catalytic
efficiency for CO2 conversion. Doping with impurities, such as nitrogen, phosphorous,
copper, and palladium [13–15]; defect engineering [16,17]; strain engineering [18,19]; meso-
porous structure production [20]; and heterojunction introduction [21,22] are some of the
most promising strategies that have been used so far to improve the optical properties and
catalytic activity of various photocatalysts. Among these strategies, doping with impurities
is the most investigated and feasible method, but impurities can increase the recombi-
nation rate of electrons and holes [13–15]. Therefore, finding new strategies to improve
the photocatalytic activity and suppress the recombination rate of electrons and holes is
a key issue. In this regard, severe plastic deformation (SPD) through the high-pressure
torsion (HPT) method, which is mainly used for nanostructuring of metallic materials, has
been used as a new tool to develop active photocatalysts for water splitting [23–30], dye
degradation [31–34], and especially CO2 conversion [35–38]. This method not only does not
increase the recombination rate of electrons and holes but also effectively suppresses it and
improves some other optical properties. The SPD method has also been used effectively to
synthesize new families of catalysts, such as high-pressure photocatalysts and high-entropy
photocatalysts [23,27].

This article reviews recent publications on the impact of SPD through the HPT method
on photocatalytic activity for CO2 conversion. The four main strategies used for this
purpose are discussed in detail: (i) oxygen vacancy and strain engineering, (ii) stabilization
of high-pressure phases, (iii) synthesis of defective high-entropy oxides, and (iv) synthesis
of low-bandgap high-entropy oxynitrides.

2. Influence of HPT on Photocatalytic CO2 Conversion

HPT as an SPD method has been used since 1935 until now for grain refinement
and the production of nanostructured materials. In addition to grain refinement, the
introduction of various defects, such as vacancies and dislocations, is another feature of
HPT, which resulta in the improvement of the functionality of materials proceeded by
this method [39,40]. In the HPT method, both large shear strain and high pressure (in the
range of several gigapascals) are simultaneously utilized to process or synthesize various
ranges of materials [39,40]. Strain and pressure are applied to the material (disc or ring
shape) using two anvils that rotate with respect to each other, as shown in Figure 1b [41].
Due to the high processing pressure in HPT, it is applicable to hard and less ductile
materials, such as high-melting temperature metals (hafnium [42], molybdenum [43], and
tungsten [44]), amorphous glasses [45,46], silicon-based semiconductors [47,48], and even
ultrahard diamond [49,50]. Another advantage of HPT is its capacity to induce ultra-SPD
(i.e., shear strains over 1000 for mechanical alloying) [51]. The inducing ultra-SPD [51]
together with fast dynamic diffusion [52,53] introduces the HPT method as a unique path to
mechanically synthesize new materials even from immiscible systems [54,55]. Due to these
unique features of HPT, the method was even used for the process and synthesis of hard
and brittle ceramics, but the number of publications on ceramics is quite limited despite the
high potential of these materials for various applications [23–38,56–81]. Published studies
regarding ceramics processed or synthesized by HPT are presented in Table 1, although
there are other classic publications on HPT processing of ceramics mainly by physicists
and geologists [40].
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Table 1. Summary of major publications about ceramics treated by high-pressure torsion and their
major properties and applications.

Materials Investigated Properties and Applications Reference

Various Materials Impact of pressure and strain on allotropy Bridgman (1935) [56]

α-Al2O3 Microstructure and mechanical properties Edalati et al. (2010) [57]

ZrO2 Allotropic phase transformations Edalati et al. (2011) [58]

CuO Dielectric properties Makhnev et al. (2011) [59]

CuO, Y3Fe5O12, FeBO3 Optical properties and electronic structure Gizhevskii et al. (2011) [60]

ZrO2 Phase transformation Delogu et al. (2012) [61]

Cu2O, CuO Middle infrared absorption and X-ray absorption Mostovshchikova et al. (2012) [62]

CuO, Y3Fe5O12, FeBO3 Optical properties Telegin et al. (2012) [63]

BaTiO3 Optical and dielectric properties Edalati et al. (2015) [64]

TiO2-II Photocatalytic activity for hydrogen production Razavi-Khosroshahi et al. (2016) [23]

Various Materials Review on HPT Edalati et al. (2016) [40]

TiO2 Plastic strain and phase transformation Razavi-Khosroshahi et al. (2016) [65]

Y2O3 Optical properties Razavi-Khosroshahi et al. (2016) [66]

YBa2Cu3Oy Microstructural investigation Kuznetsova et al. (2017) [67]

BN Coupled elastoplasticity and plastic strain-induced
phase transformation Feng et al. (2017) [68]

ZnO Photocatalytic activity for dye degradation Razavi-Khosroshahi et al. (2017) [26]

Fe3O4 Lithium-ion batteries Qian et al. (2018) [69]

ZnO Plastic flow and microstructural instabilities Qi et al. (2018) [70]

Fe71.2Cr22.7Mn1.3N4.8 Microstructural features Shabashov et al. (2018) [71]

BN Modeling of plastic flow and strain-induced phase
transformation Feng et al. (2019) [72]

TiO2-II Electrocatalysis for hydrogen generation Edalati et al. (2019) [73]

γ-Al2O3 Photocatalytic activity for dye degradation Edalati et al. (2019) [27]

Various Oxides Review on HPT of oxides Edalati et al. (2019) [74]

MgO Photocatalytic activity for dye degradation Fujita et al. (2020) [28]

