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Abstract: Electromagnetic (EM) waves that bypass obstacles to achieve focus at arbitrary positions
are of immense significance to communication and radar technologies. Small-sized and low-cost
metasurfaces enable the accomplishment of this function. However, the magnitude-phase characteris-
tics are challenging to analyze when there are obstacles between the metasurface and the EM wave. In
this study, we creatively combined the deep reinforcement learning algorithm soft actor–critic (SAC)
with a reconfigurable metasurface to construct an SAC-driven metasurface architecture that realizes
focusing at any position under obstacles using real-time simulation data. The agent learns the optimal
policy to achieve focus while interacting with a complex environment, and the framework proves to
be effective even in complex scenes with multiple objects. Driven by real-time reinforcement learning,
the knowledge learned from one environment can be flexibly transferred to another environment to
maximize information utilization and save considerable iteration time. In the context of future 6G
communications development, the proposed method may significantly reduce the path loss of users
in an occluded state, thereby solving the open challenge of poor signal penetration. Our study may
also inspire the implementation of other intelligent devices.

Keywords: deep reinforcement learning; reconfigurable metasurface; focusing; soft actor–critic

1. Introduction

Metasurfaces, as two-dimensional metamaterials [1,2], have attracted extensive atten-
tion owing to their ability to generate arbitrary EM arrays by introducing corresponding
field discontinuities at interfaces. Several interesting EM devices are based on metasurface
technology including couplers [3,4], cloaking [5–7], focusing or imaging systems [8–11],
and other devices [12–15]. A focusing metasurface is one of the most thought-provoking
devices and are of great significance in promoting research in fields such as radar detection,
imaging, and 6G communications. In particular, the development of tunable metasur-
faces/metamaterials in recent years has led to a significant increase in the freedom of
designing reconfigurable functions [16–27]. For example, flexible technologies can achieve
tunable focusing by mechanically controlling the expansion and contraction of a struc-
ture [17]. Similarly, other smart tunable materials such as varactor diodes [18], electrolyte
elastomers [19], and phase-change films [20] can also achieve focusing effects at different
positions and focal lengths using reasonable voltage or light modulation. However, these
traditional techniques for achieving focus are direct calculations of the compensated phase,
and the traditional theoretical calculations fail when there is an obstacle to the incident
wave source and metasurface.

An ideal metasurface-focusing system should quickly realize focusing tasks in different
environments to adapt to different communication scenarios. In particular, in the presence
of unknown obstacles, the fast realization of the focusing task is of great importance for
user signal transmission and reception. However, this is difficult to achieve because the
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amplitude-phase characteristics of the unit cell are difficult to analyze, resulting in the
inability to analytically deduce the state of each meta-atom. Therefore, intelligent adaptive
strategies are urgently required. Although adaptive optics have been extensively studied
by enabling artificial intelligence (deep learning) on metasurfaces [28–30], the success
of deep learning requires prior knowledge of the environment. Unlike traditional deep
learning methods, which require a large number of training and test sets related to a
specific environment [31–33], another branch of machine learning, reinforcement learning
(RL), is used to describe and solve problems in which agents learn strategies to achieve
specific goals in the process of interacting with the environment [34–36]. In particular,
the development and improvement of deep RL (DRL) in the fields of Go and robotics has
increased the demand for RL [37–40]. This makes it possible to solve focusing tasks in
complex environments; however, it remains challenging.

In this study, we combine the DRL algorithm, soft actor–critic [41,42], with a metasur-
face to propose the SAC-M system for adaptive focusing design under an arbitrary obstacle.
We first analyzed the adaptive focusing framework and implementation process of the SAC
algorithm and used the designed metasurface to simulate and train the focusing task in the
presence of different obstacles. Simulation results show that the proposed SAC-M system
can operate stably in the presence of multiple obstacles of any shape and adaptively con-
verge incident waves to user-defined locations. In addition, the knowledge learned by the
agent based on the maximum entropy strategy in an environment can be used to initialize a
new environment where the SAC-M system can learn a strong generalization ability. Both
the simulation and network training results demonstrated that SAC-M exhibits effective
and robust adaptive focusing capabilities when dealing with complex EM environments.
Moreover, the SAC-M architecture is beneficial for the proposal of other EM wave smart
devices and may be extended to other research fields, such as communication to solve more
challenging problems.