ZrO2 Photocatalytic activity for hydrogen production Wang et al. (2020) [26]

SiO2 Photocatalytic activity for dye degradation Wang et al. (2020) [34]

CsTaO3, LiTaO3 Photocatalytic activity for hydrogen production Edalati et al. (2020) [24]

GaN-ZnO Photocatalytic activity for hydrogen production Edalati et al. (2020) [25]

Fe53.3Ni26.5B20.2,
Co28.2Fe38.9Cr15.4Si0.3B17.2

Microstructure and mechanical properties Permyakova et al. (2020) [75]

TiHfZrNbTaO11 Photocatalytic activity for hydrogen production Edalati et al. (2020) [27]

TiO2-ZnO Photocatalytic activity for hydrogen production Hidalgo-Jimeneza et al. (2020) [28]

Bi2O3 Enhanced photocurrent generation Fujita et al. (2020) [76]

TiO2-II Visible-light photocurrent generation Wang et al. (2020) [77]

TiO2-II Photocatalytic activity for CO2 conversion Akrami et al. (2021) [30]

TiZrHfNbTaO6N3 Photocatalytic activity for hydrogen production Edalati et al. (2021) [29]

SiO2, VO2 Phase transformation Edalati et al. (2021) [78]

TiO2 Grain coarsening and phase transformation Edalati et al. (2021) [79]

ZnO Bandgap narrowing Qi et al. (2021) [80]
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Table 1. Cont.

Materials Investigated Properties and Applications Reference

BiVO4 Photocatalytic activity for CO2 conversion Akrami et al. (2022) [29]

TiHfZrNbTaO11 Photocatalytic activity for CO2 conversion Akrami et al. (2022) [31]

TiZrNbTaWO12 Photocatalytic activity for oxygen production Edalati et al. (2022) [30]

TiZrHfNbTaO6N3 Photocatalytic activity for CO2 conversion Akrami et al. (2022) [32]
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Figure 1. Schematic illustration of (a) photocatalytic CO2 conversion and (b) high-pressure torsion [41].

As given in Table 1, the recent usage of HPT to process and synthesize ceramics for
photocatalysis, especially photocatalytic CO2 conversion, has shown a high potential of this
method for the enhancement of photocatalytic activity [35–38]. The HPT method effectively
leads to increased efficiency by narrowing the bandgap, increasing the light absorbance,
aligning the band structure, introducing the interphases and active sites for chemical
adsorption and reaction, and accelerating the charge carrier migration [35–38]. While the
HPT method can control all these features simultaneously by simple mechanical treatment,
chemical methods are not usually able to improve all these features at the same time. The
main drawbacks of the HPT method are the small quantity of the sample and the low
specific surface area of the catalyst due to the high pressure and strain utilized. However,
upscaling the HPT method and increasing the specific surface area by a post-HPT treatment
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are issues that can be addressed in the future. The improvement of features of photocatalysts
by HPT has been achieved using four main strategies, including simultaneous strain and
oxygen vacancy engineering, the introduction of high-pressure phases, the formation of
defective high-entropy phases, and the production of low-bandgap high-entropy oxynitride
phases. The responsibility of each mentioned strategy to improve the photocatalytic CO2
conversion activity is discussed in detail as follows. It should be noted that all photocatalytic
CO2 conversion experiments on HPT-processed catalysts were performed in an aqueous
liquid phase inside a quartz photoreactor with a continuous flow of CO into the liquid
phase and NaHCO3 as the sacrificial agent.

2.1. Simultaneous Strain and Oxygen Vacancy Engineering

Oxygen vacancy engineering is an effective method that has been used to improve
photocatalytic CO2 conversion. Oxygen vacancies increase the photocatalytic efficiency by
increasing the light absorbance, accelerating the charge carrier separation, and enhancing
the surface reactions [35,36]. Oxygen vacancies on the surface of the photocatalysts act
as active sites to trap the electrons for various ranges of reduction reactions. It was also
observed that oxygen vacancies have a significant role in adsorbing and activating the CO2
molecules and increasing the local electronic density [35,36].

BiVO4 is one of the common photocatalysts utilized for photocatalytic CO2 conversion,
but it suffers from a high recombination rate of electrons and holes and an inappropriate
conduction band position [35]. Different strategies have been used to solve these problems,
but in all of them, impurity atoms or a second phase are added to this material [35]. The
HPT method was used to solve the problems of BiVO4 for photocatalytic CO2 conversion by
simultaneous engineering of strain and oxygen vacancies without the addition of impurities.
BiVO4 was processed by HPT for N = 0.25, 1, and 4 turns to investigate the impact of strain
on photocatalytic properties and efficiency. Increasing the lattice strain and decreasing
the crystallite size by increasing the HPT turns is shown in Figure 2a. The occurrence of
lattice strain was also confirmed by Raman peak shift to lower wavenumbers, as shown
in Figure 2b. It was also observed that the concentration of oxygen vacancies increases
in BiVO4 by increasing the applied shear strain. Figure 2c illustrates the oxygen vacancy
concentration, calculated by X-ray photoelectron spectroscopy (XPS), against the number
of HPT turns, confirming that the concentration of vacancies increases by increasing the
applied shear strain. Furthermore, strain and vacancy engineering led to an increase in
light absorbance (Figure 2d) and a slight narrowing of the bandgap from 2.4 eV for the
initial powder to 2.1 eV for the sample proceeded by HPT for N = 4 turns [35].

Simultaneous strain and oxygen vacancy engineering could significantly solve the
problem of BiVO4 in terms of the high recombination rate of electrons and holes, as shown in
Figure 2e. This figure demonstrates that the HPT method decreases the photoluminescence
intensity, which is a piece of evidence for the suppression of recombination. Finally, this
strategy was successful in improving the photocatalytic activity of BiVO4, as shown in
Figure 2f. The CO production rate from CO2 photoreduction was effectively increased by
increasing the number of HPT turns. This study was the first successful work that used
simultaneous strain and oxygen vacancy engineering to improve the photocatalytic activity
of BiVO4 without using impurities, suggesting SPD as a new path to improve the optical
and electronic structure of photocatalysts for CO2 conversion [35].
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Figure 2. Improvement of light absorbance, suppression of recombination, and enhancement of
photocatalytic CO2 conversion for BiVO4 by simultaneous strain and oxygen vacancy engineering
using high-pressure torsion (HPT). (a) Crystallite size and volumetric strain versus the number of
HPT turns (N), (b) Raman spectroscopy of initial and HPT-processed samples (inset: the appearance
of samples), (c) oxygen vacancy concentration versus the number of HPT turns calculated by X-ray
photoelectron spectroscopy, (d) UV–VIS spectroscopy, (e) photoluminescence spectra, and (f) pho-
tocatalytic CO production rate versus time for initial powder and sample proceeded by HPT for
N = 0.25, 1, and 4 turns [35].

2.2. Introducing High-Pressure Phases

The formation of high-pressure phases is one of the HPT effects that can occur for some
ceramics, such as TiO2 [65], ZrO2 [58], ZnO [26], SiO2 [34], VO2 [78], Y2O3 [66], BaTiO3 [64],
Al2O3 [27], and BN [68]. It was observed that these high-pressure phases contain defects,
such as oxygen vacancies and dislocations, and have nanosized grains, which makes them
attractive for photocatalytic applications. TiO2 with the anatase and rutile crystal structures
is one of the most active photocatalysts for CO2 conversion. As shown in Figure 3a, in
addition to anatase and rutile, TiO2 has a high-pressure TiO2-II (columbite) phase with the
orthorhombic structure. Despite many studies on TiO2 photocatalysts, there was not any
research work on photocatalytic CO2 conversion on the TiO2-II phase until 2021. Groups
of current authors stabilized the TiO2-II phase by the HPT method and investigated it
for photocatalytic CO2 conversion [36]. To decrease the fraction of oxygen vacancies in
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the bulk, which can act as recombination centers, an HPT-processed sample was further
treated by annealing [36]. The formation of high-pressure TiO2-II was proved by X-ray
diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM).
Raman spectra along with the appearance of samples are shown in Figure 3b. New Raman
peaks at wavenumbers 171, 283, 316, 340, 357, 428, 533, and 572 cm−1 correspond to the
TiO2-II phase. The changes in the color of the sample from white to dark green after HPT
processing and from dark green to white after annealing indicate that large fractions of
oxygen vacancies are formed after HPT processing, while some of them are annihilated
after annealing, a fact that was also proved by various characterization techniques [36].
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Figure 3. Improved charge carrier migration and photocatalytic CO2 conversion by introducing the
high-pressure TiO2-II phase. (a) Pressure–temperature phase diagram of TiO2. (b) Raman spectra,
(c) photocurrent spectra, and (d) photocatalytic CO production rate versus time for TiO2 before and
after high-pressure torsion processing and after annealing [36].

The light absorbance of the TiO2-II phase produced by HPT processing was higher,
and it had a narrower optical bandgap of 2.5 eV compared with anatase (3 eV), although
the bandgap slightly increased to 2.7 eV after annealing [36]. Introducing the high-pressure
TiO2-II phase using HPT suppressed the recombination rate of electrons and holes. It
also had a positive impact on photocurrent generation, as shown in Figure 3c so that
the annealed sample had the highest current density, suggesting the improvement of
charge carrier separations by introducing the high-pressure TiO2-II phase. The potential of
this new phase for CO2 adsorption was measured by attenuated total reflectance Fourier
transform infrared (ATR-FTIR) spectroscopy. It was observed that the annealed sample
had the highest potential for CO2 adsorption, which can help with photocatalytic CO2
conversion. Finally, this new phase showed a higher potential for photocatalytic CO
production compared with the anatase phase, as shown in Figure 3d. The introduction of
the TiO2-II phase with an optimized fraction of oxygen vacancies significantly improved the
activity so that the annealed sample had the highest efficiency for CO2-to-CO conversion.
The formation of anatase–columbite interphases can also contribute to the high activity of
the HPT-processed sample by increasing the electron–hole separation and migration. In
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conclusion, high-pressure phases show great potential to be used as photocatalysts, and
SPD can be used to stabilize these high-pressure phases under ambient conditions [36].

2.3. Formation of Defective High-Entropy Phases

Introducing high-entropy ceramics as new materials with five or more principal ele-
ments opened a new path in the field of materials science to produce materials with high
functionality for various applications [81,82]. High configurational entropy caused by a
large number of elements in these materials leads to decreasing the Gibbs free energy
and improving the phase stability. High-entropy ceramics have been utilized for various
applications, and in many cases, they have shown better efficiencies than conventional
materials [81,82]. Li-ion batteries [83], catalysts [84], dielectrics [85], magnetic compo-
nents [86], thermal barrier coating [87], and so on are some of the applications of these
materials. The high potential of high-entropy ceramics for various applications is attributed
to their high stability, cocktail effect, lattice distortion, inherent defects, and valence electron
distribution [81,82]. Despite the high functionality of these materials, their application for
photocatalytic CO2 conversion was not investigated until a study was conducted by the
current authors in 2022 [37].