2. Materials and Methods
2.1. Architecture of the SAC-M

The advantage of SAC-DRL lies in its ability to explore more ways to solve problems
while learning the policy. For different focuses in unknown scenarios, the agent can rapidly
complete new tasks and reduce unnecessary iterations such that it can be adapted to
different types of environments. Figure 1 illustrates the proposed SAC-M mechanism.
A plane incident wave, tunable metasurface, and arbitrarily shaped object (purple cube)
simultaneously constitute a complex environment, as shown in Figure 1a. Two sets of
one-dimensional data (crossed white-dotted lines) of the focal position in the focal plane
(red dashed box in Figure 1a) were selected as the training data. When the state of the
tunable metasurface changed, the state (training data) obtained at each moment changed
accordingly. The agent collected the training data in the environment, compared it with
the objective function (Figure 1b), and analyzed the contribution (termed rewards) of state
variables to the final task in real time. Following the analysis, the output action initiated,
which means that the voltage or capacitance change at the next moment is transmitted to
the tunable metasurface, thereby altering the environment. The training data also changed
in real time and were obtained by the agent. Finally, the SAC-M framework formed a closed-
loop architecture of an environment-agent-action-environment and iterated continuously
until the mission was accomplished.

2.2. SAC Algorithm

In traditional DRL, the agent’s goal is to learn a policy that maximizes the accumulated
reward expectation [40]. It considers only one optimal action for a state and does not
have the ability to cope with changing environments. However, the SAC-DRL is based
on maximum entropy, and its core idea is to randomize the strategy and disperse the
probability of each action output as much as possible, and not leave out any useful action
and trajectory. The optimal strategy is defined as [41,42]:
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π∗ = argmaxπE(st ,at)[∑t R(stst, at) + αH(π(·|st))] (1)

where π∗ is the optimal strategy; st and at are the state and action at time t, respectively;
R(st, at) represents the return; H(π(·|st) is the entropy; and α is the temperature parameter,
which determines the randomness of the strategy.

The neural network explores all possible optimal ways for the learned policy to have
stronger exploration and robustness and can be used to initialize more complex tasks. In
other words, when the policy has completed the focusing task in an environment, the agent
can update the policy faster when faced with a new environment.

Materials 2023, 16, x FOR PEER REVIEW 4 of 10 
 

 

 
Figure 1. Proposed SAC-M Architecture. (a) Incident wave, metasurface, and object constitute com-
plex environments simultaneously. (b) Agent continuously collects and analyzes data in real time. 

2.2. SAC Algorithm 
In traditional DRL, the agent’s goal is to learn a policy that maximizes the accumu-

lated reward expectation [40]. It considers only one optimal action for a state and does not 
have the ability to cope with changing environments. However, the SAC-DRL is based on 
maximum entropy, and its core idea is to randomize the strategy and disperse the proba-
bility of each action output as much as possible, and not leave out any useful action and 
trajectory. The optimal strategy is defined as [41,42]: 𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝐸( , )[∑ 𝑅(𝑠 𝑠 , 𝑎 ) + 𝛼𝐻(𝜋(∙ |𝑠 ))]  (1) 

where 𝜋∗ is the optimal strategy; 𝑠  and 𝑎  are the state and action at time 𝑡, respec-
tively; 𝑅(𝑠 , 𝑎 ) represents the return; 𝐻(𝜋(∙ |𝑠 ) is the entropy; and 𝛼 is the temperature 
parameter, which determines the randomness of the strategy. 