The HPT method, followed by oxidation, was used to fabricate a defective high-
entropy oxide (HEO) with the composition of TiZrNbHfTaO11 and dual crystal structure of
monoclinic and orthorhombic [37]. The selection of elements for this high-entropy ceramic
was conducted by considering the d0 electronic structure of cations that have shown high
potential for photocatalysis. The oxidation states of anionic and cationic elements and
their uniform distribution were proved by XPS and energy-dispersive X-ray spectroscopy
(EDS), respectively. The microstructure of the oxide is shown in Figure 4a using scanning
electron microscopy (SEM) and in Figure 4b using high-resolution TEM. In addition to
a nanocrystalline dual-phase structure, the material exhibited the presence of various
defects, such as vacancies and dislocations, as shown in Figure 4b. The formation of
oxygen vacancies in this material was examined by electron paramagnetic resonance (EPR)
spectroscopy. These oxygen vacancies can act as shallow traps between the valence band
and the conduction band for easier charge carrier separation, as shown in Figure 4c [37].
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Figure 4. High photocatalytic CO2 conversion on defective high-entropy oxide TiZrNbHfTaO11

synthesized by high-pressure torsion. Microstructure of TiZrNbHfTaO11 by (a) scanning electron
microscopy and (b) high-resolution transmission electron microscopy. (c) Electronic band structure of
TiZrNbHfTaO11. (d) Photocatalytic CO production rate on TiZrNbHfTaO11 versus time compared
with P25 TiO2, BiVO4, and anatase TiO2 [37].
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TiZrNbHfTaO11 had a higher light absorbance and lower bandgap compared with
the binary oxides, including TiO2, ZnO, Nb2O5, HfO3, and Ta2O5 [37]. This HEO could
successfully generate photocurrent, which indicates its potential for easy separation of
electrons and holes to improve photocatalytic activity. TiZrNbHfTaO11 showed higher
activity for photocatalytic CO production compared with BiVO4 and TiO2 as two typical
photocatalysts, as shown in Figure 4d. Additionally, it had the same photocatalytic activity
as P25 TiO2 as a benchmark photocatalyst. The high activity of this HEO for photocatalytic
CO2 conversion was attributed to the presence of defects, such as oxygen vacancies and dis-
locations; interphases; and high light absorbance. This study reported the first application
of high-entropy ceramics for photocatalytic CO2 conversion and introduced a new way to
design and synthesize highly efficient high-entropy photocatalysts by SPD processing [37].

2.4. Synthesis of Low-Bandgap High-Entropy Oxynitrides

Metal oxides are the most conventional photocatalysts for CO2 conversion but suffer
from a large bandgap. On the other hand, metal nitrides have a low bandgap but suffer
from low stability compared with metal oxides. Metal oxynitrides are rather new materials
that can solve the problems of metal oxides and nitrides in terms of large bandgap and low
stability, respectively [88]. Although oxynitrides have been used for photocatalytic water
splitting in many research works, their application for photocatalytic CO2 conversion has
been limitedly investigated mainly due to their limited chemical stability. The concept of
high-entropy materials with high stability is one strategy used to produce high-entropy
oxynitrides with low bandgap and high stability for CO2 photoreduction [38].

A high-entropy oxynitride (HEON) with the composition of TiZrNbHfTaO6N3 was
fabricated by the HPT method, followed by oxidation and nitriding, and its photocatalytic
performance was compared with a corresponding HEO TiZrNbHfTaO6 and P25 TiO2
benchmark photocatalyst [38]. This HEON had dual phases with face-centered cubic (FCC)
and monoclinic structures with uniform distribution of elements. This HEON material
had much higher light absorbance compared with P25 TiO2 and relevant HEO, as shown
in Figure 5a. It showed a superior low bandgap of 1.6 eV as one of the lowest bandgaps
reported in the literature for oxynitride photocatalysts. The improved electronic band
structure of this HEON compared with P25 TiO2 and HEO is shown in Figure 5b. The
recombination rate of electrons and holes in HEON was low so that its photoluminescence
intensity was negligible compared with P25 TiO2 and HEO (Figure 5c). The shape of
photocurrent spectra shown in Figure 5d also confirmed the low recombination rate of
electrons and holes in this HEON compared with the HEO and P25 TiO2 catalysts. The
potential of this HEON for CO2 adsorption was measured by diffuse reflectance infrared
Fourier transform (DRIFT) spectrometry, which showed the higher physical adsorption and
chemisorption (in the form of carbonate) of CO2 on this HEON compared with P25 TiO2
and HEO (Figure 5e).