The neural network explores all possible optimal ways for the learned policy to have 
stronger exploration and robustness and can be used to initialize more complex tasks. In 
other words, when the policy has completed the focusing task in an environment, the agent 
can update the policy faster when faced with a new environment. 

Figure 2 shows the network framework of the SAC, including the state, actor, and 
critic. We used four-layer convolutional networks to build the actor and critic networks. 𝑆  is the state (electric field) collected by the agent from the environment at time 𝑡. The 
actor network selects the appropriate action (capacitance matrix [𝐶𝑎𝑝1, … , 𝐶𝑎𝑝30]) based 
on the state, and the critic network evaluates the value of the state. For continuous actions, 
the actor outputs the mean (𝑢 ) and variance (𝜎 ) of the action distribution. 

To stabilize the training, “critic” uses two Q-value functions represented by 𝜃1 and 𝜃2, and uses two value functions, represented by 𝜓 and 𝜓. The Target-V network repre-
sents the estimation of the state value, and the Critical-Q-network represents the estima-
tion of the action value. In the SAC algorithm, the goal of the actor is to maximize the 
output action using Equation (1). The goal of the Critic-Q and Target-V networks is to 
make the output action value Q and state value V more accurate. 

Similar to the traditional actor–critic algorithm, the network update iteration of SAC 
is divided into two steps: soft-policy evaluation and soft-policy improvement. In the soft-
policy evaluation, the policy is fixed, and the Q value is updated using the Bellman equa-
tion until convergence occurs. 𝑄 (𝑠 , 𝑎 ) = 𝑟(𝑠 , 𝑎 ) + 𝛾𝐸 , [𝑄 (𝑠 , 𝑎 ) − 𝛼 𝑙𝑜𝑔( 𝜋(𝑎 |𝑠 )] (2) 

In soft-policy improvement, the policy is updated using Equation (3). 

Figure 1. Proposed SAC-M Architecture. (a) Incident wave, metasurface, and object constitute
complex environments simultaneously. (b) Agent continuously collects and analyzes data in real time.

Figure 2 shows the network framework of the SAC, including the state, actor, and
critic. We used four-layer convolutional networks to build the actor and critic networks. St
is the state (electric field) collected by the agent from the environment at time t. The actor
network selects the appropriate action (capacitance matrix [Cap1, . . . , Cap30]) based on the
state, and the critic network evaluates the value of the state. For continuous actions, the
actor outputs the mean (ut) and variance (σt) of the action distribution.

To stabilize the training, “critic” uses two Q-value functions represented by θ1 and θ2,
and uses two value functions, represented by ψ and ψ. The Target-V network represents
the estimation of the state value, and the Critical-Q-network represents the estimation of
the action value. In the SAC algorithm, the goal of the actor is to maximize the output
action using Equation (1). The goal of the Critic-Q and Target-V networks is to make the
output action value Q and state value V more accurate.

Similar to the traditional actor–critic algorithm, the network update iteration of SAC
is divided into two steps: soft-policy evaluation and soft-policy improvement. In the
soft-policy evaluation, the policy is fixed, and the Q value is updated using the Bellman
equation until convergence occurs.

Qπ
so f t(st, at) = r(st, at) + γEst+1,at+1 [Q

π
so f t(st+1, at+1)− αlog(π(at+1

∣∣∣st+1)] (2)
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Figure 2. Architecture of SAC. State (st) is the data of the focal plane, and the action is the capacitance
sequence: [Cap1, . . . , Cap30]. SAC network consists of one actor network and four critic networks
(Q-network-1, Q-network-2, V-network-1, and V-network-2).

In soft-policy improvement, the policy is updated using Equation (3).

π′ = argmin
πk∈Π

DKL(πk(·|st)||
exp( 1

α Qπ
so f t(st, ·))

Zπ
so f t(st)

) (3)

Soft-policy iteration algorithms alternate the soft-policy evaluation and soft-policy
improvement steps. The detailed derivation process of the algorithm can be found in the
references [41,42].