This HEON successfully converted CO2 to CO with extremely high efficiency even
compared with the P25 TiO2 benchmark photocatalyst, as shown in Figure 5f. Although
HEON could adsorb the light in both visible and infrared regions of light, it could not
convert CO2 in these regions within the detection limits of the gas chromatograph. The
stability of HEON was examined by conducting a long-term photocatalytic test for 20 h
after storage of the sample in the air for 6 months. The photocatalytic activity of the material
was not degraded, and X-ray diffraction analysis confirmed that the crystal structure of
HEON did not change after 6-month storage and the long-time photocatalytic reaction. In
conclusion, the low-bandgap HEON catalysts synthesized by SPD can be considered a new
family of highly efficient photocatalysts for CO2 conversion [38].
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Figure 5. High light absorbance, appropriate band structure, suppressed recombination, significant
CO2 adsorption, and high photocatalytic CO2 conversion for high-entropy oxynitride (HEON)
TiZrNbHfTaO6N 3. (a) UV–VIS light absorbance spectra, (b) electronic band structure together with
the appearance of samples, (c) photoluminescence spectra, (d) photocurrent density versus time,
(e) diffuse reflectance infrared Fourier transform spectra (peaks at 665 and 2350 cm−1 represent
chemisorption and physisorption of CO2), and (f) photocatalytic CO production rate versus time for
TiZrNbHfTaO6N3 compared with P25 TiO2 and high-entropy oxide (HEO) TiZrNbHfTaO11 [38].

3. Discussion on Future Outlook

The application of SPD to synthesize new photocatalysts for CO2 conversion introduced
significant findings from the viewpoints of photocatalysis and SPD. The significance of these
issues and their impact on the future outlook of this research field are discussed here.

For all these photocatalysts developed by HPT, CO was the only product that was
detected using a flame ionization detector. The nonproduction of other products, such as
CH4, CH3OH, HCOOH, or CH2=CH2, can be explained by considering the thermodynamic
and kinetic parameters. For instance, CH4 is a product that thermodynamically is more
feasible to be produced than CO due to its lower standard potential. However, more
electrons are required to produce this component compared with CO [89]. Therefore, from
the viewpoint of kinetics, CO production is more feasible than CH4 formation. Another
point that should be considered is that CO has no tendency to be adsorbed to the active
sites of the photocatalysts after production, which leads to propelling the reaction to
CO production [89]. The production of CO as the only product can also be explained
by the pathway of the reaction. In photocatalytic CO2 conversion, the formation of a
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CO•−2 intermediate product is the initial step. This intermediate product is formed by
interchanging the electrons between CO2 and the surface of the catalyst. Adsorption
modes of CO•−2 to the surface of the photocatalyst specify the reaction pathway. The CO•−2
intermediate product can be adsorbed to the surface of the photocatalyst by three modes,
which include (i) oxygen coordination, (ii) carbon coordination, and (iii) combination of
oxygen and carbon coordination [90]. Oxygen coordination occurs when the photocatalyst
is formed from tin, lead, mercury, indium, and cadmium metals. In this case, •OCHO and
formic acid are produced as intermediate and final products, respectively. If the noble and
transition metals are the elements forming the photocatalyst, carbon coordination occurs
and •CO and CO are the intermediate and final products, respectively [90]. The presence
of copper atoms in the structure of photocatalysts leads to the formation of a combination
of oxygen and carbon coordination to produce both •OCHO and •CO as intermediates and
CO, CH4, and C2H5OH as final products. Since all photocatalysts investigated by HPT
include the transition metals, CO is the final product, and the reaction pathway can be
considered as follows [90].

CO2 + e− → CO•
−

2 (1)

CO•
−

2 + 2e− + 2H+ → CO + H2O (2)

Table 2 compares the photocatalytic activity of HEON synthesized by HPT with
reported photocatalysts in the literature by normalizing the amount of CO production to
catalyst mass and surface area [91–123]. Since the photocatalytic reaction occurs on the
surface, comparing the results by normalizing them to the surface area is more reasonable.
According to this table, the amount of CO production for HEON is 4.66 ± 0.3 µmolh−1m−1,
which is higher than the best photocatalysts reported in the literature. This indicates that
the contribution of SPD to introducing new families of photocatalysts will receive high
appreciation in the future by considering the current demands in finding new strategies
to deal with the CO2 emissions; however, the synthesis method and compositions are
expected to be modified by the experts in the field of photocatalysis. For example, one
main disadvantage of SPD for the process and synthesis of catalysts is the low surface area
of the synthesized material, while large specific surface areas are desirable in catalysis [74].
Moreover, theoretical studies are required to clarify the mechanisms underlying the high
activity of photocatalysts developed by SPD so that new catalysts can be designed.

Table 2. Photocatalytic CO production rate on high-entropy oxynitride TiZrNbHfTaO6N3 synthesized
by high-pressure torsion compared with photocatalysts reported in the literature.

Photocatalyst Catalyst
Concentration Light Source CO Production Rate

(µmolh−1g−1)
CO Production Rate

(µmolh−1m−1) Ref.

TiO2/Graphitic Carbon 100 mg
(Gas System) 300 W Xenon 10.16 0.04 Wang et al.

(2013) [91]

Bicrystalline
Anatase/Brookite TiO2
Microspheres

30 mg
(Gas System)

150 W Solar
Simulator 145 0.95 Liu et al.

(2013) [92]

Ag/TaON/RuBLRu′ 2 gL−1

(Liquid System)

500 W
High-Pressure

Mercury
0.056 —-

Sekizawa
et al. (2013)

[93]

10 wt % Montmorillonite-
Loaded TiO2

50 mg
(Gas System) 500 W Mercury 103 1.25 Tahir et al.

(2013) [94]

Anatase TiO2 Nanofibers 50 gL−1

(Liquid System)
500 W Mercury

Flash 40 —– Zhang et al.
(2013) [95]

TiO2 Nanosheets Exposed
{001} Facet

1 gL−1

(Liquid System)

Two 18 W
Low-Pressure

Mercury
0.12 0.00095 He et al.

(2014) [96]
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Table 2. Cont.

Photocatalyst Catalyst
Concentration Light Source CO Production Rate

(µmolh−1g−1)
CO Production Rate

(µmolh−1m−1) Ref.

Anatase TiO2 Hierarchical
Microspheres

200 mg
(Gas System)

40 W Mercury
UV 18.5 0.37 Fang et al.

(2014) [97]

TiO2 and Zn(II) Porphyrin
Mixed Phases

60 mg
(Gas System) 300 W Xenon 8 0.062 Li et al.

(2015) [98]

Anatase TiO2
Hollow Sphere

100 mg
(Gas System)

40 W Mercury
UV 14 0.16 Fang et al.

(2015) [99]

10 wt % In-Doped
Anatase TiO2

250 mg
(Gas System)

500 W Mercury
Flash 81 1.33 Tahir et al.

(2015) [100]

Pt2+–Pt0/TiO2
100 mg

(Gas System) 300 W Xenon ~12.14 0.7 Xiong et al.
(2015) [101]

BiOI 150 mg
(Gas System)

300 W
High-Pressure

Xenon
4.1 0.03 Ye et al.

(2016) [102]

RuRu/Ag/TaON 1 gL−1

(Liquid System)
High-Pressure

Mercury 5 —- Nakada et al.
(2016) [103]

RuRu/TaON 1 gL−1

(Liquid System)
High-Pressure

Mercury 3.33 —- Nakada et al.
(2016) [103]

CeO2-x
50 mg

(Gas System) 300 W Xenon 1.65 0.08 Ye et al.
(2017) [104]

Cu2O/RuOx
500 mg

(Gas System) 150 W Xenon 0.88 — Pastor et al.
(2017) [105]

TiO2 3D Ordered
Microporous/Pd

100 mg
(Gas System) 300 W Xenon 3.9 0.066 Jiao et al.

(2017) [106]

BiVO4/C/Cu2O — 300 W Xenon 3.01 —- Kim et al.
(2018) [107]

g-C3N4/α-Fe2O3
200 mg

(Gas System) 300 W Xenon 5.7 —– Wang et al.
(2018) [108]

xCu2O/Zn2-2xCr 4 gL−1

(Liquid System)

200 W
Mercury-

Xenon
2.5 0.018 Jiang et al.

(2018) [109]

TiO2/Carbon Nitride
Nanosheet

25 mg
(Gas System) 150 W Xenon 2.04 —- Crake et al.

(2019) [110]

TiO2/CoOx
Hydrogenated

50 mg
(Gas System) 150 W UV 1.24 0.0045 Li et al.

(2019) [111]

Bi4O5Br2
20 mg

(Gas System)

300 W
High-Pressure

Xenon
63.13 0.58 Bai et al.

(2019) [112]

ZnGaON — 1600 W Xenon 1.05 — Maiti et al.
(2019) [113]

C3N4 by Thermal
Condensation

100 mg
(Gas System) 350 W Mercury 4.83 —— Xia et al.

(2019) [9]

Cd1-xZnxS 45 mg
(Gas System)

UV-LED
Irradiation 2.9 0.015 Kozlova et al.

(2019) [114]

Bi24O31Cl10
50 mg

(Gas System)

300 W
High-Pressure

Xenon
0.9 — Jin et al.

(2019) [115]
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Table 2. Cont.

Photocatalyst Catalyst
Concentration Light Source CO Production Rate

(µmolh−1g−1)
CO Production Rate

(µmolh−1m−1) Ref.

Bi2Sn2O7
0.4 gL−1

(Liquid System)
300 W Xenon 14.88 0.24 Guo et al.

(2020) [116]

Ag/Bi/BiVO4
10 mg

(Gas System)
300 W Xenon
Illuminator 5.19 0.42 Duan et al.

(2020) [117]

g-C3N4/BiOCl 20 mg
(Gas System)

300 W
High-Pressure

Xenon
4.73 — Chen et al.

(2020) [118]

Fe/g-C3N4
1 gL−1

(Liquid System)
300 W Xenon ~22.5 0.06 Dao et al.

(2020) [119]

Bi2MoO6
0.7 gL−1

(Liquid System)
300 W Xenon 41.5 1.26 Zhang et al.

(2020) [120]

g-C3N4/Zinc
Carbodiimide/Zeolitic
Imidazolate Framework

100 mg
(Gas System) 300 W Xenon ~0.45 0.014 Xie et al.

(2020) [121]

WO3/LaTiO2N 10 mg
(Gas System) 300 W Xenon 2.21 0.4 Lin et al.

(2021) [122]

α-Fe2O3/LaTiO2N 20 mg
(Gas System) 300 W Xenon 9.7 0.65 Song et al.

(2021) [123]

TiZrHfNbTaO6N3
0.2 gL−1

(Liquid System)

400 W
High-Pressure

Mercury
10.72 ± 1.77 4.66 ± 0.3 Akrami et al.