2.3. Element Configuration

The tunable reflective metasurface arrangement is composed of a group of unit cells
with various capacitances. The physical dimensions of the proposed reconfigurable meta-
surface were 300× 200 mm2, comprising 30× 20 unit cells along the x and y directions,
where y direction was set as the periodic boundary. Figure 3a shows that the designed unit
cell, which consists of a 10× 10 mm2 substrate (εr = 2.65) with 2.5 mm thickness, a fully
reflective metal patch attached to the back, and a specially designed metal structure with
a varactor diode. The varactor diode model is MAVR-000120-14110P, whose capacitance
can be tuned between 0.14 and 1.1 pF with a parasitic resistance of approximately 2.5 Ω.
Figure 3a shows an equivalent circuit diagram. The RC model is used as an equivalent
diode, and the diode characteristics can be changed by adjusting capacitance. The metal
sheet attached to the front is a center-symmetrical figure with a diode placed at the center.
Using the commercial software CST2020 (CST Studio Suite 2020, Dassault aircraft company,
France) to analyze the S-parameters of the unit cell, the frequency domain simulation
mode is used, its x and y directions are set as the unit cell boundary, and the electric field
is along the x direction. The S-parameters are shown in Figure 3b,c. Apparently, at the
frequency f =5 GHz, the reflection phase changes continuously to 320◦ and the amplitude
is greater than −2 dB. Here, we show six kinds of capacitors as characteristic units, and the
capacitance values are 0.18, 0.26, 0.36, 0.5, 0.7, and 1 pF.
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Figure 3. (a) 3D view of the designed unit cell. p = 10 mm, w1 = 1.5 mm, w2 = 4.2 mm,
w3 = 4.5 mm, h = 2.5 mm. (b,c): Reflection phase and amplitude at different capacitances and
frequencies, respectively.

3. Results and Discussion
3.1. The Training Results and Unit Cell Design

The selection of the state data is crucial for the agent to quickly learn a good policy.
To reduce the amount of data storage, we only selected two sets of data (dotted line in
Figure 4a) at the focal position (the five-pointed star) in the focal plane as the input of
the agent, denoted as Data− 1 : [D1, D2, . . . , D75]D1; Data− 2 : [D1, D2, . . . , D36]D2. In
Figure 4a, the solid white frame is the focal plane, and any focal position in this area
can be defined as an agent-learning target. The green solid line frame represents the
area where the object and metasurface are located. The object was a perfect electric
conductor (PEC). Objects of any shape and number can be placed, and the agent does
not need to be known in advance. Before the agent learns, we first define the target data:
Goal − 1 : [D1, D2, . . . , D75]G1; Goal − 2 : [D1, D2, . . . , D36]G2, which were obtained by
the traditional focusing method [43]. The purpose of the agent is to learn a policy making
the Data− 1 and Data− 2 rapidly approach Goal − 1 and Goal − 2 in any scenario. Here,
we defined five scenarios, as listed in Table 1.
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Figure 4b,c show the curves of the average return of the agent in the learning process
with the number of iterations under different scenarios. A good focusing effect is generated
when the average returns to 95. When the agent faces a new scene for the first time, large
amounts of data are necessary, as the agent knows nothing about the environment. As
shown in Figure 4b, the agent obtains a good policy after approximately 5000 iterations
for Scenario 1 (orange curve). In Scenario 2, the agent continues to use the experience and
policy learning in Scenario 1 to keep testing the new environment, and finally achieves a
good focusing effect after approximately 4000 iterations. For the new task in Scenario 2
(blue curve), the agent already has a certain learning ability compared with Scenario 1. At
this time, we changed the scene again, as shown in Figure 4c, and the new focusing task
could be achieved after 2000 iterations in Scenario 3 (purple curve). The amount of data
was twice as small as before because the agent combined the policies of Scenarios 1 and 2,



Materials 2023, 16, 1366 6 of 10

and the learning ability was further improved. Finally, we changed the environment to
Scenarios 4 and 5. At this time, the speed of policy evaluation and policy improvement
was faster. In particular, in Scenario 5, the agent only required a few dozen iterations to
complete the focusing task. Combining the training data of different scenarios, it can be
observed that the agent learned the solution to a set of problems and can quickly adapt to
the new environment with the help of empirical knowledge.