(2022) [32]

The SPD field experienced significant progress in the past three decades, as discussed
in several review papers [124–129], and more recently in a special issue in 2019 [130], which
gathered overviews on both historical developments [131] and recent advancements [132].
A survey of these overviews indicates that despite significant progress on theoretical
aspects [133,134], mechanisms [135,136], processing [137–144], microstructure [145–149],
and mechanical properties [150–155] of metallic materials, there is a recent tendency to
apply SPD to a wider range of materials (oxides [156], semiconductors [157], carbon
polymorphs [158], glasses [159], and polymers [160]) to control phase transformations [161]
and solid-state reaction [162–164] for achieving advanced functional properties [165–172].
CO2 conversion is perhaps the newest application of SPD to functional materials, which
expanded the synthesis capability of SPD from metallic materials to ceramics [37,38].
Moreover, this application has led to the introduction of new benchmark photocatalysts,
which can open new pathways and research directions in corresponding fields. Although
the application of SPD for CO2 photoreduction is currently limited to the HPT method,
which produces only small amounts of samples, the fundamentals developed by HPT
should be used in the future to develop new methods with upscaled sample sizes and
higher potential for industrial applications. This last issue is a general requirement of SPD
for future commercialization in almost any application [173].

4. Conclusions

Global warming has become a significant concern in recent years, which seriously
threatens the life of creatures. Conversion of CO2 molecules to other components, such as
CO, is a way to stand this event. In this regard, photocatalytic CO2 conversion, which uses
solar irradiation as a clean energy source, has been introduced as a new and promising
strategy in recent years. Despite the introduction of various materials, which are modified
by various strategies, the efficiency of CO2 photoreduction is still low compared with
conventional methods for CO2 conversion. High-pressure torsion (HPT) as a severe plastic
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deformation (SPD) method has been used recently to produce some of the most active
photocatalysts for CO2 conversion. The HPT method can increase the CO2 photoreduction
efficiency by (i) oxygen vacancy and strain engineering, (ii) the stabilization of high-
pressure phases, (iii) the formation of defective high-entropy oxides, and (iv) the synthesis
of low-bandgap oxynitrides.
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149. Čížek, J.; Janeček, M.; Vlasák, T.; Smola, B.; Melikhova, O.; Islamgaliev, R.K.; Dobatkin, S.V. The development of vacancies during

severe plastic deformation. Mater. Trans. 2019, 60, 1533–1542. [CrossRef]
150. Kunimine, T.; Watanabe, M. A comparative study of hardness in nanostructured Cu-Zn, Cu-Si and Cu-Ni solid-solution alloys

processed by severe plastic deformation. Mater. Trans. 2019, 60, 1484–1488. [CrossRef]
151. Kuramoto, S.; Furuta, T. Severe plastic deformation to achieve high strength and high ductility in Fe¬Ni based alloys with lattice

softening. Mater. Trans. 2019, 60, 1116–1122. [CrossRef]
152. Kawasaki, M.; Langdon, T.G. The contribution of severe plastic deformation to research on superplasticity. Mater. Trans. 2019, 60,

1123–1130. [CrossRef]

http://doi.org/10.1016/j.apcatb.2021.120185
http://doi.org/10.1016/S0079-6425(99)00007-9
http://doi.org/10.1007/s11837-006-0213-7
http://doi.org/10.1016/j.cirp.2008.09.005
http://doi.org/10.3390/ma11071175
http://www.ncbi.nlm.nih.gov/pubmed/29996494
http://doi.org/10.1002/adem.201000119
http://doi.org/10.1016/j.actamat.2012.10.038
http://doi.org/10.2320/matertrans.MPR2019904
http://doi.org/10.2320/matertrans.MF201921
http://doi.org/10.2320/matertrans.MT-M2020134
http://doi.org/10.2320/matertrans.MF201906
http://doi.org/10.2320/matertrans.MF201923
http://doi.org/10.2320/matertrans.MF201936
http://doi.org/10.2320/matertrans.MF201918
http://doi.org/10.2320/matertrans.MF201913
http://doi.org/10.2320/matertrans.MF201926
http://doi.org/10.2320/matertrans.MF201904
http://doi.org/10.2320/matertrans.MF201905
http://doi.org/10.2320/matertrans.MF201910
http://doi.org/10.2320/matertrans.M2018308
http://doi.org/10.2320/matertrans.MF201911
http://doi.org/10.2320/matertrans.MF201929
http://doi.org/10.2320/matertrans.MF201933
http://doi.org/10.2320/matertrans.MF201919
http://doi.org/10.2320/matertrans.MF201934
http://doi.org/10.2320/matertrans.MF201909
http://doi.org/10.2320/matertrans.MF201937
http://doi.org/10.2320/matertrans.MF201944
http://doi.org/10.2320/matertrans.MF201920
http://doi.org/10.2320/matertrans.MF201915


Materials 2023, 16, 1081 20 of 20

153. Demirtas, M.; Purcek, G. Room temperature superplaticity in fine/ultrafine grained materials subjected to severe plastic
deformation. Mater. Trans. 2019, 60, 1159–1167. [CrossRef]

154. Moreno-Valle, E.C.; Pachla, W.; Kulczyk, M.; Sabirov, I.; Hohenwarter, A. Anisotropy of tensile and fracture behavior of pure
titanium after hydrostatic extrusion. Mater. Trans. 2019, 60, 2160–2167. [CrossRef]

155. Kral, P.; Dvorak, J.; Sklenicka, V.; Langdon, T.G. The characteristics of creep in metallic materials processed by severe plastic
deformation. Mater. Trans. 2019, 60, 1506–1517. [CrossRef]

156. Razavi-Khosroshahi, H.; Fuji, M. Development of metal oxide high-pressure phases for photocatalytic properties by severe plastic
deformation. Mater. Trans. 2019, 60, 1203–1208. [CrossRef]

157. Ikoma, Y. Severe plastic deformation of semiconductor materials using high-pressure torsion. Mater. Trans. 2019, 60, 1168–1176.
[CrossRef]

158. Blank, V.D.; Popov, M.Y.; Kulnitskiy, B.A. The effect of severe plastic deformations on phase transitions and structure of solids.
Mater. Trans. 2019, 60, 1500–1505. [CrossRef]

159. Révész, Á.; Kovács, Z. Severe plastic deformation of amorphous alloys. Mater. Trans. 2019, 60, 1283–1293. [CrossRef]
160. Beloshenko, V.; Vozniak, I.; Beygelzimer, Y.; Estrin, Y.; Kulagin, R. Severe plastic deformation of polymers. Mater. Trans. 2019, 60,

1192–1202. [CrossRef]
161. Mazilkin, A.; Straumal, B.; Kilmametov, A.; Straumal, P.; Baretzky, B. Phase transformations induced by severe plastic deformation.