Table 1. Define of different scenarios.

Scenario Focal Position (x, z)/mm Object

Scenario 1 (188, 130)
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3.2. Adaptive Focusing Results at Different Positions

Figure 5 shows the focusing process in Scenario 1 under normal incidence. As shown
in Figure 5a, the black five-pointed star marks the position of the target focus point, and
the row and column data where the position is located are selected as training data (white-
dotted line). The black square area represents an obstacle. In Scenario 1, an object with a
side length of 40 mm was located 5 mm above the metasurface, and the object was 205mm
away from the edge of the metasurface. The five images in Figure 5a show the electric field
energies at iterations of 500, 3800, 4500, 4800, and 5000 times. Scenario 1 is the unknown
environment faced by the agent for the first time; therefore, the process of learning the
policy was very long. It can be observed that when the iteration was 3800 times, a certain
focusing effect was produced, but the energy was relatively scattered at this time. When the
iteration reached approximately 5000 times, the energy almost converged to the position
of the target focus, and the agent completed the task in Scenario 1. The plot in Figure 5b,c
show the predicted (green line) and theoretical (red line) values for Data 1 and Data 2,
respectively, and we calculated the mean absolute error (MAE) loss for both. With the
continuous learning of the agent, the predicted value constantly approached the theoretical
value, and the MAE constantly approached zero. The MAE is defined as:

MAE =
1
m ∑m

i=1

∣∣∣ETheory − EPredict

∣∣∣ (4)

where m is the total number of iterations, ETheory is the theoretical value, and EPredict is the
network prediction. The closer the MAE was to 0, a better the training result was realized.

Figure 6 shows the focusing results for Scenarios 2, 3, 4, and 5. The shape and number
of objects are different in different scenes, and the red star is the focus position. Combining
previous experiences and strategies, the agent can rapidly adapt to the new environment
and achieve efficient focusing at the target location, as shown in Figure 6a. Figure 6b,c show
the theoretical (red line) and predicted (green line) curves of Data 1 and Data 2, respectively,
under different scenarios. It can be observed that the two have excellent fitting effects.
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Figure 5. Focusing process in Scenario 1. (a) Dynamic focusing process with different iterations
under normal incidence. Black five-pointed star represents the position of the target focus and the
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was 40 mm. (b) Network prediction and theoretical results of Data 1 under different iterations
and the MAE loss was calculated. (c) Network prediction and theoretical results for Data 2 under
different iterations.
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was calculated. (c) Network prediction and theoretical results for Data 2 under different scenarios.
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4. Conclusions

In conclusion, combined with a soft actor–critic and reconfigurable metasurface, we
proposed and designed an SAC-M-driven adaptive focusing system. The agent learns and
improves policies in real time in changing environments, and the metasurface is guided by
it and exhibits effective and robust adaptive focusing capabilities based on 1D electric-field
data. The simulation and network results demonstrated that the proposed SAC-M system is
highly adaptable for achieving focus at arbitrarily specified positions with multiple objects
of any shape. Our novel combination of the classical EM theory and mainstream theories
of RL uncovered the exciting potential of metasurfaces. The proposed SAC-M framework
not only provided an idea for realizing adaptive focusing in unknown environments, but
also provided a general architecture to solve more challenging problems. If similar designs
can be decoded, smart metasurface systems offer incredible potential for communication
and radar technologies.
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