Mater. Trans. 2019, 60, 1489–1499. [CrossRef]
162. Bachmaier, A.; Pippan, R. High-pressure torsion deformation induced phase transformations and formations: New material

combinations and advanced properties. Mater. Trans. 2019, 60, 1256–1269. [CrossRef]
163. Han, J.K.; Jang, J.I.; Langdon, T.G.; Kawasaki, M. Bulk-state reactions and improving the mechanical properties of metals through

high-pressure torsion. Mater. Trans. 2019, 60, 1131–1138. [CrossRef]
164. Edalati, K. Metallurgical alchemy by ultra-severe plastic deformation via high-pressure torsion process. Mater. Trans. 2019, 60,

1221–1229. [CrossRef]
165. Mito, M.; Shigeoka, S.; Kondo, H.; Noumi, N.; Kitamura, Y.; Irie, K.; Nakamura, K.; Takagi, S.; Deguchi, H.; Tajiri, T.; et al.

Hydrostatic compression effects on fifth-group element superconductors V, Nb, and Ta subjected to high-pressure torsion. Mater.
Trans. 2019, 60, 1472–1483. [CrossRef]

166. Nishizaki, T.; Edalati, K.; Lee, S.; Horita, Z.; Akune, T.; Nojima, T.; Iguchi, S.; Sasaki, T. Critical temperature in bulk ultrafine-
grained superconductors of Nb, V, and Ta processed by high-pressure torsion. Mater. Trans. 2019, 60, 1367–1376. [CrossRef]

167. Rogl, G.; Zehetbauer, M.J.; Rogl, P.F. The effect of severe plastic deformation on thermoelectric performance of skutterudites,
half-Heuslers and Bi-tellurides. Mater. Trans. 2019, 60, 2071–2085. [CrossRef]

168. Enikeev, N.A.; Shamardin, V.K.; Radiguet, B. Radiation tolerance of ultrafine-grained materials fabricated by severe plastic
deformation. Mater. Trans. 2019, 60, 1723–1731. [CrossRef]

169. Leiva, D.R.; Jorge, A.M.; Ishikawa, T.T., Jr.; Botta, W.J. Hydrogen storage in Mg and Mg-based alloys and composites processed by
severe plastic deformation. Mater. Trans. 2019, 60, 1561–1570. [CrossRef]

170. Huot, J.; Tousignant, M. Effect of cold rolling on metal hydrides. Mater. Trans. 2019, 60, 1571–1576. [CrossRef]
171. Miyamoto, H.; Yuasa, M.; Rifai, M.; Fujiwara, H. Corrosion behavior of severely deformed pure and single-phase materials. Mater.

Trans. 2019, 60, 1243–1255. [CrossRef]
172. Valiev, R.Z.; Parfenov, E.V.; Parfenova, L.V. Developing nanostructured metals for manufacturing of medical implants with

improved design and biofunctionality. Mater. Trans. 2019, 60, 1356–1366. [CrossRef]
173. Lowe, T.C.; Valiev, R.Z.; Li, X.; Ewing, B.R. Commercialization of bulk nanostructured metals and alloys. MRS Bull. 2021, 46,

265–272. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.2320/matertrans.MF201922
http://doi.org/10.2320/matertrans.MF201928
http://doi.org/10.2320/matertrans.MF201924
http://doi.org/10.2320/matertrans.MF201916
http://doi.org/10.2320/matertrans.MF201907
http://doi.org/10.2320/matertrans.MF201942
http://doi.org/10.2320/matertrans.MF201917
http://doi.org/10.2320/matertrans.MF201912
http://doi.org/10.2320/matertrans.MF201938
http://doi.org/10.2320/matertrans.MF201930
http://doi.org/10.2320/matertrans.MF201908
http://doi.org/10.2320/matertrans.MF201914
http://doi.org/10.2320/matertrans.MF201932
http://doi.org/10.2320/matertrans.MF201940
http://doi.org/10.2320/matertrans.MF201941
http://doi.org/10.2320/matertrans.MF201931
http://doi.org/10.2320/matertrans.MF201927
http://doi.org/10.2320/matertrans.MF201939
http://doi.org/10.2320/matertrans.MF201935
http://doi.org/10.2320/matertrans.MF201943
http://doi.org/10.1557/s43577-021-00060-0

	Introduction 
	Influence of HPT on Photocatalytic CO2 Conversion 
	Simultaneous Strain and Oxygen Vacancy Engineering 
	Introducing High-Pressure Phases 
	Formation of Defective High-Entropy Phases 
	Synthesis of Low-Bandgap High-Entropy Oxynitrides 

	Discussion on Future Outlook 
	Conclusions 
	References

